Basis problem for regular spaces and compact convex sets

Yinhe Peng

Institute of Mathematics Academy of Mathematics and Systems Science Chinese Academy of Sciences

October 31, 2018

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A metric d on a set X is a function $d: X \times X \rightarrow [0, \infty)$ such that

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

•
$$d(x, y) = 0$$
 iff $x = y$.

$$\blacktriangleright d(x,y) = d(y,x).$$

•
$$d(x,z) \leq d(x,y) + d(y,z)$$
.

A metric d on a set X is a function $d: X \times X \rightarrow [0, \infty)$ such that

•
$$d(x, y) = 0$$
 iff $x = y$.

$$\blacktriangleright d(x,y) = d(y,x).$$

•
$$d(x,z) \leq d(x,y) + d(y,z)$$
.

A topological space X is metrizable if there is a metric d on X that determines the topology.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A metric d on a set X is a function $d: X \times X \rightarrow [0, \infty)$ such that

•
$$d(x, y) = 0$$
 iff $x = y$.

- $\blacktriangleright d(x,y) = d(y,x).$
- $d(x,z) \leq d(x,y) + d(y,z)$.

A topological space X is metrizable if there is a metric d on X that determines the topology.

A normal space is Perfectly normal (T_6) if every closed set is the intersection of countably many open sets.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

A metric d on a set X is a function $d: X \times X \rightarrow [0, \infty)$ such that

•
$$d(x, y) = 0$$
 iff $x = y$.

- $\blacktriangleright d(x,y) = d(y,x).$
- $d(x,z) \leq d(x,y) + d(y,z)$.

A topological space X is metrizable if there is a metric d on X that determines the topology.

A normal space is Perfectly normal (T_6) if every closed set is the intersection of countably many open sets.

うして ふゆう ふほう ふほう うらつ

Every metric space is T_6 : $F = \bigcap \{B(F, 2^{-n}) : n \in \mathbb{N}\}.$

Is every T_6 space metrizable?

Is every T_6 space metrizable?

Example (S)

Sorgenfrey line: $(\mathbb{R}, \langle [a, b) : a, b \in \mathbb{R} \rangle).$

Is every T_6 space metrizable?

Example (S)

Sorgenfrey line: $(\mathbb{R}, \langle [a, b) : a, b \in \mathbb{R} \rangle).$

Question

Is every compact T_6 space metrizable?

Is every T_6 space metrizable? Example (S)

Sorgenfrey line: $(\mathbb{R}, \langle [a, b) : a, b \in \mathbb{R} \rangle).$

Question

Is every compact T_6 space metrizable?

Fact

For a compact space X, if X^2 is T_6 , then X is metrizable.

Is every T_6 space metrizable?

Example (S)

Sorgenfrey line: $(\mathbb{R}, \langle [a, b) : a, b \in \mathbb{R} \rangle).$

Question

Is every compact T_6 space metrizable?

Fact

For a compact space X, if X^2 is T_6 , then X is metrizable.

Example

Alexandrov double arrow space $[0,1]\times 0,1$ is compact $\mathcal{T}_6,$ not metrizable and contains $\mathbb{S}.$

Question

Is every T_6 compact convex set metrizable?

Question

Is every T_6 compact convex set metrizable?

Question

Is it true that a compact T_6 space is metrizable iff it contains no Sorgenfrey subsets?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A separable metric space has no uncountable discrete subset $\mathbb{D}.$

A separable metric space has no uncountable discrete subset $\mathbb{D}.$

Question

Is it true that a T_3 space is a continuous image of a separable metric space if it contains no S or \mathbb{D} ?

A separable metric space has no uncountable discrete subset \mathbb{D} .

Question

Is it true that a T_3 space is a continuous image of a separable metric space if it contains no S or \mathbb{D} ?

Fact (PFA)

If an uncountable T_3 space X is a continuous image of a separable metric space, then X contains an uncountable subset of \mathbb{R} .

うして ふゆう ふほう ふほう うらつ

A separable metric space has no uncountable discrete subset \mathbb{D} .

Question

Is it true that a T_3 space is a continuous image of a separable metric space if it contains no S or \mathbb{D} ?

Fact (PFA)

If an uncountable T_3 space X is a continuous image of a separable metric space, then X contains an uncountable subset of \mathbb{R} .

Question (PFA)

Is it true that every uncountable T_3 space contains an uncountable subspace of \mathbb{R} , \mathbb{S} , or \mathbb{D} ?

For regular uncountable spaces, is there a finite collection \mathcal{B} such that every other regular uncountable space X contains a subspace homeomorphic to one space from \mathcal{B} ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For regular uncountable spaces, is there a finite collection \mathcal{B} such that every other regular uncountable space X contains a subspace homeomorphic to one space from \mathcal{B} ?

To answer this question we are willing to use standard forcing axioms (MA, PFA,...), and/or restrict ourselves to some appropriate subclass of well-behaved spaces.

The real line and the Sorgenfrey line

Theorem (Baumgartner 1973)

PFA implies that every set of reals of cardinality \aleph_1 embeds homomorphically into any uncountable separable metric space and that

every subset of the Sorgenfrey line $(\mathbb{R}, \rightarrow)$ of cardinality \aleph_1 embeds homomorphically into any uncountable subspace of $(\mathbb{R}, \rightarrow)$.

うして ふゆう ふほう ふほう うらつ

The real line and the Sorgenfrey line

Theorem (Baumgartner 1973)

PFA implies that every set of reals of cardinality \aleph_1 embeds homomorphically into any uncountable separable metric space and that

every subset of the Sorgenfrey line $(\mathbb{R}, \rightarrow)$ of cardinality \aleph_1 embeds homomorphically into any uncountable subspace of $(\mathbb{R}, \rightarrow)$.

Note that even in the class of first countable spaces the list ${\cal B}$ must have at least three elements.

うして ふゆう ふほう ふほう うらつ

HS and HL

Hereditary Lindelöfness and hereditary separability play important roles in the basis problem.

A regular space is Lindelöf if every open cover has a countable subcover.

An S space is a regular hereditarily separable (HS) space which is not Lindelöf.

An L space is a regular hereditarily Lindelöf (HL) space which is not separable.

HS and HL

Hereditary Lindelöfness and hereditary separability play important roles in the basis problem.

A regular space is Lindelöf if every open cover has a countable subcover.

An S space is a regular hereditarily separable (HS) space which is not Lindelöf.

An L space is a regular hereditarily Lindelöf (HL) space which is not separable.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Fact

- ► HL implies T₆.
- ► For compact/Lindelöf spaces, T₆ implies HL.

Theorem (M.E. Rudin, 1972)

Under some assumption, there is an S space.

Theorem (M.E. Rudin, 1972)

Under some assumption, there is an S space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Todorcevic, 1983)

PFA implies that there is no S space.

Theorem (M.E. Rudin, 1972)

Under some assumption, there is an S space.

Theorem (Todorcevic, 1983)

PFA implies that there is no S space.

So under PFA, an uncountable regular space either contains an uncountable discrete space or is HL.

(ロ) (型) (E) (E) (E) (O)

Theorem (M.E. Rudin, 1972)

Under some assumption, there is an S space.

Theorem (Todorcevic, 1983)

PFA implies that there is no S space.

So under PFA, an uncountable regular space either contains an uncountable discrete space or is HL.

(ロ) (型) (E) (E) (E) (O)

Theorem (Moore, 2005)

There is an L space.

Adding algebraic structure will not help:

```
Theorem (P.-Wu, 2014)
```

```
There is an L group.
```


Adding algebraic structure will not help:

```
Theorem (P.-Wu, 2014)
```

```
There is an L group.
```

It turns out that the class of L spaces/groups does not have a reasonably small basis.

Adding algebraic structure will not help:

```
Theorem (P.-Wu, 2014)
```

```
There is an L group.
```

It turns out that the class of L spaces/groups does not have a reasonably small basis.

```
Theorem (P.-Wu,2014)
```

For any $n < \omega$, there is an L group G such that G^n is an L group.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Adding algebraic structure will not help:

```
Theorem (P.-Wu, 2014)
```

```
There is an L group.
```

It turns out that the class of L spaces/groups does not have a reasonably small basis.

Theorem (P.-Wu,2014)

For any $n < \omega$, there is an L group G such that G^n is an L group.

Or restrict ourselves to the class of first countable spaces.

Theorem (Szentmiklossy, 1980)

PFA implies that there are no first countable L spaces.

A topological space X is cometrizable if it has a weaker metrizable topology and a neighbourhood assignment consisting of closed sets in this weaker topology.

Example: The Sorgenfrey line is a cometrizable space.

Theorem (Gruenhage 1987)

Assume PFA. A cometrizable space is a continuous image of a separable metric space if it contains no \mathbb{S} or \mathbb{D} .

うして ふゆう ふほう ふほう うらつ

Inner topology

For a topological space (X, τ) and a collection $\mathcal{C} \subset P(X)$, the inner topology $(X, \tau^{I, \mathcal{C}})$ induced by \mathcal{C} is the topology with base $\{\{x\} \cup O^{I, \mathcal{C}} : x \in O, O \text{ is open}\}$ where $O^{I, \mathcal{C}} = \bigcup \{C \in \mathcal{C} : C \subset O\}$.

うして ふゆう ふほう ふほう うらつ

Inner topology

For a topological space (X, τ) and a collection $\mathcal{C} \subset P(X)$, the inner topology $(X, \tau^{I, \mathcal{C}})$ induced by \mathcal{C} is the topology with base $\{\{x\} \cup O^{I, \mathcal{C}} : x \in O, O \text{ is open}\}$ where $O^{I, \mathcal{C}} = \bigcup \{C \in \mathcal{C} : C \subset O\}$.

X has HL inner topology for some countable C if for any open set $O, O \setminus \{C \in C : C \subset O\}$ is at most countable.

Theorem (P-Todorcevic)

Assume PFA. If (X, τ) is regular and $(X, \tau^{I,C})$ is HL for some countable C, then (X, τ) either is a continuous image of a separable metric space or contains an uncountable Sorgenfrey subset.

Suppose X is a T_6 compact convex set.

Proposition (PFA)

X can be embedded into $[0,1]^{\omega_1}$. In particular, $w(X) \leq \omega_1$ and there is an increasing union $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$ such that each X_{α} is metrizable and G_{δ} .

Applications to other problems

Theorem (P-Todorcevic)

Assume PFA. If X has an HL inner topology, then X admits a 2-to-1 continuous map to a metric space.

Applications to other problems

Theorem (P-Todorcevic)

Assume PFA. If X has an HL inner topology, then X admits a 2-to-1 continuous map to a metric space.

A similar question in perfect normal spaces has drawn people's attention for a long time.

Question (Fremlin)

Is it consistent that every perfectly normal compact space admits a 2-to-1 continuous map to a metric space?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Connection with perfectly normal compact spaces

Gruenhage also pointed out that consistency of basis problem should provide consistency to the following:

Question

Is it consistent that every \mathcal{T}_6 locally connected compact space is metrizable?

Question

If X and Y are compact and $X \times Y$ is T_6 , must one of X and Y be metrizable?

First countability

Theorem (P-Todorcevic)

Assume PFA. Let X be a first countable HL space. Then either,

- 1. for any countable C, the space $(X, \tau^{I,C})$ is σ -discrete or
- 2. for some countable C and uncountable $Y \subset X$ the space $(Y, \tau^{I,C})$ is HL.

うして ふゆう ふほう ふほう うらつ

First countability

Theorem (P-Todorcevic)

Assume PFA. Let X be a first countable HL space. Then either,

- 1. for any countable C, the space $(X, \tau^{I,C})$ is σ -discrete or
- for some countable C and uncountable Y ⊂ X the space (Y, τ^{I,C}) is HL.

Theorem (P-Todorcevic)

Assume PFA. If X is a first countable space with HL inner topology and has size \aleph_1 , then there is a partition $X = \bigcup_{n < \omega} X_n$ such that each X_n is either metrizable or Sorgenfrey.

Outer "topology"

For a topological space (X, τ) and a collection $\mathcal{C} \subset P(X)$, the outer "topology" $(X, \tau^{O, \mathcal{C}})$ induced by \mathcal{C} is the collection $\{O^{O, \mathcal{C}} : O \text{ is open}\}$ where $O^{O, \mathcal{C}} = \bigcap \{C \in \mathcal{C} : O \subset C\}$.

Proposition (PFA)

Suppose X is a regular, HL space. Any outer topology induced by a countable collection either is a continuous image of a separable metric space or contains S.

If the outer topology guesses almost correctly, then the original topology will either is a continuous image of a separable metric space or contains S.

Example. Cometrizable spaces.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?