Fields with commuting automorphisms An example of a non-elementary approach to model theory

Kaisa Kangas

November 1, 2018

► First order model theory deals with elementary classes

- ► First order model theory deals with elementary classes
- ► An elementary class: A class consisting of all models of a given first order theory

- ► First order model theory deals with elementary classes
- ► An elementary class: A class consisting of all models of a given first order theory
- Many interesting classes of structures are not elementary

- ▶ First order model theory deals with elementary classes
- An elementary class: A class consisting of all models of a given first order theory
- Many interesting classes of structures are not elementary
- e.g. class of all groups where each element has finite order

- ► First order model theory deals with elementary classes
- An elementary class: A class consisting of all models of a given first order theory
- Many interesting classes of structures are not elementary
- e.g. class of all groups where each element has finite order
- Various non-elementary approaches: allowing infinite conjunctions and disjunctions, new quantifiers, quantifying over sets (second order logic), etc.

- ► First order model theory deals with elementary classes
- An elementary class: A class consisting of all models of a given first order theory
- Many interesting classes of structures are not elementary
- e.g. class of all groups where each element has finite order
- Various non-elementary approaches: allowing infinite conjunctions and disjunctions, new quantifiers, quantifying over sets (second order logic), etc.
- ▶ How about a semantic approach instead of a syntactic one?

Idea: Instead of a class of models defined by a first order theory, think of it as a class $\mathcal K$ together with the elementary submodel relation \preccurlyeq .

▶ The relation \leq is a partial order on \mathcal{K} ;

- ▶ The relation \leq is a partial order on \mathcal{K} ;
- ▶ (K, \preccurlyeq) is closed under unions of chains;

- ▶ The relation \leq is a partial order on \mathcal{K} ;
- ▶ (K, \preccurlyeq) is closed under unions of chains;
- ▶ If $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{K}$, $\mathcal{A} \preccurlyeq \mathcal{C}$, $\mathcal{B} \preccurlyeq \mathcal{C}$ and $\mathcal{A} \subseteq \mathcal{B}$, then $\mathcal{A} \preccurlyeq \mathcal{B}$.

- ▶ The relation \leq is a partial order on \mathcal{K} ;
- ▶ (K, \preccurlyeq) is closed under unions of chains;
- ▶ If $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{K}$, $\mathcal{A} \preccurlyeq \mathcal{C}$, $\mathcal{B} \preccurlyeq \mathcal{C}$ and $\mathcal{A} \subseteq \mathcal{B}$, then $\mathcal{A} \preccurlyeq \mathcal{B}$.
- (Downward Löwenheim-Skolem) If $\mathcal{A} \in \mathcal{K}$ and $B \subseteq \mathcal{A}$, then there is some $\mathcal{A}' \in \mathcal{K}$ such that $B \subseteq \mathcal{A}' \preccurlyeq \mathcal{A}$ and $|\mathcal{A}'| = |B| + \omega$.

Definition

Definition

Let L be a countable language, let $\mathcal K$ be a class of L structures and let \preccurlyeq be a binary relation on $\mathcal K$. We say $(\mathcal K, \preccurlyeq)$ is an abstract elementary class (AEC for short) and call \preccurlyeq the strong submodel relation if the following hold.

(1) Both \mathcal{K} and \preccurlyeq are closed under isomorphisms.

Definition

- (1) Both \mathcal{K} and \leq are closed under isomorphisms.
- (2) If $A, B \in K$ and $A \leq B$, then A is a substructure of B.

Definition

- (1) Both K and \leq are closed under isomorphisms.
- (2) If $A, B \in \mathcal{K}$ and $A \leq B$, then A is a substructure of B.
- (3) The relation \leq is a partial order on \mathcal{K} .

Definition

- (1) Both \mathcal{K} and \preccurlyeq are closed under isomorphisms.
- (2) If $A, B \in K$ and $A \leq B$, then A is a substructure of B.
- (3) The relation \leq is a partial order on \mathcal{K} .
- (4) (K, \preceq) is closed under unions of chains.

Definition

- (1) Both \mathcal{K} and \leq are closed under isomorphisms.
- (2) If $A, B \in K$ and $A \leq B$, then A is a substructure of B.
- (3) The relation \leq is a partial order on \mathcal{K} .
- (4) $(\mathcal{K}, \preccurlyeq)$ is closed under unions of chains.
- (5) If $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{K}$, $\mathcal{A} \preccurlyeq \mathcal{C}$, $\mathcal{B} \preccurlyeq \mathcal{C}$ and $\mathcal{A} \subseteq \mathcal{B}$, then $\mathcal{A} \preccurlyeq \mathcal{B}$.

Definition

- (1) Both \mathcal{K} and \leq are closed under isomorphisms.
- (2) If $A, B \in \mathcal{K}$ and $A \leq B$, then A is a substructure of B.
- (3) The relation \leq is a partial order on \mathcal{K} .
- (4) (K, \preceq) is closed under unions of chains.
- (5) If $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathcal{K}$, $\mathcal{A} \leq \mathcal{C}$, $\mathcal{B} \leq \mathcal{C}$ and $\mathcal{A} \subseteq \mathcal{B}$, then $\mathcal{A} \leq \mathcal{B}$.
- (6) There is a Löwenheim-Skolem number $LS(\mathcal{K})$ such that if $\mathcal{A} \in \mathcal{K}$ and $B \subseteq \mathcal{A}$, then there is some structure $\mathcal{A}' \in \mathcal{K}$ such that $B \subseteq \mathcal{A}' \preccurlyeq \mathcal{A}$ and $|\mathcal{A}'| = |B| + LS(\mathcal{K})$.

► Type of a tuple *a* over a set *B* in a model A: $tp(a/B) = \{\phi(x,b) \mid b \in B, A \models \phi(a,b)\}.$

▶ Type of a tuple a over a set B in a model A: $tp(a/B) = \{\phi(x,b) \mid b \in B, A \models \phi(a,b)\}.$

AEC framework: Galois types

▶ Type of a tuple a over a set B in a model A: $tp(a/B) = \{\phi(x,b) \mid b \in B, A \models \phi(a,b)\}.$

AEC framework: Galois types

If $\mathcal K$ is an AEC with the amalgamation property (AP) and joint embedding property (JEP), then there is a monster model $\mathbb M \in \mathcal K$ that is universal (i.e. if $\mathcal A \in \mathcal K$ and $|\mathcal A| < |\mathbb M|$, then $\mathcal A$ embeds into $\mathbb M$) and model homogeneous (i.e. any isomorphism between strong submodels of $\mathbb M$ extends to an automorphism of $\mathbb M$).

▶ Type of a tuple a over a set B in a model A: $tp(a/B) = \{\phi(x,b) \mid b \in B, A \models \phi(a,b)\}.$

AEC framework: Galois types

- If $\mathcal K$ is an AEC with the amalgamation property (AP) and joint embedding property (JEP), then there is a monster model $\mathbb M \in \mathcal K$ that is universal (i.e. if $\mathcal A \in \mathcal K$ and $|\mathcal A| < |\mathbb M|$, then $\mathcal A$ embeds into $\mathbb M$) and model homogeneous (i.e. any isomorphism between strong submodels of $\mathbb M$ extends to an automorphism of $\mathbb M$).
- ▶ Then, Galois types are defined as orbits of automorphisms of the monster model: $t^g(a/B) = t^g(b/B)$ if there is some automorphism σ of the monster so that σ fixes B pointwise and $\sigma(a) = b$.

▶ A more "natural" way to think about mathematics?

▶ A more "natural" way to think about mathematics?

Model theory still mainly studies model classes of first order theories, why?

▶ A more "natural" way to think about mathematics?

Model theory still mainly studies model classes of first order theories, why?

 The AEC framework is very abstract and doesn't always capture details;

A more "natural" way to think about mathematics?

Model theory still mainly studies model classes of first order theories, why?

- The AEC framework is very abstract and doesn't always capture details;
- Power of geometric stability theory in the first order framework;

▶ A more "natural" way to think about mathematics?

Model theory still mainly studies model classes of first order theories, why?

- The AEC framework is very abstract and doesn't always capture details;
- Power of geometric stability theory in the first order framework;
 - Many applications in e.g. algebra

▶ A more "natural" way to think about mathematics?

Model theory still mainly studies model classes of first order theories, why?

- The AEC framework is very abstract and doesn't always capture details;
- Power of geometric stability theory in the first order framework;
 - Many applications in e.g. algebra
 - Hrushovski: Mordell-Lang, Manin-Mumford

Geometric stability theory

Rough idea: studying geometries with the help of notions of independence and dimension.

Geometric stability theory

Rough idea: studying geometries with the help of notions of independence and dimension.

Example

Vector spaces; geometry of subspaces;

Geometric stability theory

Rough idea: studying geometries with the help of notions of independence and dimension.

Example

Vector spaces; geometry of subspaces;

▶ linear independence, usual dimension;

Rough idea: studying geometries with the help of notions of independence and dimension.

Example

Vector spaces; geometry of subspaces;

▶ linear independence, usual dimension;

Example

Rough idea: studying geometries with the help of notions of independence and dimension.

Example

Vector spaces; geometry of subspaces;

► linear independence, usual dimension;

Example

Algebraically closed fields; algebraic geometry;

▶ Let K be a field and let $A, B \subseteq K$. We say A is algebraically independent over B if the elements of A do not satisfy any non-trivial polynomial equations with coefficients in the subfield generated by B.

Rough idea: studying geometries with the help of notions of independence and dimension.

Example

Vector spaces; geometry of subspaces;

► linear independence, usual dimension;

Example

- ▶ Let K be a field and let $A, B \subseteq K$. We say A is algebraically independent over B if the elements of A do not satisfy any non-trivial polynomial equations with coefficients in the subfield generated by B.
- ▶ Dimension defined by the cardinality of maximal algebraically independent subset.

Rough idea: studying geometries with the help of notions of independence and dimension.

Example

Vector spaces; geometry of subspaces;

▶ linear independence, usual dimension;

Example

- ▶ Let K be a field and let $A, B \subseteq K$. We say A is algebraically independent over B if the elements of A do not satisfy any non-trivial polynomial equations with coefficients in the subfield generated by B.
- Dimension defined by the cardinality of maximal algebraically independent subset.
- ► Geometry of varieties defined by the zero sets of polynomials, e.g.

$$V = \{(x, y) | y^2 = x^3 - x - 1\};$$

Rough idea: studying geometries with the help of notions of independence and dimension.

Example

Vector spaces; geometry of subspaces;

linear independence, usual dimension;

Example

- ▶ Let K be a field and let $A, B \subseteq K$. We say A is algebraically independent over B if the elements of A do not satisfy any non-trivial polynomial equations with coefficients in the subfield generated by B.
- Dimension defined by the cardinality of maximal algebraically independent subset.
- ► Geometry of varieties defined by the zero sets of polynomials, e.g.

$$V = \{(x, y) | y^2 = x^3 - x - 1\};$$

$$W = \{(x, y, z) \mid x^2 - y^2 z^2 + z^3 = 0\}.$$

There are cases, where dimension theory can be developed in an AEC framework.

There are cases, where dimension theory can be developed in an AEC framework.

Example: Fields with commuting automorphisms

There are cases, where dimension theory can be developed in an AEC framework.

Example: Fields with commuting automorphisms

Cannot be studied in the first order framework.

Definition

A difference field is a field K together with a distinguished automorphism σ .

Definition

A difference field is a field K together with a distinguished automorphism σ .

Example

The shift operator

Let $K = \mathbb{C}(t)$, and define σ by

$$\sigma \upharpoonright_{\mathbb{C}} = id, \qquad \sigma(t) = t + 1.$$

Algebraic difference equations: given a polynomial P over K, need to find a function f such that $P(f(t), f(t+1), \ldots, f(t+n)) = 0$.

Definition

A difference field is a field K together with a distinguished automorphism σ .

Example

The shift operator

Let $K = \mathbb{C}(t)$, and define σ by

$$\sigma \upharpoonright_{\mathbb{C}} = id$$
, $\sigma(t) = t + 1$.

Algebraic difference equations: given a polynomial P over K, need to find a function f such that $P(f(t), f(t+1), \ldots, f(t+n)) = 0$.

Example

Let K be a perfect field with char(K) = p > 0, let q be a power of p, and let $\sigma(x) = x^q$.

Definition

A difference field is a field K together with a distinguished automorphism σ .

Example

The shift operator

Let $K = \mathbb{C}(t)$, and define σ by

$$\sigma \upharpoonright_{\mathbb{C}} = id, \qquad \sigma(t) = t + 1.$$

Algebraic difference equations: given a polynomial P over K, need to find a function f such that $P(f(t), f(t+1), \ldots, f(t+n)) = 0$.

Example

Let K be a perfect field with char(K) = p > 0, let q be a power of p, and let $\sigma(x) = x^q$.

▶ Difference algebra, a geometry of difference varieties defined by difference equations; e.g. $x + x^3 + \sigma(x) + \sigma^2(y) = 0$.

Z. Chatzidakis and E. Hrushovski: "Model Theory of Difference Fields" Trans. Am. Math. Soc. (351). 1999.

- Z. Chatzidakis and E. Hrushovski: "Model Theory of Difference Fields" Trans. Am. Math. Soc. (351). 1999.
- ► ACFA: the model companion of difference fields (i.e. first order theory whose models are exactly the existentially closed difference fields);

- Z. Chatzidakis and E. Hrushovski: "Model Theory of Difference Fields" Trans. Am. Math. Soc. (351). 1999.
- ACFA: the model companion of difference fields (i.e. first order theory whose models are exactly the existentially closed difference fields);
- A theory of independence for ACFA;

- ➤ Z. Chatzidakis and E. Hrushovski: "Model Theory of Difference Fields" Trans. Am. Math. Soc. (351). 1999.
- ACFA: the model companion of difference fields (i.e. first order theory whose models are exactly the existentially closed difference fields);
- A theory of independence for ACFA;
- A simple unstable theory.

- Z. Chatzidakis and E. Hrushovski: "Model Theory of Difference Fields" Trans. Am. Math. Soc. (351). 1999.
- ACFA: the model companion of difference fields (i.e. first order theory whose models are exactly the existentially closed difference fields);
- A theory of independence for ACFA;
- A simple unstable theory.
- An application: Hrushovski's proof for Manin-Mumford

▶ Need restrictions (otherwise the structure becomes too wild);

- Need restrictions (otherwise the structure becomes too wild);
- ▶ What if they are required to commute, i.e. $\sigma_i \sigma_j = \sigma_j \sigma_i$ for 1 = 1, ..., n?

- Need restrictions (otherwise the structure becomes too wild);
- ▶ What if they are required to commute, i.e. $\sigma_i \sigma_j = \sigma_j \sigma_i$ for 1 = 1, ..., n?

Problem: The existentially closed models do not form an elementary class!

- Need restrictions (otherwise the structure becomes too wild);
- ▶ What if they are required to commute, i.e. $\sigma_i \sigma_j = \sigma_j \sigma_i$ for 1 = 1, ..., n?

Problem: The existentially closed models do not form an elementary class!

▶ Hrushovski: There is a counterexample already in the case n=2 (see e.g. Hirotaka Kikyo: "On generic predicates and automorphisms, RIMS Kokyuroku (1390). 2004.)

- Need restrictions (otherwise the structure becomes too wild);
- ▶ What if they are required to commute, i.e. $\sigma_i \sigma_j = \sigma_j \sigma_i$ for 1 = 1, ..., n?

Problem: The existentially closed models do not form an elementary class!

- ▶ Hrushovski: There is a counterexample already in the case n=2 (see e.g. Hirotaka Kikyo: "On generic predicates and automorphisms, RIMS Kokyuroku (1390). 2004.)
- ▶ N. B. This is a universal theory, so every model embeds into an existentially closed model!

- Need restrictions (otherwise the structure becomes too wild);
- ▶ What if they are required to commute, i.e. $\sigma_i \sigma_j = \sigma_j \sigma_i$ for 1 = 1, ..., n?

Problem: The existentially closed models do not form an elementary class!

- ▶ Hrushovski: There is a counterexample already in the case n=2 (see e.g. Hirotaka Kikyo: "On generic predicates and automorphisms, RIMS Kokyuroku (1390). 2004.)
- ▶ N. B. This is a universal theory, so every model embeds into an existentially closed model!

However, they form an AEC.

Need: a suitable AEC framework

Need: a suitable AEC framework

Problem: Existentially closed models are not necessarily algebraically closed as fields.

Need: a suitable AEC framework

Problem: Existentially closed models are not necessarily algebraically closed as fields.

▶ e.g. (K, σ, τ) ; σ and τ always have lifts $\tilde{\sigma}$ and $\tilde{\tau}$ to K^{alg} but it might be impossible to find lifts that commute.

There is a number field (i.e. finite algebraic extension of \mathbb{Q}) K such that $Gal(K/\mathbb{Q}) \cong Q_8$, where Q_8 is the quaternion group:

$$Q_8 = \langle \bar{e}, i, j, k | i^2 = j^2 = k^2 = ijk = \bar{e}, \ \bar{e}^2 = e \rangle.$$

There is a number field (i.e. finite algebraic extension of \mathbb{Q}) K such that $Gal(K/\mathbb{Q}) \cong Q_8$, where Q_8 is the quaternion group:

$$Q_8 = \langle \bar{e}, i, j, k | i^2 = j^2 = k^2 = ijk = \bar{e}, \ \bar{e}^2 = e \rangle.$$

Now,
$$C = C(Q_8) = \{e, \bar{e}\}$$
,

There is a number field (i.e. finite algebraic extension of \mathbb{Q}) K such that $Gal(K/\mathbb{Q}) \cong Q_8$, where Q_8 is the quaternion group:

$$Q_8 = \langle \bar{e}, i, j, k | i^2 = j^2 = k^2 = ijk = \bar{e}, \ \bar{e}^2 = e \rangle.$$

Now, $C = C(Q_8) = \{e, \bar{e}\}$, and by Fundamental Theorem of Galois Theory, there is a field L such that $\mathbb{Q} \subseteq L \subseteq K$ and $Gal(K/L) \cong C$.

There is a number field (i.e. finite algebraic extension of \mathbb{Q}) K such that $Gal(K/\mathbb{Q}) \cong Q_8$, where Q_8 is the quaternion group:

$$Q_8 = \langle \bar{e}, i, j, k | i^2 = j^2 = k^2 = ijk = \bar{e}, \ \bar{e}^2 = e \rangle.$$

Now, $C=C(Q_8)=\{e,\bar{e}\}$, and by Fundamental Theorem of Galois Theory, there is a field L such that $\mathbb{Q}\subseteq L\subseteq K$ and $Gal(K/L)\cong C$. Then, $Gal(L/\mathbb{Q})\cong Q_8/C$, a commutative group consisting of the cosets

$$[e] = \{e, \bar{e}\}, [i] = \{i, \bar{i}\}, [j] = \{j, \bar{j}\}, [k] = \{k, \bar{k}\}.$$

There is a number field (i.e. finite algebraic extension of \mathbb{Q}) K such that $Gal(K/\mathbb{Q}) \cong Q_8$, where Q_8 is the quaternion group:

$$Q_8 = \langle \bar{e}, i, j, k | i^2 = j^2 = k^2 = ijk = \bar{e}, \ \bar{e}^2 = e \rangle.$$

Now, $C = C(Q_8) = \{e, \bar{e}\}$, and by Fundamental Theorem of Galois Theory, there is a field L such that $\mathbb{Q} \subseteq L \subseteq K$ and $Gal(K/L) \cong C$. Then, $Gal(L/\mathbb{Q}) \cong Q_8/C$, a commutative group consisting of the cosets

$$[e] = \{e, \bar{e}\}, [i] = \{i, \bar{i}\}, [j] = \{j, \bar{j}\}, [k] = \{k, \bar{k}\}.$$

Possible lifts of [i] to $Gal(K/\mathbb{Q})$: i, \bar{i}

Example

There is a number field (i.e. finite algebraic extension of \mathbb{Q}) K such that $Gal(K/\mathbb{Q}) \cong Q_8$, where Q_8 is the quaternion group:

$$Q_8 = \langle \bar{e}, i, j, k | i^2 = j^2 = k^2 = ijk = \bar{e}, \ \bar{e}^2 = e \rangle.$$

Now, $C = C(Q_8) = \{e, \bar{e}\}$, and by Fundamental Theorem of Galois Theory, there is a field L such that $\mathbb{Q} \subseteq L \subseteq K$ and $Gal(K/L) \cong C$. Then, $Gal(L/\mathbb{Q}) \cong Q_8/C$, a commutative group consisting of the cosets

$$[e] = \{e, \bar{e}\}, [i] = \{i, \bar{i}\}, [j] = \{j, \bar{j}\}, [k] = \{k, \bar{k}\}.$$

Possible lifts of [i] to $Gal(K/\mathbb{Q})$: i, \overline{i} Possible lifts of [j] to $Gal(K/\mathbb{Q})$: j, \overline{j} .

Example

There is a number field (i.e. finite algebraic extension of \mathbb{Q}) K such that $Gal(K/\mathbb{Q}) \cong Q_8$, where Q_8 is the quaternion group:

$$Q_8 = \langle \bar{e}, i, j, k | i^2 = j^2 = k^2 = ijk = \bar{e}, \ \bar{e}^2 = e \rangle.$$

Now, $C = C(Q_8) = \{e, \bar{e}\}$, and by Fundamental Theorem of Galois Theory, there is a field L such that $\mathbb{Q} \subseteq L \subseteq K$ and $Gal(K/L) \cong C$. Then, $Gal(L/\mathbb{Q}) \cong Q_8/C$, a commutative group consisting of the cosets

$$[e] = \{e, \bar{e}\}, [i] = \{i, \bar{i}\}, [j] = \{j, \bar{j}\}, [k] = \{k, \bar{k}\}.$$

Possible lifts of [i] to $Gal(K/\mathbb{Q})$: i, \bar{i} Possible lifts of [j] to $Gal(K/\mathbb{Q})$: j, \bar{j} . No way these lifts commute:

$$ij = k \neq \bar{k} = ji;$$

$$i\bar{j} = \bar{k} \neq k = \bar{j}i;$$

$$\bar{i}j = \bar{k} \neq k = \neq j\bar{i};$$

$$\bar{i}j = k \neq \bar{k} = \bar{j}i.$$

Let \mathcal{T} be the theory of fields with commuting automorphisms.

Let T be the theory of fields with commuting automorphisms.

Definition

Let $\mathcal{A} \models \mathcal{T}$. We say \mathcal{A} is relatively algebraically closed if the following holds:

Suppose $\mathcal{B} \models \mathcal{T}$, $\mathcal{A} \subseteq \mathcal{B}$, and let P(x) be a polynomial with coefficients in \mathcal{A} . If there is some $b \in \mathcal{B}$ such that P(b) = 0, then $b \in \mathcal{A}$.

Let T be the theory of fields with commuting automorphisms.

Definition

Let $\mathcal{A} \models \mathcal{T}$. We say \mathcal{A} is relatively algebraically closed if the following holds:

Suppose $\mathcal{B} \models \mathcal{T}$, $\mathcal{A} \subseteq \mathcal{B}$, and let P(x) be a polynomial with coefficients in \mathcal{A} . If there is some $b \in \mathcal{B}$ such that P(b) = 0, then $b \in \mathcal{A}$.

Definition

Suppose $\mathcal{A} \models \mathcal{T}$, \mathcal{A} is relatively algebraically closed, and $A \subseteq \mathcal{A}$. We define $acl_{\sigma}(A)$ to be the smallest subfield of \mathcal{A} containing A that is relatively algebraically closed, and closed under the automorphisms $\sigma_1, \ldots, \sigma_n$ and their inverses.

Let T be the theory of fields with commuting automorphisms.

Definition

Let $\mathcal{A} \models \mathcal{T}$. We say \mathcal{A} is relatively algebraically closed if the following holds:

Suppose $\mathcal{B} \models T$, $\mathcal{A} \subseteq \mathcal{B}$, and let P(x) be a polynomial with coefficients in \mathcal{A} . If there is some $b \in \mathcal{B}$ such that P(b) = 0, then $b \in \mathcal{A}$.

Definition

Suppose $\mathcal{A} \models \mathcal{T}$, \mathcal{A} is relatively algebraically closed, and $A \subseteq \mathcal{A}$. We define $acl_{\sigma}(A)$ to be the smallest subfield of \mathcal{A} containing A that is relatively algebraically closed, and closed under the automorphisms $\sigma_1, \ldots, \sigma_n$ and their inverses.

► Take the field generated by *A*, closed it under automorphisms and their inverses and take the relative algebraic closure.

Let T be the theory of fields with commuting automorphisms.

Definition

Let $\mathcal{A} \models \mathcal{T}$. We say \mathcal{A} is relatively algebraically closed if the following holds:

Suppose $\mathcal{B} \models T$, $\mathcal{A} \subseteq \mathcal{B}$, and let P(x) be a polynomial with coefficients in \mathcal{A} . If there is some $b \in \mathcal{B}$ such that P(b) = 0, then $b \in \mathcal{A}$.

Definition

Suppose $\mathcal{A} \models \mathcal{T}$, \mathcal{A} is relatively algebraically closed, and $A \subseteq \mathcal{A}$. We define $acl_{\sigma}(A)$ to be the smallest subfield of \mathcal{A} containing A that is relatively algebraically closed, and closed under the automorphisms $\sigma_1, \ldots, \sigma_n$ and their inverses.

► Take the field generated by *A*, closed it under automorphisms and their inverses and take the relative algebraic closure.

Let now $\mathcal A$ be a relatively algebraically closed model of $\mathcal T$, and denote $\mathcal A_0=acl_\sigma^\mathcal A(\emptyset).$

Let T be the theory of fields with commuting automorphisms.

Definition

Let $A \models T$. We say A is relatively algebraically closed if the following holds:

Suppose $\mathcal{B} \models T$, $\mathcal{A} \subseteq \mathcal{B}$, and let P(x) be a polynomial with coefficients in \mathcal{A} . If there is some $b \in \mathcal{B}$ such that P(b) = 0, then $b \in \mathcal{A}$.

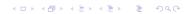
Definition

Suppose $\mathcal{A} \models \mathcal{T}$, \mathcal{A} is relatively algebraically closed, and $A \subseteq \mathcal{A}$. We define $acl_{\sigma}(A)$ to be the smallest subfield of \mathcal{A} containing A that is relatively algebraically closed, and closed under the automorphisms $\sigma_1, \ldots, \sigma_n$ and their inverses.

Take the field generated by A, closed it under automorphisms and their inverses and take the relative algebraic closure.

Let now $\mathcal A$ be a relatively algebraically closed model of $\mathcal T$, and denote $\mathcal A_0=\mathit{acl}_\sigma^\mathcal A(\emptyset).$

Define $\mathcal{K}_{A_0} = \{ A \models T \mid A \text{ relat. alg. closed}, A_0 \subseteq A \}.$



Let T be the theory of fields with commuting automorphisms.

Definition

Let $\mathcal{A} \models \mathcal{T}$. We say \mathcal{A} is relatively algebraically closed if the following holds:

Suppose $\mathcal{B} \models \mathcal{T}$, $\mathcal{A} \subseteq \mathcal{B}$, and let P(x) be a polynomial with coefficients in \mathcal{A} . If there is some $b \in \mathcal{B}$ such that P(b) = 0, then $b \in \mathcal{A}$.

Definition

Suppose $\mathcal{A} \models \mathcal{T}$, \mathcal{A} is relatively algebraically closed, and $A \subseteq \mathcal{A}$. We define $acl_{\sigma}(A)$ to be the smallest subfield of \mathcal{A} containing A that is relatively algebraically closed, and closed under the automorphisms $\sigma_1, \ldots, \sigma_n$ and their inverses.

► Take the field generated by A, closed it under automorphisms and their inverses and take the relative algebraic closure.

Let now \mathcal{A} be a relatively algebraically closed model of \mathcal{T} , and denote $\mathcal{A}_0 = acl_{\sigma}^{\mathcal{A}}(\emptyset)$.

Define $\mathcal{K}_{\mathcal{A}_0} = \{ \mathcal{A} \models T \mid \mathcal{A} \text{ relat. alg. closed, } \mathcal{A}_0 \subseteq \mathcal{A} \}.$

▶ (K, \subseteq) is an AEC, and it has AP and JEP.

Following Chatzidakis & Hrushovski, we define

Following Chatzidakis & Hrushovski, we define

▶ A is independent from B over C if $acl_{\sigma}(A \cup C)$ is algebraically independent (as a field) from $acl_{\sigma}(B \cup C)$ over $acl_{\sigma}(C)$

Following Chatzidakis & Hrushovski, we define

▶ A is independent from B over C if $acl_{\sigma}(A \cup C)$ is algebraically independent (as a field) from $acl_{\sigma}(B \cup C)$ over $acl_{\sigma}(C)$

Theorem (Generalised Independence Theorem)

Let x_1, \ldots, x_n be tuples of variables, and let W be a set of proper subsets of $\{1, \ldots, n\}$ closed under intersection. Assume that for each $w \in W$ we are given a Galois type $p_w(x_w)$ over $E = \operatorname{acl}_\sigma(E)$, in the variables $x_w = \{x_i \mid i \in w\}$, which can be realised by some $(a_i \mid i \in w)$ such that the elements a_i , $i \in w$, are independent over E. Assume moreover that if $v \subset w$ are in W, then $p_v(x_v) \subset p_w(x_w)$. Then,

$$\bigcup_{w\in W}p_w(x_w)$$

is a Galois type that can be realised by some a_1, \ldots, a_n that are independent over E.

Following Chatzidakis & Hrushovski, we define

▶ A is independent from B over C if $acl_{\sigma}(A \cup C)$ is algebraically independent (as a field) from $acl_{\sigma}(B \cup C)$ over $acl_{\sigma}(C)$

Theorem (Generalised Independence Theorem)

Let x_1, \ldots, x_n be tuples of variables, and let W be a set of proper subsets of $\{1, \ldots, n\}$ closed under intersection. Assume that for each $w \in W$ we are given a Galois type $p_w(x_w)$ over $E = \operatorname{acl}_\sigma(E)$, in the variables $x_w = \{x_i \mid i \in w\}$, which can be realised by some $(a_i \mid i \in w)$ such that the elements a_i , $i \in w$, are independent over E. Assume moreover that if $v \subset w$ are in W, then $p_v(x_v) \subset p_w(x_w)$. Then,

$$\bigcup_{w\in W}p_w(x_w)$$

is a Galois type that can be realised by some a_1, \ldots, a_n that are independent over E.

proof by Chatzidakis & Hrushovski generalises to our context

Following Chatzidakis & Hrushovski, we define

▶ A is independent from B over C if $acl_{\sigma}(A \cup C)$ is algebraically independent (as a field) from $acl_{\sigma}(B \cup C)$ over $acl_{\sigma}(C)$

Theorem (Generalised Independence Theorem)

Let x_1, \ldots, x_n be tuples of variables, and let W be a set of proper subsets of $\{1, \ldots, n\}$ closed under intersection. Assume that for each $w \in W$ we are given a Galois type $p_w(x_w)$ over $E = \operatorname{acl}_\sigma(E)$, in the variables $x_w = \{x_i \mid i \in w\}$, which can be realised by some $(a_i \mid i \in w)$ such that the elements a_i , $i \in w$, are independent over E. Assume moreover that if $v \subset w$ are in W, then $p_v(x_v) \subset p_w(x_w)$. Then,

$$\bigcup_{w\in W}p_w(x_w)$$

is a Galois type that can be realised by some a_1, \ldots, a_n that are independent over E.

- proof by Chatzidakis & Hrushovski generalises to our context
- ► Can prove using this: simple in the sense of Buechler & Lessman.

Thank you for your attention!