UH-CAS Workshop on mathematical logic Helsinki, October 31, 2018

Modal Logics with Team Semantics A Survey

Lauri Hella

Faculty of Natural Sciences, University of Tampere, Finland

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Contents of the talk

- Basic modal logic with team semantics
- Modal dependence logic
 - Basic theory, Complexity
- Propositional dependence logic
 - Intuitionistic disjunction, Completeness
- Extended modal dependence logic
 - Expressive power, Complexity
- Modal inclusion logic
 - Expressive power, Complexity
- Other modal logics with team semantics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Basic modal logic \mathcal{ML} : Syntax

Let Φ be a set of proposition symbols. The set of $\mathcal{ML}(\Phi)$ -formulas is defined by the following grammar:

$\varphi ::= p \mid \neg p \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid \Box \varphi \mid \Diamond \varphi,$

where $p \in \Phi$.

Note that formulas are assumed to be in *negation normal form*: negations may occur only in front of atomic formulas.

A *Kripke-model* for Φ is a triple M = (W, R, V), where

• $W \neq \emptyset$ is the set of *states* (or possible worlds),

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $R \subseteq W \times W$ is the *accessibility relation*, and
- $V : \Phi \to \mathcal{P}(W)$ is the *valuation*.

A *team* on *M* is a subset $T \subseteq W$.

Kripke-semantics for \mathcal{ML} :

- $\blacktriangleright \ M, w \models p \qquad \Leftrightarrow \ w \in V(p)$
- $M, w \models \neg p \quad \Leftrightarrow w \notin V(p)$
- $\blacktriangleright \ M, w \models \varphi \land \psi \Leftrightarrow \ M, w \models \varphi \text{ and } M, w \models \psi$
- $\blacktriangleright \ M, w \models \varphi \lor \psi \Leftrightarrow \ M, w \models \varphi \text{ or } M, w \models \psi$
- $\blacktriangleright \ M, w \models \Box \varphi \quad \Leftrightarrow \ M, v \models \varphi \text{ for all } v \text{ s.t. } wRv$
- $M, w \models \Diamond \varphi \quad \Leftrightarrow M, v \models \varphi \text{ for some } v \text{ s.t. } wRv$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Kripke-semantics/team semantics for \mathcal{ML} :

- $\blacktriangleright \ M, w \models p \qquad \Leftrightarrow \ w \in V(p)$
- $M, w \models \neg p \quad \Leftrightarrow w \notin V(p)$
- $\blacktriangleright \ M, w \models \varphi \land \psi \Leftrightarrow \ M, w \models \varphi \text{ and } M, w \models \psi$
- $\blacktriangleright \ M, w \models \varphi \lor \psi \Leftrightarrow \ M, w \models \varphi \text{ or } M, w \models \psi$
- $\blacktriangleright \ M, w \models \Box \varphi \quad \Leftrightarrow \ M, v \models \varphi \text{ for all } v \text{ s.t. } wRv$
- $M, w \models \Diamond \varphi \quad \Leftrightarrow M, v \models \varphi$ for some v s.t. wRv

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Kripke-semantics/team semantics for \mathcal{ML} :

- $\blacktriangleright M, T \models p \qquad \Leftrightarrow T \subseteq V(p)$
- $M, T \models \neg p \quad \Leftrightarrow \ T \cap V(p) = \emptyset$
- $\blacktriangleright \ M, w \models \varphi \land \psi \ \Leftrightarrow \ M, w \models \varphi \ \text{and} \ M, w \models \psi$
- $\blacktriangleright \ M, w \models \varphi \lor \psi \Leftrightarrow \ M, w \models \varphi \text{ or } M, w \models \psi$
- $\blacktriangleright \ M, w \models \Box \varphi \quad \Leftrightarrow \ M, v \models \varphi \text{ for all } v \text{ s.t. } wRv$
- $M, w \models \Diamond \varphi \quad \Leftrightarrow M, v \models \varphi \text{ for some } v \text{ s.t. } wRv$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Kripke-semantics/team semantics for \mathcal{ML} :

- $\blacktriangleright M, T \models p \qquad \Leftrightarrow T \subseteq V(p)$
- $M, T \models \neg p \quad \Leftrightarrow \ T \cap V(p) = \emptyset$
- $\blacktriangleright \ M, T \models \varphi \land \psi \Leftrightarrow \ M, T \models \varphi \text{ and } M, T \models \psi$
- $\blacktriangleright \ M, w \models \varphi \lor \psi \Leftrightarrow \ M, w \models \varphi \text{ or } M, w \models \psi$
- $\blacktriangleright \ M, w \models \Box \varphi \quad \Leftrightarrow \ M, v \models \varphi \text{ for all } v \text{ s.t. } wRv$
- $M, w \models \Diamond \varphi \quad \Leftrightarrow M, v \models \varphi \text{ for some } v \text{ s.t. } wRv$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Kripke-semantics/team semantics for \mathcal{ML} :

- $\blacktriangleright M, T \models p \qquad \Leftrightarrow T \subseteq V(p)$
- $M, T \models \neg p \quad \Leftrightarrow \ T \cap V(p) = \emptyset$

 $\blacktriangleright \ M, T \models \varphi \land \psi \Leftrightarrow \ M, T \models \varphi \text{ and } M, T \models \psi$

► $M, T \models \varphi \lor \psi \Leftrightarrow M, S \models \varphi \text{ and } M, S' \models \psi \text{ for some } S, S'$ such that $S \cup S' = T$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $M, w \models \Box \varphi \quad \Leftrightarrow \ M, v \models \varphi \text{ for all } v \text{ s.t. } wRv$
- $M, w \models \Diamond \varphi \quad \Leftrightarrow M, v \models \varphi$ for some v s.t. wRv

Kripke-semantics/team semantics for \mathcal{ML} :

- $\blacktriangleright M, T \models p \qquad \Leftrightarrow T \subseteq V(p)$
- $M, T \models \neg p \quad \Leftrightarrow \ T \cap V(p) = \emptyset$

 $\blacktriangleright \ M, T \models \varphi \land \psi \Leftrightarrow \ M, T \models \varphi \text{ and } M, T \models \psi$

• $M, T \models \varphi \lor \psi \Leftrightarrow M, S \models \varphi \text{ and } M, S' \models \psi \text{ for some } S, S'$ such that $S \cup S' = T$

• $M, T \models \Box \varphi \quad \Leftrightarrow M, S \models \varphi \text{ for } S = \{ v \mid \exists w \in T : wRv \}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• $M, w \models \Diamond \varphi \quad \Leftrightarrow M, v \models \varphi$ for some v s.t. wRv

Kripke-semantics/team semantics for \mathcal{ML} :

- $\blacktriangleright M, T \models p \qquad \Leftrightarrow T \subseteq V(p)$
- $M, T \models \neg p \quad \Leftrightarrow \ T \cap V(p) = \emptyset$
- $\blacktriangleright \ M, T \models \varphi \land \psi \Leftrightarrow \ M, T \models \varphi \text{ and } M, T \models \psi$
- $M, T \models \varphi \lor \psi \Leftrightarrow M, S \models \varphi \text{ and } M, S' \models \psi \text{ for some } S, S'$ such that $S \cup S' = T$
- $\blacktriangleright M, T \models \Box \varphi \quad \Leftrightarrow M, S \models \varphi \text{ for } S = \{ v \mid \exists w \in T : wRv \}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $\blacktriangleright M, T \models \Diamond \varphi \quad \Leftrightarrow M, S \models \varphi \text{ for some } S \text{ such that} \\ \forall u \in T \exists v \in S \colon uRv$

Kripke-semantics/team semantics for \mathcal{ML} :

- $\blacktriangleright M, T \models p \qquad \Leftrightarrow T \subseteq V(p)$
- $M, T \models \neg p \quad \Leftrightarrow \ T \cap V(p) = \emptyset$
- $M, T \models \varphi \land \psi \Leftrightarrow M, T \models \varphi \text{ and } M, T \models \psi$
- $M, T \models \varphi \lor \psi \Leftrightarrow M, S \models \varphi \text{ and } M, S' \models \psi \text{ for some } S, S'$ such that $S \cup S' = T$
- $\blacktriangleright M, T \models \Box \varphi \quad \Leftrightarrow M, S \models \varphi \text{ for } S = \{ v \mid \exists w \in T : wRv \}$
- $M, T \models \Diamond \varphi \quad \Leftrightarrow M, S \models \varphi \text{ for some } S \text{ such that} \\ \forall u \in T \exists v \in S \colon uRv \text{ and } \forall v \in S \exists u \in T \colon uRv$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The idea behind team semantics is that a team T satisfies an \mathcal{ML} -formula φ iff all states $w \in T$ satisfy φ :

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Flatness property of \mathcal{ML}) For all $\varphi \in \mathcal{ML}$, $M, T \models \varphi \Leftrightarrow M, w \models \varphi$ for all $w \in T$. In particular $M, \{w\} \models \varphi \Leftrightarrow M, w \models \varphi$. Closure properties of \mathcal{ML}

Corollary (Downwards closure) Every formula φ of \mathcal{ML} is downwards closed: If $M, T \models \varphi$, then $M, S \models \varphi$ for all $S \subseteq T$.

Theorem (Union closure) Every formula φ of \mathcal{ML} is closed under unions: If $M, T_i \models \varphi$ for all $i \in I$, then $M, \bigcup_{i \in I} T_i \models \varphi$.

Theorem (Empty team property) For all $\varphi \in \mathcal{ML}$ and every Kripke models $M, M, \emptyset \models \varphi$.

Modal dependence logic \mathcal{MDL}

Let Φ be a set of proposition symbols. The set of $\mathcal{MDL}(\Phi)$ -formulas is defined by the following grammar:

$$\varphi ::= p \mid \neg p \mid = (p_1, \dots, p_n, q) \mid \\ (\varphi \lor \varphi) \mid (\varphi \land \varphi) \mid \Box \varphi \mid \Diamond \varphi,$$

where $p, p_1, \ldots, p_n, q \in \Phi$.

The propositional dependence atom $=(p_1, \ldots, p_n, q)$ says that the truth value of q is determined by the truth values of p_1, \ldots, p_n :

$$M, T \models = (p_1, \dots, p_n, q) \Leftrightarrow$$

$$\forall v, w \in T : \land_{1 \le i \le n} (M, v \models p_i \Leftrightarrow M, w \models p_i)$$

$$\Rightarrow (M, v \models q \Leftrightarrow M, w \models q)$$

Basic properties of \mathcal{MDL}

Theorem (Downwards closure for MDL) Let φ be a formula of MDL. If $M, T \models \varphi$, then $M, S \models \varphi$ for all $S \subseteq T$.

Theorem (Empty team property for \mathcal{MDL}) If $\varphi \in \mathcal{MDL}$ and M is a Kripke model, then $M, \emptyset \models \varphi$.

However, \mathcal{MDL} is not closed under unions.

Complexity of \mathcal{MDL}

Theorem (Sevenster 09)

The satisfiability problem for MDL is NEXPTIME-complete.

Theorem (Hannula 17) The validity problem for MDL is NEXPTIME-complete.

Theorem (Ebbing-Lohmann 12) The model checking problem for \mathcal{MDL} is NP-complete.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Propositional dependence logic \mathcal{PDL} : Syntax

To understand the expressive power of \mathcal{MDL} , we study first its restriction to propositional formulas.

Let Φ be a set of proposition symbols. The set of $\mathcal{PDL}(\Phi)$ -formulas is defined by the following grammar:

$$\varphi \quad ::= \quad p \mid \neg p \mid = (p_1, \dots, p_n, q) \mid \\ (\varphi \lor \varphi) \mid (\varphi \land \varphi),$$

- ロ ト - 4 回 ト - 4 □

where $p, p_1, \ldots, p_n, q \in \Phi$.

Propositional dependence logic \mathcal{PDL} : Semantics

A (truth value) assignment for Φ is a function $s : \Phi \to \{\bot, \top\}$. The semantics of \mathcal{PDL} is defined on teams, that are just sets of assignments for Φ .

•
$$X \models p \quad \Leftrightarrow s(p) = \top$$
 for all $s \in X$
• $X \models \neg p \quad \Leftrightarrow s(p) = \bot$ for all $s \in X$
• $X \models \varphi \land \psi \Leftrightarrow X \models \varphi$ and $X \models \psi$
• $X \models \varphi \lor \psi \Leftrightarrow Y \models \varphi$ and $Z \models \psi$ for some $Y \cup Z = X$
• $X \models (p_1, \dots, p_n, q) \Leftrightarrow \bigwedge_i (s(p_i) = t(p_i)) \Rightarrow s(q) = t(q)$
holds for all $s, t \in X$

Note that there are 2^n assignments, and 2^{2^n} teams, where $n = |\Phi|$.

Intuitionistic disjunction

Add a different version of disjunction \otimes to propositional (dependence) logic with the semantics:

 $\blacktriangleright X \models \varphi \otimes \psi \iff X \models \varphi \text{ or } X \models \psi$

Let $\mathcal{PL}(\mathbb{O})$ be the the logic obtained from \mathcal{PDL} by removing dependence atoms and adding \mathbb{O} .

Dependence atoms are definable in $\mathcal{PL}(\otimes)$ (Väänänen 09):

 $\models = (p_1, \ldots, p_n, q) \Leftrightarrow \bigvee_{s \in F} (\theta_s \land (q \oslash \neg q)),$

where *F* is the team of all $\{p_1, \ldots, p_n\}$ -assignments, and θ_s is the formula $\bigwedge_i p_i^{s(p_i)}$, where $p_i^{\perp} = \neg p_i$ and $p_i^{\perp} = p_i$.

It is easy to prove by induction that for every \mathcal{PDL} -formula there is an equivalent $\mathcal{PL}(\otimes)$ -formula. Thus, $\mathcal{PDL} \leq \mathcal{PL}(\otimes)$.

Intuitionistic disjunction: Completeness

A much stronger result is true: $\mathcal{PL}(\odot)$ is *complete* with respect to downwards closed properties of teams.

Definition

- A *property* of teams is any set \mathcal{P} of teams (for a fixed Φ).
- \mathcal{P} is downwards closed if $X \in \mathcal{P}$ and $Y \subseteq X$ implies $Y \in \mathcal{P}$.

Lemma

For every team X there is $\psi_X \in \mathcal{PL}$ such that $Y \models \psi_X$ iff $Y \subseteq X$.

Proof.

For each Φ -assignment *s*, let θ_s be the formula $\bigwedge_{p \in \Phi} p^{s(p)}$. Clearly $Y \models \theta_s$ iff $Y \subseteq \{s\}$.

For each Φ -team $X \neq \emptyset$, let ψ_X be the formula $\bigvee_{s \in X} \theta_s$; for $X = \emptyset$, let $\psi_X := p \land \neg p$. Then we have $Y \models \psi_X$ iff $Y \subseteq X$.

Intuitionistic disjunction: Completeness

Theorem (Yang 14)

Every nonempty downwards closed property \mathcal{P} of teams is definable in $\mathcal{PL}(\otimes)$.

Proof. Let $\varphi_{\mathcal{P}}$ be the formula $\bigotimes_{X \in \mathcal{P}} \psi_X$. Then we have $Y \models \varphi_{\mathcal{P}} \iff \exists X \in \mathcal{P} : Y \subseteq X \iff Y \in \mathcal{P}.$

Remark: $\mathcal{PL}(\otimes)$ is actually equivalent with *inquisitive logic* (Ciardelli, Groenendijk). The completeness of inquisitive logic was proved by Ciardelli 09.

\mathcal{PDL} and intuitionistic disjunction

Since \mathcal{PDL} is downwards closed, we have another proof for the fact $\mathcal{PDL} \leq \mathcal{PL}(\otimes)$.

Note that both methods lead to an exponential blow-up in the size of formulas. This not accidental:

Theorem (H, Luosto, Sano, Virtema 14) If $\varphi \in \mathcal{PL}(\mathbb{Q})$ is equivalent with $=(p_1, \ldots, p_n, q)$, then φ contains at least 2^n occurrences of \mathbb{Q} .

On the other hand, there is also a translation in the opposite direction:

Theorem (Huuskonen, Yang 14)

Every nonempty downwards closed property of teams is definable in \mathcal{PDL} . Hence $\mathcal{PL}(\mathbb{O}) \leq \mathcal{PDL}$.

Proof. Consider the formula $\gamma_{\Phi} := \bigwedge_{\rho \in \Phi} = (p)$. It says that every $\rho \in \Phi$ has constant truth value, whence $X \models \gamma_{\Phi}$ iff $|X| \le 1$.

Define recursively

$$\gamma_{\Phi}^1 := \gamma_{\Phi}, \quad \gamma_{\Phi}^{k+1} := (\gamma_{\Phi}^k \vee \gamma_{\Phi}).$$

Then we have for all k, $X \models \gamma_{\Phi}^k$ iff $|X| \le k$.

\mathcal{PDL} and intuitionistic disjunction

If Y is a team such that |Y| = k + 1, we let $\chi_Y := \psi_Z \vee \gamma_{\Phi}^k$, where Z is the complement of Y. Now

$$\begin{array}{rcl} X \models \chi_Y & \Leftrightarrow & X \cap Z \neq \emptyset \text{ or } (X \cap Z = \emptyset \text{ and } |X| \leq k) \\ & \Leftrightarrow & Y \not\subseteq X. \end{array}$$

Finally, if \mathcal{P} is a nonempty downwards closed property of teams, then the formula $\eta_{\mathcal{P}} := \bigwedge_{Y \notin \mathcal{P}} \chi_Y$ defines it.

Yang 14 also gave a complete axiomatization for \mathcal{PDL} .

Expressive power in modal case

Let $\mathcal{ML}(\otimes)$ be the extension of \mathcal{ML} with intuitionistic disjunction. We lift the completeness result from $\mathcal{PL}(\otimes)$ to $\mathcal{ML}(\otimes)$.

First we recall a characterization for the expressive power of \mathcal{ML} with respect to Kripke-semantics.

Definition (k-equivalence, k-bisimilarity) Let (M, w) and (M, 'w') be pointed Kripke models. (a) We write $M, w \equiv_k M', w'$ if

 $\boldsymbol{M}, \boldsymbol{w} \models \varphi \iff \boldsymbol{M}, \boldsymbol{w}' \models \varphi$

for all $\varphi \in \mathcal{ML}$ with modal depth at most k.

(b) We write $M, w \rightleftharpoons_k M', w'$ if (M, w) and (M, w') are *k*-bisimilar.

Definition (Hintikka-formulas)

Assume that Φ is a finite set of proposition symbols. Let (M, w) be a pointed Φ -model. The *k*-th Hintikka-formula $\chi^k_{M,w}$ of (M, w) is defined recursively as follows:

It is easy to see that $md(\chi_{M,w}^k) = k$, and $M, w \models \chi_{M,w}^k$ for every pointed Φ -model (M, w).

The Hintikka-formula $\chi^k_{M,w}$ captures the essence of k-bisimulation:

Theorem

Let Φ be a finite set of proposition symbols, and (M, w) and (M,'w') pointed Φ -models. Then the following holds:

 $M, w \equiv_k M', w' \Leftrightarrow M, w \rightleftharpoons_k M', w' \Leftrightarrow M', w' \models \chi^k_{M,w}.$

The expressive power of basic modal logic can be characterized Using bisimulation.

Theorem (van Benthem)

A class \mathcal{K} of pointed Kripke models (K, w) is definable in \mathcal{ML} iff \mathcal{K} is closed under k-bisimulation for some $k \in \mathbb{N}$.

Expressive power of $\mathcal{ML}(\heartsuit)$

We lift the definition of k-bisimulation to the context of team semantics as follows:

Definition

Let (M, T) and (M', T') be models with teams. We say that (M, T) and (M', T') are *team k-bisimilar*, $M, T [\rightleftharpoons_k] M', T'$ if the following conditions hold:

- D_k for every $w \in T$ there exists some $w' \in T'$ such that $M, w \rightleftharpoons_k M', w'$
- R_k for every $w' \in \mathcal{T}'$ there exists some $w \in \mathcal{T}$ such that $M, w \rightleftharpoons_k M', w'$

Definition

- A property of Kripke models with teams is a class K of pairs (M, T), where T is a team of M for a fixed Φ.
- K is downwards closed if (M, T) ∈ K and S ⊆ T implies (M, S) ∈ K.
- \mathcal{K} has the empty team property if $(M, \emptyset) \in \mathcal{K}$ for every M.
- K is closed under k-bisimulation if (M, T) ∈ K and M, T [⇐_k] M', T' imply that (M', T') ∈ K.

Theorem (H, Luosto, Sano, Virtema 14)

Assume that Φ is finite. A property \mathcal{K} of Kripke models with teams is definable in $\mathcal{ML}(\mathbb{Q})$ iff \mathcal{K} is downwards closed, closed under k-bisimulation for some k, and has the empty team property.

The proof this characterization is based on the following lemma:

Lemma

For every pair (M, T) there is a formula $\psi_{M,T} \in \mathcal{ML}$ such that $M', T' \models \psi_{M,T}$ iff $M, S[\rightleftharpoons_k]M', T'$ for some $S \subseteq T$.

Proof. If $T \neq \emptyset$, let $\psi_{M,T}$ be the formula $\bigvee_{w \in T} \chi_{M,w}^k$; for $T = \emptyset$, let $\psi_{M,T} := p \land \neg p$.

Now it is easy to see that if \mathcal{K} is downwards closed, closed under *k*-bisimulation and has the empty team property, then the formula $\bigotimes_{(M,T)\in\mathcal{K}} \psi_{M,T}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

defines it.

Expressive power \mathcal{MDL}

Since $\mathcal{PDL} \equiv \mathcal{PL}(\otimes)$, it is natural to ask, whether the modal counterpart of this equivalence holds. It is not difficult to prove the first direction:

Theorem (Ebbing, H, Meier, Müller, Virtema, Vollmer 13) $\mathcal{MDL} \leq \mathcal{ML}(\otimes).$

However, the converse is not true:

Example

There is no formula in \mathcal{MDL} that is equivalent to $\theta = \Diamond p \otimes \Box \neg p$. Proof: $\mathcal{MDL} \equiv \mathcal{ML}$, on $M = (\{a, b\}, \{(b, b)\}, p \mapsto \{a, b\}\})$, whence \mathcal{MDL} -formulas are flat on it. However, θ is not flat on M, as $M, \{a\}, M, \{b\} \models \theta$, but $M, \{a, b\} \not\models \theta$.

Extended modal dependence logic \mathcal{EMDL}

What is missing from \mathcal{MDL} ? The counterexample gives a clue: the formula $\Diamond p \otimes \Box \neg p$ says that the truth value of $\Diamond p$ is constant. That is, $\Diamond p \otimes \Box \neg p$ is equivalent to $=(\Diamond p)$.

The set of $\mathcal{EMDL}(\Phi)$ -formulas is defined as follows:

$$\varphi ::= p |\neg p| = (\alpha_1, \dots, \alpha_n, \beta) | (\varphi \lor \varphi) | (\varphi \land \varphi) | \Box \varphi | \Diamond \varphi$$

where $p \in \Phi$ and $\alpha_1, \ldots, \alpha_n, \beta \in \mathcal{ML}$.

The semantics of $=(\alpha_1, \ldots, \alpha_n, \beta)$ is defined in the same way as for $=(p_1, \ldots, p_n, q)$.

Remark: We do not allow nested dependence atoms!

Expressive power of \mathcal{EMDL}

Since $=(\Diamond p)$ is not expressible in \mathcal{MDL} , \mathcal{EMDL} is a proper extension of \mathcal{MDL} . It is straightforward to prove that \mathcal{EMDL} is still contained in $\mathcal{ML}(\heartsuit)$:

Theorem (Ebbing, H, Meier, Müller, Virtema, Vollmer 13) $\mathcal{MDL} < \mathcal{EMDL} \leq \mathcal{ML}(\otimes).$

Using the method of Huuskonen, we can now prove that $\mathcal{ML}(\odot)$ is contained \mathcal{EMDL} :

Theorem (H, Luosto, Sano, Virtema 14)

A property \mathcal{K} of Kripke models with teams is definable in \mathcal{EMDL} iff \mathcal{K} is downwards closed, closed under k-bisimulation for some k, and has the empty team property. Thus, $\mathcal{EMDL} \equiv \mathcal{ML}(\otimes)$.

Complexity of \mathcal{EMDL}

Although \mathcal{EMDL} is a proper extension of \mathcal{MDL} , it has the same complexity:

Theorem (Ebbing, H, Meier, Müller, Virtema, Vollmer 13) The satisfiability problem for \mathcal{EMDL} is NEXPTIME-complete.

On the other hand, $\mathcal{ML}(\otimes)$ is less complex than \mathcal{EMDL} :

Theorem (Lohmann, Vollmer 10) The satisfiability problem for $\mathcal{ML}(\odot)$ is PSPACE-complete.

This is explained by the fact that there is an exponential blow-up in translating from \mathcal{EMDL} to $\mathcal{ML}(\heartsuit)$.

Modal inclusion logic \mathcal{MINC}

Modal inclusion logic is the extension of \mathcal{ML} with modal inclusion atoms $\alpha_1 \dots \alpha_n \subseteq \beta_1 \dots \beta_n$.

Here $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n$ are arbitrary \mathcal{ML} -formulas. (We adopt the "extended" framework from the beginning.)

The semantics of modal inclusion atoms is defined as follows:

► $M, T \models \vec{\alpha} \subseteq \vec{\beta} \iff \forall v \in T \exists w \in T :$ $\bigwedge_i (M, v \models \alpha_i \Leftrightarrow M, w \models \beta_i),$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\vec{\alpha} = \alpha_1 \dots \alpha_n$ and $\vec{\beta} = \beta_1 \dots \beta_n$.

Closure properties of \mathcal{MINC}

The formulas of \mathcal{MINC} are not downwards closed. However, \mathcal{MINC} is closed under unions and has the empty team property:

Theorem Let $\varphi \in \mathcal{MINC}$. (a) If $M, T_i \models \varphi$ for all $i \in I$, then $M, \bigcup_{i \in I} T_i \models \varphi$. (b) $M, \emptyset \models \varphi$ for all Kripke models M.

Furthermore, \mathcal{MINC} is closed under team bisimulation:

Theorem (H, Stumpf 15) For every $\varphi \in \mathcal{MINC}$ there is k such that $M, T \models \varphi$ and $M, T \models \varphi$.

・ロト・西ト・モート 一日・ 今々で

These three closure properties actually characterize the expressive power of $\mathcal{MINC}:$

Theorem (H, Stumpf 15)

A property \mathcal{K} of Kripke models with teams is definable in \mathcal{MINC} iff \mathcal{K} is closed under unions, closed under k-bisimulation for some k, and has the empty team property.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Here the crucial lemma states that every team can be characterized up to *k*-bisimilarity and nonemptiness by using inclusion atoms:

Lemma

For every pair (M, T) there is a formula $\theta_{M,T} \in MINC$ such that $M', T' \models \theta_{M,T}$ iff $M, T [\rightleftharpoons_k] M', T'$ or $T' = \emptyset$.

Proof. If $T \neq \emptyset$, let $\theta_{M,T} := (\bigvee_{w \in T} \chi_{M,w}^k) \land (\bigwedge_{u,v \in T} \chi_{M,u}^k \subseteq \chi_{M,v}^k);$ if $T = \emptyset$, let $\theta_{M,T} := p \land \neg p$.

If ${\cal K}$ is closed under unions and $k\mbox{-bisimulation},$ and has the empty team property, then it is defined by the formula

$$\bigvee_{(M,T)\in\mathcal{K}} \theta_{M,T}.$$

Complexity of \mathcal{MINC}

The basic complexity problems for \mathcal{MINC} have been settled during the last three years.

Theorem (H, Kuusisto, Meier, Vollmer 15) The satisfiability problem for *MINC* is EXPTIME-complete.

Theorem (H, Kuusisto, Meier, Virtema 17) The validity problem for *MINC* is coNEXPTIME-complete.

Theorem (H, Kuusisto, Meier, Virtema 17) The model checking problem for MINC is PTIME-complete.

Other modal logics with team semantics

Modal independence logic, \mathcal{MIL} : add propositional independence atoms $\vec{p} \perp_{\vec{r}} \vec{q}$ to \mathcal{ML} .

Kontinen, Müller, Schnoor, Vollmer 14: (1) \mathcal{MIL} is closed under team bisimulation (2) the complexity of satisfiability and model checking for \mathcal{MIL} are the same as for \mathcal{MDL} .

Modal team logic, \mathcal{MTL} : add strong negation \sim to \mathcal{ML} . Here $M, T \models \sim \varphi$ iff $M, T \not\models \varphi$.

KMSV 15: a property of teams is $\mathcal{MTL}\text{-definable}$ iff it is $\mathcal{FO}\text{-definable}$ and closed under team bisimulation.

Lück 17: nonelementary complexity for the satisfiability problem of $\mathcal{MTL}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thanks for your attention!