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Metric spaces

A metric d on a set X is a function d : X × X → [0,∞) such that

I d(x , y) = 0 iff x = y .
I d(x , y) = d(y , x).
I d(x , z) ≤ d(x , y) + d(y , z).

A topological space X is metrizable if there is a metric d on X that
determines the topology.

A normal space is Perfectly normal (T6) if every closed set is the
intersection of countably many open sets.

Every metric space is T6: F =
⋂
{B(F , 2−n) : n ∈ N}.
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Metrization

Is every T6 space metrizable?

Example (S)

Sorgenfrey line: (R, 〈[a, b) : a, b ∈ R〉).

Question

Is every compact T6 space metrizable?

Fact

For a compact space X , if X 2 is T6, then X is metrizable.

Example

Alexandrov double arrow space [0, 1]× 0, 1 is compact T6, not
metrizable and contains S.
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Metrization

Question

Is every T6 compact convex set metrizable?

Question

Is it true that a compact T6 space is metrizable iff it contains no
Sorgenfrey subsets?
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General spaces

A separable metric space has no uncountable discrete subset D.

Question

Is it true that a T3 space is a continuous image of a separable
metric space if it contains no S or D?

Fact (PFA)

If an uncountable T3 space X is a continuous image of a separable
metric space, then X contains an uncountable subset of R.

Question (PFA)

Is it true that every uncountable T3 space contains an uncountable
subspace of R, S, or D?
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Topological basis problem

For regular uncountable spaces, is there a finite collection B such
that every other regular uncountable space X contains a subspace
homeomorphic to one space from B?

To answer this question we are willing to use standard forcing
axioms (MA, PFA,...), and/or restrict ourselves to some appropriate
subclass of well-behaved spaces.
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The real line and the Sorgenfrey line

Theorem (Baumgartner 1973)

PFA implies that every set of reals of cardinality ℵ1 embeds
homomorphically into any uncountable separable metric space and
that

every subset of the Sorgenfrey line (R,→) of cardinality ℵ1 embeds
homomorphically into any uncountable subspace of (R,→).

Note that even in the class of first countable spaces the list B must
have at least three elements.
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HS and HL

Hereditary Lindelöfness and hereditary separability play important
roles in the basis problem.

A regular space is Lindelöf if every open cover has a countable
subcover.

An S space is a regular hereditarily separable (HS) space which is
not Lindelöf.

An L space is a regular hereditarily Lindelöf (HL) space which is not
separable.

Fact

I HL implies T6.
I For compact/Lindelöf spaces, T6 implies HL.
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S and L

Theorem (M.E. Rudin, 1972)

Under some assumption, there is an S space.

Theorem (Todorcevic, 1983)

PFA implies that there is no S space.

So under PFA, an uncountable regular space either contains an
uncountable discrete space or is HL.

Theorem (Moore, 2005)

There is an L space.
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L groups

Adding algebraic structure will not help:

Theorem (P.-Wu, 2014)

There is an L group.

It turns out that the class of L spaces/groups does not have a
reasonably small basis.

Theorem (P.-Wu,2014)

For any n < ω, there is an L group G such that Gn is an L group.

Or restrict ourselves to the class of first countable spaces.

Theorem (Szentmiklossy, 1980)

PFA implies that there are no first countable L spaces.
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One restriction

A topological space X is cometrizable if it has a weaker metrizable
topology and a neighbourhood assignment consisting of closed sets
in this weaker topology.

Example: The Sorgenfrey line is a cometrizable space.

Theorem (Gruenhage 1987)

Assume PFA. A cometrizable space is a continuous image of a
separable metric space if it contains no S or D.



Inner topology

For a topological space (X , τ) and a collection C ⊂ P(X ), the inner
topology (X , τ I ,C) induced by C is the topology with base
{{x} ∪ O I ,C : x ∈ O,O is open} where O I ,C =

⋃
{C ∈ C : C ⊂ O}.

X has HL inner topology for some countable C if for any open set
O, O \ {C ∈ C : C ⊂ O} is at most countable.

Theorem (P-Todorcevic)

Assume PFA. If (X , τ) is regular and (X , τ I ,C) is HL for some
countable C, then (X , τ) either is a continuous image of a separable
metric space or contains an uncountable Sorgenfrey subset.
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Apply to compact convex sets

Suppose X is a T6 compact convex set.

Proposition (PFA)

X can be embedded into [0, 1]ω1 . In particular, w(X ) ≤ ω1 and
there is an increasing union X =

⋃
α<ω1

Xα such that each Xα is

metrizable and Gδ.



Applications to other problems

Theorem (P-Todorcevic)

Assume PFA. If X has an HL inner topology, then X admits a
2-to-1 continuous map to a metric space.

A similar question in perfect normal spaces has drawn people’s
attention for a long time.

Question (Fremlin)

Is it consistent that every perfectly normal compact space admits a
2-to-1 continuous map to a metric space?
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Connection with perfectly normal compact spaces

Gruenhage also pointed out that consistency of basis problem
should provide consistency to the following:

Question

Is it consistent that every T6 locally connected compact space is
metrizable?

Question

If X and Y are compact and X × Y is T6, must one of X and Y
be metrizable?



First countability

Theorem (P-Todorcevic)

Assume PFA. Let X be a first countable HL space. Then either,

1. for any countable C, the space (X , τ I ,C) is σ-discrete or
2. for some countable C and uncountable Y ⊂ X the space

(Y , τ I ,C) is HL.

Theorem (P-Todorcevic)

Assume PFA. If X is a first countable space with HL inner topology
and has size ℵ1, then there is a partition X =

⋃
n<ω

Xn such that

each Xn is either metrizable or Sorgenfrey.
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Outer “topology”

For a topological space (X , τ) and a collection C ⊂ P(X ), the
outer “topology” (X , τO,C) induced by C is the collection {OO,C : O
is open} where OO,C =

⋂
{C ∈ C : O ⊂ C}.

Proposition (PFA)

Suppose X is a regular, HL space. Any outer topology induced by a
countable collection either is a continuous image of a separable
metric space or contains S.

If the outer topology guesses almost correctly, then the original
topology will either is a continuous image of a separable metric
space or contains S.

Example. Cometrizable spaces.



Thank you!


