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Main Theorem

On a periodic box TdL of size L with d > 3, we consider

(i∂t −∆)u(t, x) + α|u|2u = 0,

Here α as the characteristic size of the nonlinearity. Recall that

uin(x) = L−d/2
∑
k

ûin(k)e2πik·x, ûin(k) =
√
nin(k)ηk(ω).

Here, k ranges over ZdL = L−1Zd, a lattice with mesh L−1 (which tends to
continuum as L→∞), nin is a non-negative Schwartz function on Rd, and ηk(ω)
are i.i.d. random variables such that

E ηk(ω) = 0, E|ηk(ω)|2 = 1.

We assume that the law of ηk(ω) is rotationally symmetric and has exponential
tails (e.g. Gaussian or random phase).

Recall that we will adopt the scaling law α = L−γ with γ ∈ (0, 1], and that for
γ = 1 we adopt genericity conditions on the aspect ratios of the large box. No
assumptions on the domain are needed for γ < 1.
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Theorem (Deng-H., 2021-2022)

Under the scaling law α = L−γ for any γ ∈ (0, 1], there holds:

1 Full derivation of the wave kinetic equation: There exists δ < 1 fixed, and an
absolute constant ν > 0 such that for L large enough it holds that:

E|û(Tkin · t, k)|2 = n(t, k) +O(L−ν)

uniformly in (t, k) for t ∈ [0, δ]. Here n(t, k) solves the wave kinetic equation
with data nin.

2 Propagation of Chaos: Suppose that k1, . . . , kr are distinct, then the random
variables û(t, kj) (1 6 j 6 r) retain their independence in the kinetic limit
L→∞.

3 Limiting law: The law of û(t, k) converges to the density function ρk(t, v) which
evolves according to the linear PDE

∂tρk =
σk(t)

4
∆ρk −

γk(t)

2
∇ · (vρk), v ∈ R2

where σk(t) > 0 and γk(t) are functions constructed from the solution n(t, k) to
the wave kinetic equation.

4 Propagation of Gaussianity: In particular, if ηk(ω) are Gaussian, then ρk(t, v) is
Gaussian with variance n(t, k) for any t > 0.
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Trees and couples
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Recall from yesterday: Trees and couples

The basic starting point in the proof is to perform a power series expansion of
the solution, and write it as

u = u(0) + u(1) + . . .+ u(N) + (remainder).

Fu(n)(δTkin · t, k) =
∑
|T |=n

aTk (t), 0 6 t 6 1.

where the sum is taken over trees T of order n (n branching nodes).

aTk (t) = ζT

(
δ

2Ld−γ

)n ∑
(kn)∈D

A (t, (Ωn)n∈N )
∏
l∈L

√
nin(kl)η

±
kl︸ ︷︷ ︸

ûin(kl)

where
I ζT is the product of n factors of ±i.
I The sum over kn ∈ ZdL is over decorations D of the tree: these are assignments of

kn ∈ ZdL for each n ∈ T such that kr = k and kn = kn1 − kn2 + kn3 whenever n is a
branching node with children n1, n2, n3.

I Ωn = |kn1 |2β − |kn2 |
2
β + |kn3 |2β − |kn|

2
β for every n ∈ N , the set of branching nodes.

I L is the set of leaves, and η±kl
= ηkl if l has + sign and ηkl if l has − sign.
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In computing, E|ak(t)|2 we are thus led to consider E aT1k (t)aT2k (t).

EaT1k (t)aT2k (t) =ζT1ζT2

(
δ

2Ld−γ

)n1+n2 ∑
P

∑
(kn)∈D

B (t, (Ωn)n∈N1∪N2)

×
+∏

l∈L1∪L2

nin(kl)

where
I P runs over all pairings of the leaves in L1 ∪L2 so that paired leaves have opposite

signs
I D is the union of decorations of the two trees T1 and T2 such that kl = kl′ if

(l, l′) ∈ P.
I B

(
t, (Ωn)n∈N1∪N2

)
:= A

(
t, (Ωn)n∈N1

)
A
(
t, (Ωn)n∈N2

)
.

I
∏+ runs over all leaves with sign +.

Couples: We now define the couple Q to be the triplet (T1, T2,P), i.e. it is a
couple of trees with their leaves paired. Also, define the order n of a couple to
be n = n1 + n2 where nj is the order of Tj . A decoration D as above is now
called a decoration of the couple.
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With this in hand, we can summarize

E|ak(t)|2 =
∑
Q

(
δ

2Ld−γ

)n
ζQ

∑
(kn)∈D

B
(
t, (Ωn)n∈NQ

) +∏
l∈LQ

nin(kl) + remainder

=
∑
Q

KQ(t, k) + remainder terms

I
∑
Q is over all couples Q of two trees of total order 6 N .

I ζQ = ζT1ζT2 , NQ = N1 ∪N2 and LQ := L1 ∪ L2.

Similar formulas hold for EaT1k (t)aT2k (s) for t 6= s lead to expressions KQ(t, s, k).

Key fact: there are Cn trees of order n, but there are Cnn! couples of order 2n.
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High level overview of difficulties
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Expected Difficulties

Enemy 1: There are O(n!) couples at order n, which presents a major
obstruction to the convergence of the power series expansion. This means that
blanket or uniform estimates on couples of order n (even sharpest ones) would
not be sufficient, and one has to go deeper into the couple analysis.

Enemy 2: With high probability, the iterate u(n+1) is only better than u(n) by a
factor of

√
δ (rather than a factor of L−ε). This is called probabilistic criticality.

Deng-Hani 2021-2022 Mathematical Wave Turbulence 10 / 38



Criticality

Tkin can be understood as the longest timescale for which the power series
expansion of the solution into Feynman diagrams is valid.

The problem is subcritical for timescales T � Tkin. In [Deng, H. 2019], we
treated the full subcritical regime where |t| 6 L−εTkin. There, each u(n+1) is
better than u(n) by a factor of L−ε. This gives that u(n) = O(L−εn), and as
such, we only needed to expand the solution up to N = O(ε−1) to prove the
approximation. The estimation of this long, but finite, expansion is highly
nontrivial, but it can be done by exploiting the subtle combinatorial structure of
the trees.

In our critical setting here, the best thing we can hope for u(N) is an estimate of
the form O(δN/2), and for this to be an error term for the approximation (i.e.
. L−ν), we need to have N > logL

log(δ−1)
, which diverges with L. This creates all

sorts of new difficulties.
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Factorial divergence

Recall that E|u(n)|2 is the sum of O(n!) couples. If all these couples have size
∼ δn (as many of them do!), we are doomed to failure.

Strategy: Classify the couples into groups, such that a) those saturating or
almost saturating the worst-case-scenario estimates are relatively few (say O(Cn)
instead of n!), while b) the remaining (factorially many) couples satisfy much
better estimates than the worst-case scenario, i.e. feature a gain of powers of L
which is sufficient to offset the factorial loss?

In other words, this strategy requires two things:
A) Identifying those couples with saturated or almost-saturated bounds; one would

first hope that these are exactly the couples that converge to the iterates of the
(WKE). It is crucial that there are only O(Cn) of them.

B) A rigidity theorem that says that: once we adequately remove the couples from
Step A), we are left with couples that feature a gain that is large enough to offset
the factorial number of such couples.

C) The above handles the estimates on the iterates u(n) and the convergence of the
partial sums of the series. Then, we have to prove that the remainder of the
expansion is indeed small.
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Regular Couples - Part I
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Remark on sums converging to integrals and revisiting scaling laws

In the following computations, we will need to approximate a sum over the
lattice ZdL by an integral over Rd. This takes the caricature form

L−2d
∑

(k1,k2)∈Z2d
L

W (k1, k2)χ(TΩ) ∼
ˆ
R2d

W (k1, k2)χ(TΩ) dk1dk2,

where Ω is a quadratic form like Ω(k1, k2) = 〈Ak1, k2〉, and χ is some cutoff
function (assume to be C∞0 ). Also, T ∼ Tkin ∼ L2γ .

For this inequality to hold, we need the equidistribution of the lattice points Z2d
L

in the region
{(k1, k2) ∈ R2d : |Ω(k1, k2)| . T−1}.

If T 6 L, then this is fairly robust and extends to much more general Ω
functions (i.e. other dispersion relations).

If T � L, this starts to be a deep question in analytic number theory, and it
depends on the diophantine nature of A. For example, if A = Id (square torus),
then we don’t expect this to be true if T > L2 (since Ω ∈ L−2Z).

This leads to the condition Tkin � L2 on the square torus, which is the range
0 6 γ < 1 on the scaling law. If the torus is generically irrational, then T can be
as large as Ld−, which gives the bigger range 0 6 γ < d/2−.
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The first iterate of (WKE)/ Physics Derivation

An explicit computation shows that E|a(1)
k (t)|2 is given by

2t2
(

δ

2Ld−γ

)2 ∑
k1−k2+k3=k

nin(k1)nin(k2)nin(k3)

(
sin(δπL2γtΩ)

δπL2γtΩ

)2

∼ δt

2

(
δL2γt

) ˆ
k1−k2+k3=k

nin(k1)nin(k2)nin(k3)

(
sin(δπL2γtΩ)

δπL2γtΩ

)2

︸ ︷︷ ︸
Ã(δL2γtΩ); Ã:=(sin(πx)/πx)2∈L1

dk1dk2dk3.

∼ δt
ˆ
k1−k2+k3=k

nin(k1)nin(k2)nin(k3)δR(Ω)dk1dk2dk3.

which is part of the first iterate of the wave kinetic equation. This comes from

We call those couples (1,1) minicouples.
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The rest of the first iterate comes from E a(0)
k a

(2)
k and E a(2)

k a
(0)
k , which are

represented by the pairing of the following trees with a trivial tree with one node.

We call such trees minitrees and the resulting couples (2,0) minicouples. Those
minicouples ((1,1) and (2,0)) converge to the first iterate of the kinetic equation.

As such, all the remaining iterates of the (WKE) should be obtained only from
couples constructed using the minicouples as building blocks.

Regular Couples are exactly such couples. They are built using the
minicouples above according to the following inductive recipe:
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Regular Couples

Inductive definition of regular couples: The trivial couple formed of two paired
nodes is regular. Given a regular couple Q of order n, then the regular couples
of order n+ 2 are obtained by applying one of the following two operations

I Operation A: Replace two paired leaves in Q by a (1, 1) minicouple.

I Operation B: Replace any node in Q by a minitree.

As such, all regular couples have an even order. They satisfy the estimate
KQ(t) ∼ δn/2 and their number is Cn. Despite their complexity, they can be
computed somewhat “explicitly”.

Remark: Not all regular couples converge to iterates of the (WKE). Only a
subfamily thereof does, namely the dominant couples. The non-dominant
regular couples either cancel with each other or vanish in the limit.
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The enemies and the strategy
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The Enemies

We just saw that E|a(1)(t)|2 ∼ δt. By Gaussian hypercontractivity, we obtain
that |a(1)(t)| ∼

√
δ with overwhelming probability.

� E1) Criticality. To derive (WKE) at the kinetic timescale, we need to reach
t = O(1), so this means that a(1)(t) ∼

√
δa(0)(t), and more generally, we only

have a(n)(t) <
√
δa(n−1)(t) at best. So at best a(n)(t) . (

√
δ)n.

In fact, this estimate is sharp since we saw that E|a(n)(t)|2 =
∑
QKQ is a sum

over couples of order 2n, and KQ ∼ δn when Q is a regular couple of order 2n.

This means that we can only stop the expansion after N ∼ logL
log δ

which diverges
with L.

� E2) Factorial Divergence. The number of couples of order 2n is Cnn!, so if the
best we can show is that their size is at most δn (the size of their largest
elements), we are doomed.
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� E3) Divergent Non-regular couples Added to the above two expected difficulties
is the existence of non-regular couples of order n whose estimates are saturated
(∼ δn/2) or even worse (when γ < 1). We already encountered one such family,
the irregular chains, in our earlier work [DH 2019].
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The strategy

1 For most couples of order 2n, we have that KQ � δn, namely δnL−m with m
large enough to offset the factorial losses somehow.

2 In the worst possible scenario, we have that KQ ∼ δn but this happens only for
Cn couples rather than Cnn! of them.

3 Any non-regular couples with worse bounds (e.g. irregular chains) have very
specific structures that allow to uncover hidden cancellations between them.

• Points 1) and 2) are given by the Rigidity theorem, which identifies precisely the
families of couples with (almost-)saturated bounds, and the gain in the remaining
ones. Point 3) is based on a case by case study of each of those families of large
couple identified in the Rigidity Theorem.
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The Rigidity Theorem
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Classification of Couples I: Couples with saturated bounds

The rigidity theorem identifies the of couples that have almost saturated
estimates:

One such family are the regular couples, which are the leading ones that can be
matched (order by order) to the iterates of the wave kinetic equation (up to
some couples whose contribution cancel out in the limit).

Another family, which are the irregular chains, also lead to saturated estimates
when γ = 1 and even worse estimates when γ < 1. This is the one we saw above,
and was identified in [DH’19]. Fortunately, they exhibit an elaborate
cancellation of couples.

These are the only divergent families that appear for γ > 2/3. For γ < 2/3
several new families of divergent couples arise. We will discuss them later.

The good news is that there only O(Cn) such couples, and each such family has
a precise structure that allows to analyze it separately.
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Classification of couples II

If one performs a type of surgery on an arbitrary couple to remove all its regular
sub-couples, all its irregular chains, and all other structures that lead to bad
estimates on the previous slide, we are left with a reduced structure of size r.
This r measures how far the original couple is from saturating the estimates.

Key points of the rigidity theorem:
1 The estimate on this reduced couple features a gain L−cr!
2 The number of possibilities of such structures is CNr!, so this gain of L−cr is

enough to offset the factorial divergence since

L−crCNr!� L−ν if r 6 N ∼ logL.

The proof of this rigidity theorem involves recasting the problem of counting
couples into counting another family of combinatorial structures that we call
molecules. This is followed by running something akin to a “computer program”
to reduce and count these molecules effectively.
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We shall transform the couple into graphs we call molecules, which are more
flexible than couples for the purpose of estimates. Basically, we choose any
parent node and its three children, and call this 4−node subset an atom; then
draw bonds between atoms with common vectors to form a molecule.

We can then apply a carefully designed scanning algorithm to the molecule
(which will remain a molecule throughout the process) and prove the counting
estimate with the desired gain.
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Cancellations in the Feynman Series
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Cancellation I

There are couples, such as the irregular chains we saw before, that have intrinsic
divergence; however, there are cancellation structures between different couples:

Figure: Irregular chains and cancellation. Here kj are wave numbers, and the remaining
parts of the couple, denoted by (A)–(D), are the same. We call those two couples twists.
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Cancellation II

When γ ≈ 1 the irregular chains are the only divergent structures.

When γ < 2/3, much more complicated divergence structures arise.

Miraculously, they still come in pairs of cancellation! However, this cancellation
procedure becomes considerably more elaborate.

Figure: New divergent structures and their twists. Miracle: Those couples cancel each other!
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Molecules

We do not yet have a physical interpretation of these.

However the notion of molecules plays a big role in both identifying those
divergent structures and finding the cancellation.

Key: Canceling couples correspond to exactly the same molecule.

Figure: Molecules coming from canceling couples. Left: irregular chains. Right: new
divergent structures.
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Couples, molecules, and algorithm

Figure: An illustration of the main ideas and steps leading to the proof and discovery of
diverging couples and cancellation. The estimation/counting algorithm plays the key role
here.
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Regular couples - Part II

Why are they leading?

Reduction to prime couples.
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Basic couple estimates

In caricature, the expression KQ is of the form∑
(kn)∈D

B(t,Ωn)1|kn|61 ∼
∑

mn,n∈NQ

B(t,mn)
∑

(kn)∈D
Ωn∼mn

1|kn|61

So, if
∑
mn
|B(t,mn)| is bounded, we are reduced to obtaining a uniform bound

on the number of decorations of the couple such that Ωn = mn +O(L−2). Here
assume that γ = 1 for definiteness.

For the (2,0) minicouple below, this is the number of (k1, a, b) ∈
(
ZdL ∩B(0, 1)

)3
such that: k1 − a+ b = k, |k1|2 − |a|2 + |b|2 − |k|2 = m+O(L−2)

This number is ∼ L2d−2 (3-vector counting).
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Order-4 regular couple

Here the size of KQ is bounded by the number of (k1, a, b, c, d, e) such that

k1 − a+ b = k, |k1|2 − |a|2 + |b|2 − |k|2 = m1 +O(L−2)

c− d+ e = k, |c|2 − |d|2 + |e|2 − |k|2 = m2 +O(L−2)

So the four sets of quadratic relations imposed at each branching node collapse to
just two decoupled independent relations. Each is a 3-vector counting problem, so the
number of choices is L2d−2 × L2d−2 by applying the 3-vector counting estimate twice.
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Order-4 non-regular couple

Here the counting problem for (a, b, c, d, e, k1, k2) is given by

k1 − c+ d = k, |k1|2 − |c|2 + |d|2 − |k|2 = m1 +O(L−2)

a− b+ k2 = k1, |a|2 − |b|2 + |k2|2 − |k1|2 = m2 +O(L−2)

e− b+ a = k, |e|2 − |b|2 + |a|2 − |k|2 = m3 +O(L−2)

Counting (e, b, a) first gives L2d−2 choices, and leaves us with counting (k1, k2, c, d):

k1 − c+ d = k, |k1|2 − |c|2 + |d|2 − |k|2 = m1 +O(L−2)

k2 − k1 = b− a, |a|2 − |b|2 + |k2|2 − |k1|2 = m2 +O(L−2)

which features an improved bound of L2d−2− 1
4 over the “trivial” bound L2d−2.
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Conclusion for regular couples

The very first step of the proof is to analyze the expressions KQ(t, s, k) when Q
is a regular couple. With some effort, this can be computed “almost explicitly”
after some effort. It satisfies the estimate∥∥∥K̂Q(λ1, λ2, k)

∥∥∥
L1
λ1,λ2

6 (Cδ)
n
2 〈k〉−40d.

This means that effectively, one can think of KQ(t, s, k) as a linear combination
of eiλ1teiλ2t〈k〉−40d. So they basically behave like nin(k).

This allows to collapse an arbitrary couple Q into a smaller one Qsk (skeleton
couple) which contains no regular subcouples inside it. We call such couples
prime.

As such, the contribution of all non-regular couples can be written as a sum over
prime couples Qsk. The aim would be to show that this contribution is an error
term. Yu Deng will continue from here tomorrow.
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A remark on higher order statistics
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The key point here is to derive the asymptotics of the higher moments like

E
(
a±k1 . . . a

±
kr

)
.

This leads to structures more general than couples, namely gardens, which are r
trees whose leaves are paired to each other in sets of size two. In the
non-Gaussian setting, one also has to introduce overgardens which are r trees
whose leaves are paired to each other in sets of size possibly larger than two
(over-pairing).

The analysis of gardens and overgardens follows a similar methodology as for
couples, but features many interesting and new features. The asymptotics of the
special moments E

(
|ak1 |2 . . . |akr |2

)
are shown to be given by solutions of the

so-called wave kinetic heierarchy with factorized initial data.

The distinction between Gaussian and non-Gaussian initial distribution starts to
exhibit itself when higher powers of |akj |

2 are present, at which point
overgardens start to have leading order contributions. We obtain the limiting
dynamics of such moments, like E|ak|2p, which seem to be new in the literature.

Once the limit dynamics of all the higher moments is derived, one can deduce
the equation for the PDF thanks to the uniqueness of the moment problem in
our setting.
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Thanks for your attention!

Deng-Hani 2021-2022 Mathematical Wave Turbulence 38 / 38


