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100th anniversary of the death of Cantor

Georg Cantor 1845 (Saint Petersburg) — 1918 (Halle).
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• Second order logic has great power in characterizing
categorically mathematical structures: natural numbers,
real numbers, cumulative hierarchy of sets up to the first
inaccessible, etc.

• Which structures are second order characterizable?
• For which A is there a second order ✓ such that for all B:

A ⇠= B () B |= ✓
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Sometimes infinitary second order logic can
characterize “all” models.

Theorem (Hyttinen-Kangas-V. 2013)
Let T be a countable complete first order theory and  an
uncountable cardinal with certain not too uncommon
properties1. Then the following are equivalent:

1. Every model of T of size  is L2
!-characterizable.

2. T is superstable, shallow, without DOP or OTOP.

1A regular cardinal such that  = @↵, i!1(|↵|+ !)   and 2� < 2 for all
� < .
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Theorem (V. 2011)

1. If a model is second order characterizable, its isomorphism
class is �2-definable in set theory.

2. A model class is second order definable2 if and only if it is
�2-definable in set theory.

2More exactly, second order �-definable.
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A hierarchy of second order characterizable models
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Theorem (V. 2011)

1. Second order validity is ⇧2-complete in set theory.
2. The second order theory of a second order characterizable

structure is always �2 in set theory.

Corollary
Second order validity cannot be second order defined in any
second order characterizable structure.

This is a critique of structuralism as I understand that view.
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Definition (Zermelo 1930)

1. The Second Order Zermelo-Fraenkel axioms ZFC2 are as
the first order one except that the Separation and
Replacement Schemas are replaced by single second
order axioms.

2. The Second Order Peano axioms P2 are as the first order
Peano axioms except that the Induction Schema is
replaced by a single second order axiom.
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Theorem (Zermelo 1930)
(M,E) satisfies the second order Zermelo-Fraenkel axioms
ZFC2 if and only if (M,E) ⇠= (V,2) for some strongly
inaccessible .

Proof.
Zermelo shows that if (M,E) |= ZFC2 and  is the smallest
ordinal not “represented" in (M,E), then (M,E) ⇠= (V,2).

Corollary
If (M,21) and (M,22) both satisfy the second order
Zermelo-Fraenkel axioms ZFC2, then (M,21) ⇠= (M,22).
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Theorem (Dedekind 1888)
If (M1,+1,⇥1) and (M2,+2,⇥2) both satisfy the second order
Peano axioms P2, then (M1,+1,⇥1) ⇠= (M2,+2,⇥2).

Proof.
Dedekind essentially argues that if (M,+,⇥) |= P2, then
(M,+,⇥) is isomorphic with the standard model (N,+,⇥).

10 / 36



• Let us consider the vocabulary {21,22}, where both 21
and 22 are binary predicate symbols.

• ZFC(21) is the first order Zermelo-Fraenkel axioms of set
theory when 21 is the membership relation and formulas
are allowed to contain 22, too.

• ZFC(22) is the first order Zermelo-Fraenkel axioms of set
theory when 22 is the membership relation and formulas
are allowed to contain 21, too.
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Theorem (V. 2018)
If (M,21,22) |= ZFC(21) [ ZFC(22), then (M,21) ⇠= (M,22).
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Proof of the Theorem

• We work in ZFC(21) [ ZFC(22).
• We alternate between 21-set theory and 22-set theory.
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Proof of the Theorem

• Let tri(x) be the formula 8t 2i x8w 2i t(w 2i x). It says
that x is transitive in 2i -set theory.

• Let TCi(x) be the unique u such that
tri(u) ^ x 2i u ^ 8v((tri(v) ^ x 2i v) ! 8w 2i u(w 2i v))
(i.e. “u is the 2i -transitive closure of x”).

• Let '(x , y) be the formula 9f (x , y , f ), where  (x , y , f ) is
the conjunction of the following formulas (where f (t) and
f (w) are understood in the sense of 21):
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Proof of the Theorem

 (x , y , f ) :

(1) In the sense of 21, the set f is a function with
TC1(x) as its domain.

(2) 8t 21 TC1(x)(f (t) 22 TC2(y))
(3) 8t 22 TC2(y)9w 21 TC1(x)(t = f (w))

(4) 8t 21 TC1(x)8w 21 TC1(x)(t 21 w $ f (t) 22 f (w))

(5) f (x) = y
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Proof of the Theorem
Lemma
If  (x , y , f ) and  (x , y , f 0), then f = f 0.
Proof:
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Proof of the Theorem

Lemma
If  (x , y , f ) and x 0 21 x, then '(x 0, f (x 0)).
Proof:
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Proof of the Theorem
Lemma
If  (x , y , f ) and y 0 22 y, then there is x 0 21 x such that
f (x 0) = y 0 and '(x 0, y 0).
Proof:
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Proof of the Theorem
Lemma
If '(x , y) and '(x , y 0), then y = y 0.
Proof:
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Proof of the Theorem

Lemma
If '(x , y) and '(x 0, y), then x = x 0.
Proof:
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Proof of the Theorem

Lemma
If '(x , y) and '(x 0, y 0), then x 0 21 x $ y 0 22 y.
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Proof of the Theorem

• Let On1(x) be the 21-formula saying that x is an ordinal i.e.
a transitive set of transitive sets, and similarly On2(x).

• For On1(↵) let V 1
↵ be the ↵th level of the cumulative

hierarchy in the sense of 21, and similarly V 2
a .
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Proof of the Theorem

Lemma
1. If '(↵, y), then On1(↵) if and only if On2(y).
2. If ↵ is a limit ordinal then so is y i.e. if

8u 21 ↵9v 21 ↵(u 21 v), then 8u 22 y9v 22 y(u 22 v).
3. Also vice versa.
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Proof of the Theorem

Lemma
Suppose  (↵, y , f ). If On1(↵) (or equivalently On2(y)), then
there is f̄ ◆ f such that  (V 1

↵ ,V 2
y , f̄ ).
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Proof of the Theorem

Lemma
8x9y'(x , y) and 8y9x'(x , y).

Proof: Consider

8↵(On1(↵) ! 9y'(↵, y)) (1)

8y(On2(y) ! 9↵'(↵, y)). (2)

Case 1: (1)^(2). The claim can be proved.

Case 2: ¬(1)^¬(2). Impossible!

Case 3: (1)^¬(2). Impossible!

Case 4: ¬(1)^(2). Impossible!
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Proof of the Theorem

Lemma
The class defined by '(x , y) is an isomorphism between the
21-reduct and the 22-reduct.

Proof.
By the previous Lemmas.

The Theorem is proved.
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Theorem
If (M,+1,⇥1,+2,⇥2) |= P(+1,⇥1) [ P(+2,⇥2), then
(M,+1,⇥1) ⇠= (M,+2,⇥2).

Proof.
(Sketch) Let 01 and 11 be the first elements of (M,+1,⇥1), and
respectively 02, 12. Let  (x , u, v) say that x codes, using +1
and ⇥1, an initial segment I with the last element u, of
(M,+1,⇥1), an initial segment I0 with the last element v , of
(M,+2,⇥2), and a function f : I ! I0 such that f (01) = 02,
f (y +1 11) = f (y) +2 12 for all y 2 I \ {u}, and f (u) = v . Let
'(u, v) be the formula 9x (x , u, v). This formula defines the
desired isomorphism.
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• D. Martin 2018 (unpublished) argues informally that if
(M1,21) and (M2,22) both satisfy the axioms of set theory
with informal Full Comprehension and their classes of
ordinals are isomorphic, then (M,21) ⇠= (M,22).

• Our result is a formalization of Martin’s informal result. We
need not assume that the ordinals are isomorphic.

29 / 36



• Early researchers (Dedekind, Frege, Russell, Hilbert,
Zermelo, Gödel, Mostowski) axiomatized mathematics
using second order logic or its extension simple theory of
types.

• Then ZFC emerged as a first order theory.
• Later philosophers (e.g. S. Shapiro) claimed second order

logic would be better (can characterize mathematical
structures) and first order logic is flawed (cannot
characterize mathematical structures).

• I suggest: Zermelo’s and Dedekind’s second order
categoricity results are actually first order at heart.

• The difference between second order logic or first order set
theory is not as clear as what was previously thought.
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• Second order logic is praised for its categoricity results, i.e.
its ability to characterize structures.

• But what is universal second order truth — a problem!
• Best understood in terms of provability i.e. truth in all

Henkin (rather than “full”) models.
• But Henkin models seem to ruin the categoricity results.
• However, categoricity can be proved for Henkin models,

too, in the form of internal categoricity, which implies full
categoricity in full models.
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• Note that (M,21) and (M,22) above can be models of
V = L, V 6= L, CH, ¬CH, even of ¬Con(ZF ).

• It is easy to construct such pairs of models using classical
methods of Gödel and Cohen.

• Not all of them can be models of second order set theory.
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Continuum Hypothesis (CH)

• What if (M,21) |= CH and (M,22) |= ¬CH?
• Then either (M,21) or (M,22) does not satisfy the

Separation Schema or the Replacement Schema if
formulas are allowed to mention the other
membership-relation.
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• An internal categoricity result.
• A strong robustness result for set theory.
• The model cannot be changed “internally”.
• To get non-isomorphic models one has to go “outside” the

model.
• But going “outside” raises the potential of an infinite

regress of meta theories.
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• Should we think of second order logic or first order set
theory as the foundation of classical mathematics?

• The answer: We need a new understanding of the
difference between the two. The difference is not as clear
as what was previously thought.

• The nice categoricity results of second order logic can be
seen already on the first order level, revealing their
inherent limitations.
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Thank you!
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