Peano Arithmetic and Square Principles

Juliette Kennedy Department of Mathematics University of Helsinki

October 2018, Helsinki

Joint work with Saharon Shelah, Jouko Väänänen

Arithmetic

The Peano Axioms, consisting of the axioms for a discretely ordered ring, plus induction, have many models.

In fact they have 2^{\aleph_0} non-isomorphic countable models.

Also, the nonstandard countable models are not recursive, the sense that if the domain of the model is identified with the natural numbers, then $+^{M}$ and x^{M} , regarded as ternary relations on the natural numbers, are not recursive.

3/42

Arithmetic

Theorem (Tennenbaum) Let M be a countable Diophantine correct model of PA^- . Then M can be embedded in $\mathcal{N} = \mathbb{N}^{\omega}/\mathcal{F}$, where \mathcal{F} is the Frechet filter on \mathbb{N} .¹

(Already follows from the \aleph_1 - saturation of \mathcal{N} , but Tennenbaum constructs the embedding directly.)

Tennenbaum saw this as an antidote to the above two theorems.

 $^{{}^{1}}PA^{-}$ is the theory *PA* without induction. *M* is Diophantine correct if whenever a polynomial equation has a solution in the model, it has a solution in the natural numbers.

Proof

Enumerate the elements of M as m_1, m_2, m_3, \ldots

Enumerate the polynomial equations $P(v_1, v_2, ...)$ satisfied by $\langle m_1, m_2, ... \rangle$ in M.

	m_1	m_2	•••	m _n	•••
P_1	$v_1(1)$	$v_2(1)$		$v_n(1)$	
$P_1 \wedge P_2$	$v_1(2)$	<i>v</i> ₂ (2)	•••	$v_n(2)$	
:	÷	÷		÷	
$\bigwedge_{i=1}^{n} P_i$	$v_1(n)$	$v_2(n)$	•••	$v_n(n)$	
÷	÷	÷		÷	

Mapping is $m_i \rightarrow [\langle v_i(n) \rangle]$

The non-Diophantine correct case

Theorem (Tennenbaum). Let M be a countable model of PA^- . Then M can be embedded in $\mathcal{A} = \mathbf{A}^{\omega}/\mathcal{F}$.

Cohesiveness

A set $X \subseteq \mathbb{N}$ is *r*-cohesive (cohesive), if for all recursive (r.e.) sets A of natural numbers, either $X \subseteq^* A$ or $X \subseteq^* -A$.

A function $f : \mathbb{N} \to \mathbb{N}$ is *r*-cohesive (cohesive) if its range is.

Which $f \in \mathcal{N}$ occur in a model of arithmetic?

Theorem. Let f be a function $\mathbb{N} \to \mathbb{N}$. Then f is contained in some substructure of \mathcal{N} satisfying $\Pi_2 - \text{Th}(\mathbb{N})$ iff f is *r*-cohesive. So the identity function cannot belong to a model of True Arithmetic inside \mathcal{N} , unlike the ultrafilter case.

Other Cardinalities: Regular filters

- A filter *D* on *I* is **regular** if $(\exists \{A_{\alpha} : \alpha < |I|\} \subseteq D)(\forall i \in I)(|\{\alpha < \lambda : i \in A_{\alpha}\}| < \omega)$
- Generalizes the cofinite filter (Frechet filter) over ω.
- The meaning: there is a "regular" family of |1| sets in the filter such that the intersection of any infinite subfamily is empty.
- On every cardinal there is a regular filter and therefore also a regular ultrafilter.
- If there is a non-regular ultrafilter on ω₁, then 0[#] exists (J. Ketonen)

Embedding Models of Cardinality \aleph_1

Theorem. (K, Shelah) Let M be a Diophantine correct model of PA^- of cardinality \aleph_1 . Let D be a regular filter on ω . Then M can be embedded in \mathbb{N}^{ω}/D .

Lemma: There exists a family of sets u_n^{α} , with $\alpha < \omega_1$, and $n \in \mathbb{N}$, such that for each n, α

(i)
$$|u_n^{\alpha}| < n+1$$

(ii) $\alpha \in u_n^{\alpha} \subseteq u_{n+1}^{\alpha}$
(iii) $\bigcup_n u_n^{\alpha} = \alpha + 1$
(iv) $\beta \in u_n^{\alpha} \Rightarrow u_n^{\beta} = u_n^{\alpha} \cap (\beta + 1)$

Other cardinalites

Not provable...

Definitions

- $M \lambda$ -universal: If $|N| < \lambda$ and $N \equiv M$, then N is elementary embeddable into M.
- A way to understand the theory of N (and M).

The Main Results

The following statements are independent of ZFC, assuming the consistency of large cardinals:

- If *M* is a structure in a vocabulary of size $\leq \lambda$ and *D* a regular ultrafilter on λ , then M^{λ}/D is λ^{++} -universal. (Keisler & Chang: Open Problem 18)
- Suppose *M* and *N* are structures in a vocabulary of size $\leq \lambda$ such that $|M|, |N| \leq \lambda$. If $M \equiv N$, *D* is a regular ultrafilter on λ , and $2^{\lambda} = \lambda^{+}$, then $M^{\lambda}/D \cong N^{\lambda}/D$. (Keisler & Chang: Open Problem 19)

A finitary square

 $\Box_{\lambda,D}^{fin}$: For each $i < \lambda$ there is a natural number n_i , and for each $i < \lambda$ and $\zeta < \lambda^+$ there exists a set u_i^{ζ} such that:

Universality Theorems

- Assume $\Box_{\lambda,D}^{fin}$. For all λ -regular ultrafilters D: $M^{\lambda}/_{D}$ is λ^{++} -universal.
- Best possible result assuming GCH, since then $|M^{\lambda}/_{D}| \leq \lambda^{+}$ for $|M| \leq \lambda^{+}$.

The transfer principle $\langle \aleph_1, \aleph_0 \rangle \rightarrow \langle \lambda^+, \lambda \rangle$

- Due to C.C.Chang
- Follows from GCH for λ regular (Chang two-cardinal theorem) and from V=L for other λ (Jensen).
- False for λ = ℵ₁ in the "Mitchell model", which uses an inaccessible cardinal, and for λ = ℵ_ω (with GCH) in the Litman-Shelah model, which uses a supercompact.

 $\langle \aleph_1, \aleph_0 \rangle \rightarrow \langle \lambda^+, \lambda \rangle$ implies $\Box_{\lambda, D}^{fin}$ for any regular filter D on λ .

19/42

The weak square principle $\Box_{\lambda}^{b^*}$

- Transfer principle is equivalent to the following weak square principle.
- □_λ^{b*} says: There are a λ⁺-like linear order L, increasing (in ζ) sets C_a^ζ, a ∈ L, ζ < cf(λ), equivalence relations (E^ζ : ζ < cf(λ)), and functions (f_{a,b}^ζ : ζ < λ, a ∈ L, b ∈ L) such that

4. If
$$\zeta < \xi < cf(\lambda)$$
, then E^{ξ} refines E^{ζ} .

If aE^ζb then f^ζ_{a,b} is an order-preserving map from C^ζ_a onto C^ζ_b.
 If ζ < ξ < cf(λ) and aE^ξb, then f^ζ_{a,b} ⊆ f^ξ_{a,b}.
 If f^ζ_{a,b}(a₁) = b₁, then f^ζ_{a₁,b₁} ⊆ f^ζ_{a,b}.
 a ∈ C^ζ_b ⇒ ¬(aE^ζb).

- A transfer of the case $\lambda = \aleph_1$ (where the principle is provable), written in the logic $L(Q_1)$, "there are uncountably many".
- $\Box_{\lambda}^{b^*}$ implies $\Box_{\lambda,D}^{fin}$ for any regular filter D on λ .
- Converse true for s.s.l. λ , and D generated by $\leq \lambda$ sets.

Isomorphism Theorem for λ

Assume $\Box_{\lambda,D}^{fin}$. Let *L* be a language of cardinality $\leq \lambda$ and for each $i < \lambda$ let M_i and N_i be two elementarily equivalent *L*-structures. If *D* is a regular filter on λ , then Player II has a winning strategy in the game EFG_{λ^+} on $\prod_i M_i/D$ and $\prod_i N_i/D$. (Previous result of Shelah: "... EFG_{α} for any $\alpha < \lambda^+$ ")

Corollary

Assuming
$$2^{\lambda} = \lambda^+$$
, $\Box_{\lambda,D}^{fin}$, D regular filter on λ , and $|A| \leq \lambda$, $|B| \leq \lambda$. Then $A \equiv B \Rightarrow A^{\lambda}/D \cong B^{\lambda}/D$.

<ロ> (四)、(四)、(日)、(日)、(日)

24 / 42

Proof

- Use sets u_i^{α} to define a winning strategy for the isomorphism player.
- Elementary equivalence means isomorphism player has a winning strategy for Ehrenfeucht-Fraisse games of length n_i < ω. Coherence allows us to "knit together" these strategies into one winning strategy.

Suppose $\lambda \ge \omega$ and D is a regular ultrafilter on λ . Then: $(\forall M(||L(M)|| \le \lambda \to M^{\lambda}/D \text{ is } \lambda^{++} - \text{universal})) \Rightarrow \Box_{\lambda,D}^{\text{fin}}.$

Necessity of $\Box_{\lambda,D}^{fin}$

Suppose $\lambda \geq \omega$ and D is a regular filter on λ . Then: $(\forall M, N(||L(M)||, ||L(N)|| \leq \lambda \& M \equiv N \rightarrow$ Second player has a winning strategy in $EF_{\lambda^+}(M^{\lambda}/D, N^{\lambda}/D) \Rightarrow \Box_{\lambda,D}^{fin}$.

$$\begin{array}{c} \mathsf{GCH} + \lambda \text{ regular} \\ \downarrow \\ \lambda = \lambda^{<\lambda} \\ \downarrow \\ (\aleph_1, \aleph_0) \xrightarrow{} (\lambda^+, \lambda) \\ \uparrow \\ \Box_{\lambda}^{b^*} \\ \downarrow \qquad (\uparrow \text{ for s.s.l. } \lambda \text{ and } D \text{ gen. by } \leq \lambda \text{ sets}) \\ \Box_{\lambda,D}^{fin} \\ \uparrow \\ Isomorphism \text{ Theorems for } \lambda \\ Embedding \text{ Theorems for } \lambda \\ Universality \text{ Theorems for } \lambda \text{ (and } D \text{ u.f.}) \end{array}$$

◆□ → < □ → < Ξ → < Ξ → < Ξ → Ξ → ○ Q ペ 28/42

Independence results

The following equivalent conditions are **true** for all regular λ and all regular filters D on λ , if $\lambda = \lambda^{<\lambda}$ (Chang), and for singular λ if V = L holds (Jensen). They are **false** consistently with *GCH* for $\lambda = \aleph_{\omega}$ and some regular filter D on λ (Litman-Shelah, assuming the consistency of supercompact cardinals).

- 1. $\Box_{\lambda,D}^{fin}$.
- 2. Embedding Theorem for D and λ
- 3. Isomorphism Theorem for D and λ

The Missing Case: D an ultrafilter

The following equivalent conditions are **false** consistently for some regular ultrafilter D on λ if λ singular strong limit of cofinality κ and there is a strongly compact cardinal between κ and λ :

31 / 42

- 1. $\Box_{\lambda,D}^{fin}$.
- 2. Isomorphism Theorem for D and λ
- 3. Universality Theorem for D and λ

The Proof

How to find an u.f. D so that $\Box_{\lambda,D}^{fin}$ fails? Note: for maximal D, $\Box_{\lambda,D}^{fin}$ is the weakest. Use strong compactness to get a particular partition property, via a κ^+ -complete ultrafilter on λ^+ . This makes sense, as $\Box_{\lambda,D}^{fin}$ is a particularly strong form of regularity – the opposite of completeness.

Our partition property

Definition: Let $Pr_2(\lambda, \kappa)$ denote the following property of λ and κ with $\kappa < \lambda$:

Suppose $c : [\lambda]^2 \to E$, where E is a filter on κ . Then there is an $i < \kappa$ such that for all $\chi < \lambda$ there is an increasing sequence ζ_{β} , $\beta < \chi$, of ordinals $< \lambda$ such that for all $\beta_1 < \beta_2 < \chi$ there is $\zeta > \zeta_{\beta_2}$ such that $i \in c(\{\zeta_{\beta_1}, \zeta\}) \cap c(\{\zeta_{\beta_2}, \zeta\})$

(From the appendix of Shelah's Cardinal Arithmetic.)

 $Pr_2(\lambda, \kappa)$ holds for λ weakly compact – because then there is always a big homogeneous set.

Proposition Suppose $\kappa < \lambda$ and *E* is a κ^+ -complete uniform ultrafilter on λ^+ . Then $Pr_2(\lambda^+, \kappa)$.

Corollary Suppose $\kappa < \theta \leq \lambda$ where θ is strongly compact. Then $Pr_2(\lambda^+, \kappa)$ holds.

(**Proof** of corollary: Let *F* be the λ^+ -complete filter

 $\{A \subseteq \lambda^+ : |\lambda^+ \setminus A| < \lambda^+\}$. By strong compactness of θ , there is a θ -complete uniform ultrafilter E on λ^+ extending F. Now use the **proposition**.)

(θ strongly compact means: for any set *S*, every θ -complete filter on *S* can be extended to a θ -complete u.f. on *S*.)

The Ultrafilter

Definition Suppose $\lambda = \sup_{\xi < \kappa} \lambda_{\xi}$, D_{ξ} is a filter on λ_{ξ} for $\xi < \kappa$, and *E* is a filter on κ . We then define

$$\Sigma_E D_{\xi} = \{ A \subseteq \lambda : \{ \xi : A \cap \lambda_{\xi} \in D_{\xi} \} \in E \}.$$

 $\Sigma_E D_{\xi}$ is always a filter on λ , and moreover an ultrafilter, if E and each D_{ξ} are. This is a general construction.

Theorem

Let us assume

(a) Pr₂(λ⁺, κ).
(b) λ = sup{λ_ξ : ξ < κ}.
(c) D_ξ is a regular ultrafilter on λ_ξ such that λ_ξ \ U_{ζ<ξ} λ_ζ ∈ D_ξ.
(e) E is a regular ultrafilter on κ.

Then $D = \Sigma_E D_{\xi}$ is a regular ultrafilter on λ with $\neg \Box_{\lambda,D}^{fin}$.

We do not know about the failure of $\Box_{\lambda,D}^{fin}$ for regular λ , e.g. $\lambda = \omega_2$, but note: **Remark:** Let Fr be the canonical regular filter on ω_1 . If $\Box_{\omega_1,Fr}^{fin}$

fails, then ω_2 is inaccessible in L. (ω_1 can be replaced by any regular cardinal.) (because then \Box_{ω_1} fails.)

Theorem (M. Viale)

Assume λ is a singular cardinal of countable cofinality and PID holds. Then there is a regular filter D on λ generated by λ many sets such that $\Box_{\lambda,D}^{fin}$ fails. PID is Todorcevic's P-Ideal Dichotomy. **Corollary** $\Box_{\lambda,D}^{fin}$ is not equivalent to \Box_{λ}^{*} . This is because \Box_{λ}^{*} is consistent with PFA, which implies PID, and therefore the failure of $\Box_{\lambda,D}^{fin}$; whereas on the other hand $\Box_{\lambda,D}^{fin}$ implies \Box_{λ}^{*} for singular strong limit λ .

Doubly regular filters

Definition

A filter D on λ is called *doubly*⁺ *regular*, if there are pairwise disjoint sets $u_i, i < \lambda$, each of cardinality λ , and regular filters D_i on u_i such that for all $A \subseteq \lambda$:

[for a club of
$$i < \lambda(A \cap u_i \in D_i)$$
] $\Rightarrow A \in D$.

There always are doubly⁺ regular (ultra)filters on a regular cardinal. Doubly⁺ regular filters are always regular.

Theorem

If D is a doubly⁺ regular filter on a regular cardinal, then $\Box_{\lambda,D}^{fin}$ holds.

Open questions

- For regular λ we know that λ^{<λ} = λ implies □^{fin}_{λ,D} if D any regular D (generated by at most λ sets). What if λ^{<λ} = λ does **not** hold, e.g. if 2^ω = λ⁺?
- For singular λ we know that if λ is s.s.l, then "□^{fin}_{λ,D} for any regular D (generated by at most λ sets)" is between □_λ and □^{*}_λ. But what if λ is **not** a strong limit, e.g. if λ = ℵ_ω < 2^ω.
- We know ¬□_λ for singular λ implies 0[#] exists. Does the failure of □^{fin}_{λ.D} imply 0[#]? λ singular, regular?
- 4. We know $ZFC \vdash \Box_{\omega,\mathcal{F}}^{fin}$. $ZFC \vdash \Box_{\omega_1,D}^{fin}$ for every regular ultrafilter D on ω_1 ? Follows from CH. True if D is doubly⁺ regular.

Thank You!