
Jari Oksanen 19 Aug 2022

Recent Changes in HMSC
https://github.com/hmsc-r/HMSC/

https://github.com/hmsc-r/HMSC/

Hmsc 3.0-13
CRAN Release Aug 11, 2022

• Recover from bad updaters

• Add more chains to old models

• More aggressive parallelization in pcomputePredictedValues and predict

• Improved support for spatial models defined via distances

• Read complete news with R command news(package=“Hmsc”)

• Always when we have courses, students find hidden bugs: next release
expected after this course

Three Kind of Errors

• Evil Errors: Function runs smoothly and gives results – but the results are
wrong!

• Good Errors: We inspect the data before users do something wrong and warn
about their mistakes

• We try to be friendly and informative (but may fail in our attempt)

• Nasty Errors: That come from the abyss of R and are incomprehensible

• We try to catch these and make to “Good Errors” – to serve and protect
people

An Example of Nasty Error
Bad Updater

• Nasty error: absolutely cryptic error messages and sampling is trashed

• Mathematically should not happen, but can occur in numerical computation

• Not deterministic but can occur after days or weeks of successful calculation

• From latest CRAN release, these errors are caught and handled – almost

• If an updater fails, keep the old values of those parameters and try again on the next
iteration  

Error in chol.default(iV) :
 the leading minor of order 3 is not positive definite

What to do after updater failures?

• If any failures, the numbers are printed for each updater and chain

• If there are not many failures, it is safe to use the result

• What is many after trying Chains × (Samples × Thin + Transient) times?

• If there are failures only in some chains, these can be removed 
 
model$postList[[2]] <- NULL

• If all fails, reconsider model specification

• Recently found out that updateGammaEta propagates errors elsewhere

• Using sampleHmsc(…, updater = list(GammaEta = FALSE)) may help

How to report an error

• Errors may still appear: Otso came across one case on Sunday morning

• Report in https://github.com/hmsc-r/HMSC/issues

• Crucial to copy the exact error message in your message

• After error: traceback(), copy and paste the full output in your message

• Unfortunately traceback is useless in parallel processing

• Reproducible examples are valuable: it is difficult to fix things if you do not know
what is broken

• use set.seed() to reproduce random sequences

https://github.com/hmsc-r/HMSC/issues

Need More Samples? Add Chains!

• New support function c() combines models by adding their chains 
m1 <- sampleMcmc(…, nChains=2)  
m2 <- sampleMcmc(…, nChains=2)  
m4 <- c(m1, m2) # now 4 chains

• Tries to check that the models are similar and warns if detects differences –
but may still combine

• Do not start different models from the same random seed: these duplicate
data, but do not add new samples

pcomputePredictedValues

• Cross validation runs sampleMcmc for each fold, and this can be very slow

• Old computePredictedValues can run each chain in parallel, but folds are
run serially

• New pcomputePredictedValues can run nChains × nFolds parallel chains

• Does not preschedule, but starts new chain when any CPU becomes free

• We plan to ditch old function, but now both are provided

• Species cross-validation is very slow with mcmcStep: but predict can be
parallelized over posterior samples

A Word about Speed

• Hmsc spends most of its time in matrix algebra, especially in matrix inversions

• Most of time Hmsc is in function chol() doing Cholesky decomposition

• R does matrix algebra in BLAS (Basic Linear Algebra Subprograms) and ships with
an internal “Reference BLAS” – which is not built for speed

• BLAS can be optimized for your computer architecture to use parallel processing
and vectorized instructions and these can give enormous speed-up

• OpenBLAS, Intel MKL (Math Kernel Library), Apple Accelerate Framework

• How to take faster BLAS in use depends on your system and hardware: study
documentation in CRAN

Spatial Models & Distances

• Spatial models work via distances, but still spatial coordinates are often needed

• Support for distance matrices is improved, and in most cases models are identical
with spatial coordinates and their distances as an input

• If you find differences or glitches, please report – some cases can be fixed (not all)

• Gaussian Predictive Process can be run only with spatial coordinates

• constructGradient allows now user-set or infinite coordinates: infinite means
that ignore spatial location

• Hmsc does work with Infinite distances (or Infinite spatial coordinates – almost):
Spatial dependence over ∞ distance is 0

Little-known features: getCall & update

• R function getCall finds the call of Hmsc model or random levels:

• These can be updated:

> getCall(m)
Hmsc(Y = TD$Y, XFormula = ~x1 + x2, XData = TD$X, studyDesign = TD$studyDesign,
 ranLevels = list(sample = TD$rL2, plot = TD$rL1), TrFormula = ~T1 +
 T2, TrData = TD$Tr, phyloTree = TD$phy, distr = c("probit"))
> getCall(m$ranLevels[[1]])
HmscRandomLevel(units = TD$studyDesign$sample)

> m <- update(m, XFormula = ~ x1, distr = "normal")
> getCall(m)
Hmsc(Y = TD$Y, XFormula = ~x1, XData = TD$X, studyDesign = TD$studyDesign,
 ranLevels = list(sample = TD$rL2, plot = TD$rL1), TrFormula = ~T1 +
 T2, TrData = TD$Tr, phyloTree = TD$phy, distr = "normal")

