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Arithmetic

The Peano Axioms, consisting of the axioms for a discretely
ordered ring, plus induction, have many models.

In fact they have 2% non-isomorphic countable models.
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Also, the nonstandard countable models are not recursive, the
sense that if the domain of the model is identified with the natural
numbers, then +™ and xM, regarded as ternary relations on the
natural numbers, are not recursive.



Arithmetic

Theorem (Tennenbaum) Let M be a countable Diophantine

correct model of PA~. Then M can be embedded in N' = N¥/F,
where F is the Frechet filter on N.!

(Already follows from the N;- saturation of A, but Tennenbaum
constructs the embedding directly.)

Tennenbaum saw this as an antidote to the above two theorems.

1PA~ is the theory PA without induction. M is Diophantine correct if
whenever a polynomial equation has a solution in the model, it has a solution
in the natural numbers.



Proof

Enumerate the elements of M as my, my, ms, .. ..

Enumerate the polynomial equations P(vy, vy, ..

(my, mp,...) in M.

.) satisfied by



ma moy mp
P1 vi(l)  wa(1) va(1)
Py A Ps V1(2) V2(2) Vn(2)
ALy P | w(n) wa(n) ... va(n)




Mapping is m; — [(vi(n))]

«O0>» «F>r» «E>»

«E>»
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The non-Diophantine correct case

Theorem (Tennenbaum). Let M be a countable model of PA™.
Then M can be embedded in A = AY/F.
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| Cohesiveness |

A set X C N is r-cohesive (cohesive), if for all recursive (r.e.)
sets A of natural numbers, either X C* Aor X C* —A.

A function f : N — N is r-cohesive (cohesive) if its range is.



Which f € N occur in a model of arithmetic?

Theorem. Let f be a function N — N. Then f is contained in

some substructure of N satisfying My — Th(N) iff f is r-cohesive.

So the identity function cannot belong to a model of True
Arithmetic inside A, unlike the ultrafilter case.
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Other Cardinalities: Regular filters

A filter D on [ is regular if
(HAwa< I} CD)Vie([{a<A:ic A} <w)
Generalizes the cofinite filter (Frechet filter) over w.

The meaning: there is a “regular” family of |/| sets in the filter
such that the intersection of any infinite subfamily is empty.
On every cardinal there is a regular filter and therefore also a
regular ultrafilter.

If there is a non-regular ultrafilter on wy, then 07 exists (J.
Ketonen)
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Embedding Models of Cardinality N;

Theorem. (K, Shelah) Let M be a Diophantine correct model of
PA~ of cardinality R;. Let D be a regular filter on w. Then M can
be embedded in N“/D.
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Lemma: There exists a family of sets u%, with o < w1, and

n € N, such that for each n, «
(i) |ud] <n+1
(i) a€uy Cuy
(i) U, ud =a+1
(iv) Beud=ul =urn(B+1)
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Other cardinalites

Not provable...
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Definitions

e M A-universal: If [N| < X and N = M, then N is elementary
embeddable into M.

e A way to understand the theory of N (and M).
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The Main Results

The following statements are independent of ZFC, assuming the
consistency of large cardinals:
e If M is a structure in a vocabulary of size < X and D a regular
ultrafilter on \, then M*/D is A\**-universal. (Keisler &
Chang: Open Problem 18)

e Suppose M and N are structures in a vocabulary of size < A
such that |[M|,|N| < X. If M= N, D is a regular ultrafilter on
A, and 2* = A, then M*/D = N*/D. (Keisler & Chang:
Open Problem 19)
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A finitary square

0% p: For each i < A there is a natural number n;, and for each
i< Xand ¢ < AT there exists a set ul-C such that:

(i) Jus| <

(i) uf C¢
(iii) For all B C A", B finite, there exists € such that
{i usD>B}yeD

(iv) Coherency: v € u®

Y _ ¢
;= ul =ur Ny

i
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Universality Theorems

o Assume 0% . For all A-regular ultrafilters D: M*/p is
AT T -universal.

e Best possible result assuming GCH, since then |[M*/p| < AT
for IM| < AT,
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The transfer principle (Ny, Rg) — (AT, \)

e Due to C.C.Chang

e Follows from GCH for A regular (Chang two-cardinal theorem)
and from V=L for other A (Jensen).

e False for A = Xy in the “Mitchell model”, which uses an
inaccessible cardinal, and for A = X, (with GCH) in the
Litman-Shelah model, which uses a supercompact.

(R1,Ng) — (AT, \) implies D% p for any regular filter D on A.
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The weak square principle (8"

e Transfer principle is equivalent to the following weak square
principle.

° Df\* says: There are a \™-like linear order L, increasing (in ()
sets C§, a€ L,¢ < cf()N), equivalence relations
(ES : ¢ < cf(N)), and functions <fa<7b (< MNaelbel)
such that



U Cs={b:b<a}

2. If be C§, then CC {c e C&:c<y b} (coherence)

w

© N o 0 »

EC is an equivalence relation on L with < X\ equivalence
classes.

If ¢ < & < cf()), then ES refines ES.

If aECb then facb is an order-preserving map from C§ onto Cg.

If ¢ < & < cf()\) and aE¢b, then fo, C f7,.
If £2,(a1) = by, then £y , C £2,.
ae C,f = —(aESh).



e A transfer of the case A = Ry (where the principle is provable),
written in the logic L(Q1), “there are uncountably many”.

° Df\* implies 0", for any regular filter D on A.

e Converse true for s.s.l. A, and D generated by < X sets.

N
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Isomorphism Theorem for A

Assume DQ\"D Let L be a language of cardinality < A and for each
i< Alet I\/l and N; be two elementarily equivalent L-structures. If
D is a regular filter on A, then Player Il has a winning strategy in
the game EFGy+ on [[; M;/D and []; N;/D.

(Previous result of Shelah: “... EFG, for any a < A*")



Corollary

Assuming 22 =\t DKH,D' D regular filter on A, and |A| < A,
|B| < A. Then A=B = A)‘/D = B”\/D.
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Proof

e Use sets uf* to define a winning strategy for the isomorphism
player.

e Elementary equivalence means isomorphism player has a
winning strategy for Ehrenfeucht-Fraisse games of length
n; < w. Coherence allows us to “knit together”" these
strategies into one winning strategy.



Necessity of [}

Suppose A > w and D is a regular ultrafilter on A\. Then:
(VM(|[L(M)]] < X — M*/D is At — universal)) = OF .
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Necessity of [}

Suppose A > w and D is a regular filter on A\. Then:

(M, (LML LN < A & M = N =

Second player has a winning strategy in EFy+(M*/D, N*/D) =
DK"D-



GCH + A regular
I
A=A
I
(le No) — ()\_*—7 )\)

b*
D)\
U/ (ﬂ: fors.s.l. A and D gen. by < A\ sets)
I:lfin
A,D

Isomorphism Theorems for A
Embedding Theorems for A
Universality Theorems for A (and D u.f.)



Model (mms\rucliomsJ

Of — > | Omitting types Thm

/ [N l

of > | turo—0ta
Completeness Thm

J

> | Bmbedding Theorem
Universality Theorem,

when (D u.f)
Limit cardinal - -




Independence results

The following equivalent conditions are true for all regular A and
all regular filters D on A, if A = A<* (Chang), and for singular X if
V = L holds (Jensen). They are false consistently with GCH for
A =X, and some regular filter D on A\ (Litman-Shelah, assuming
the consistency of supercompact cardinals).

1. DfA’TD-
2. Embedding Theorem for D and A
3. Isomorphism Theorem for D and A
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The Missing Case: D an ultrafilter

The following equivalent conditions are false consistently for some
regular ultrafilter D on A if A singular strong limit of cofinality x
and there is a strongly compact cardinal between k and A:

1L O7p.
2. Isomorphism Theorem for D and A

3. Universality Theorem for D and A
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The Proof

How to find an u.f. D so that DK”D fails? Note: for maximal D,
007" is the weakest. Use strong compactness to get a particular
partition property, via a KT-complete ultrafilter on A™. This makes
sense, as DK’:D is a particularly strong form of regularity — the
opposite of completeness.



Our partition property

Definition: Let Pry(\, k) denote the following property of A and «
with Kk < A:
Suppose c : [\]?> — E, where E is a filter on k. Then
there is an i < k such that for all x < X\ there is an
increasing sequence (g, 3 < x, of ordinals < \ such that
for all 1 < B2 < x there is ( > (g, such that
S C({Cﬁu C}) N C({Cﬂza (})

(From the appendix of Shelah's Cardinal Arithmetic.)

33 /42



LG ()
¥

\

34 /42



Pra(\, k) holds for A weakly compact — because then there is
always a big homogeneous set.

Proposition Suppose x < X and E is a k™-complete uniform
ultrafilter on A™. Then Pry(AT, k).

Corollary Suppose k < 8 < X where # is strongly compact. Then
Pry(AT, k) holds.

(Proof of corollary: Let F be the A*-complete filter

{AC AT AT\ Al < AT}, By strong compactness of 6, there is a
O-complete uniform ultrafilter E on A" extending F. Now use the
proposition.)

(0 strongly compact means: for any set S, every f-complete filter
on S can be extended to a #-complete u.f. on S.)
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The Ultrafilter

Definition Suppose A\ = supgA¢, De is a filter on A¢ for § < &,
and E is a filter on k. We then define

ZED§:{AQ)\:{52AO)\§EDE}EE}.

2 D¢ is always a filter on A, and moreover an ultrafilter, if E and
each De are.
This is a general construction.

36
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Theorem

Let us assume
(a) Pra(AT, k).
(b) A =sup{A¢: & < K}

(c) Dg is a regular ultrafilter on A¢ such that A¢ \ U, ¢ A¢ € De.

(e) E is a regular ultrafilter on k.

Then D = Y g D¢ is a regular ultrafilter on A with -} .
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We do not know about the failure of 0", for regular A, e.g.
A = w», but note: 7

Remark: Let Fr be the canonical regular filter on wy. If DZ’LH
fails, then wy is inaccessible in L. (w1 can be replaced by any

regular cardinal.) (because then OJ,, fails.)
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Theorem (M. Viale)

Assume A is a singular cardinal of countable cofinality and PID
holds. Then there is a regular filter D on X\ generated by A many
sets such that Y, fails.

PID is Todorcevic's P-ldeal Dichotomy.

Corollary DK’:D is not equivalent to [1}. This is because [} is
consistent with PFA, which implies PID, and therefore the failure
of 0% 5; whereas on the other hand 007", implies [} for singular
strong limit \. ’
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Doubly regular filters

Definition

A filter D on ) is called doubly™ regular, if there are pairwise
disjoint sets u;, i < A, each of cardinality A, and regular filters D;
on u; such that for all A C X:

[for a clubof i < A(ANuj € D;)]= A€ D.

There always are doubly™ regular (ultra)filters on a regular
cardinal. Doubly™ regular filters are always regular.

Theorem
If D is a doubly™ regular filter on a regular cardinal, then Dg\" D
holds.
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Open questions

. For regular A we know that A<* = X\ implies DK’:D if D any
regular D (generated by at most A sets). What if A<* = )
does not hold, e.g. if 2¥ = \T?

. For singular A we know that if X is s.s.l, then “Di{”’Dfor any
regular D (generated by at most A sets)” is between [J) and

[J3. But what if X is not a strong limit, e.g. if A =R, < 2%,

. We know —[, for singular X implies 07 exists. Does the
failure of O0%" ;) imply 0%7? X singular, regular?

. We know ZFC + DZ”J. ZFC + DZ"hD for every regular
ultrafilter D on w1? Follows from CH. True if D is doubly™
regular.
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Thank You!

Q>
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