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• Fundamentals of Bayesian statistics:
• Likelihood, prior and posterior
• Markov Chain Monte Carlo (MCMC) sampling

• Gibbs sampling
• Conditional conjugacy

• Block updaters

• MCMC sampling options in HMSC

• Customizable priors in HMSC

• Code demonstration
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Likelihood

A statistical model is a mathematical model that embodies a set of statistical 
assumptions concerning the generation of sample data. 

Ultimately,	statistical	model	characterizes	the	probability	of	different	
data	being	generated	from	it:	𝑝 𝑌! , 𝑝 𝑌" , …, so that ∑# 𝑝 𝑌# = 1

Statistical models often can be encompassed into families of same 
mathematical structure, which are parametrized by a set of model 
parameters 𝑝 𝑌 = 𝑝 𝑌|𝜃

The likelihood (or likelihood function) describes the joint probability of the 
observed data (evidence) as a function of the parameters of the chosen 
statistical model 𝑓 𝜃 = 𝑝 𝑌|𝜃



Hierarchical model of species communities
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Generalized modeling approach for 
various types of data

Fixed effects part modeled with linear 
regression. 

Random effects are modeled via latent 
factor models

Gaussian process priors for 
spatial/temporal latent factors
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Latent variable is a sum of fixed effects 
part and random effects at each level of 
sampling design

Linear regression coefficients further 
modeled w.r.t. available species trait 
information and phylogenic relationships
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Hierarchical model of species communities

Likelihood of HMSC
𝑓 𝜽 = 𝑝 𝑌|𝜽

𝜽 ≝ Γ, 𝜌, 𝜷, 𝑉, Σ, 𝐻, 𝜶, Λ,Φ, 𝜹



Priors and posteriors

Prior distribution of model parameters 𝑝2 𝜃 attempts to express 
the modeler’s beliefs about their plausibility for the given 
modelling task.

Posterior distribution expresses the plausibility of model 
parameters 𝜃 after observing particular data 𝑌, assuming that it 
was generated under a statistical model 𝑝 𝑌|𝜃 . It is formally 
expressed via Bayes rule as being proportional to the product of 
likelihood and prior distribution:

𝑝 𝜃|𝑌 =
𝑝 𝑌|𝜃 𝑝I 𝜃

∫J 𝑝 𝑌|𝜃 𝑝I 𝜃 𝑑𝜃

In Bayesian paradigm model fitting means finding the posterior 
distribution or its approximation, which can be represented in 
some expressible manner.

Typically, this means more than obtaining just a single point 
estimate (e.g. as in maximum likelihood).

Prior: 𝑝2 𝜃 = 𝑁 𝜃|0,1#

Likelihood: 𝑝 𝑌|𝜃 = 𝑁 𝑌|𝜃, 0.5#

Observation: 𝑌 = 2
Posterior: ???

Maximum likelihood 
estimate



Markov Chain Monte Carlo (MCMC)
How-to conduct the analytical integration in the denominator of 
𝑝 𝜃|𝑌 = , 3|5 ,& 5

∫' , 3|5 ,& 5 75
is known only for very few (and typically 

simple) problems.

E.g. 𝑝 𝜃|𝑌 = 𝑁 𝜃|𝜇, 𝜎# , where 𝜇 = 𝜎# #
2.9(

, 𝜎:# = 0.5:# + 1:#

Characterize 𝑝 𝜃|𝑌 by providing 𝑁 samples from this distribution. 
Unfortunately, direct Monte Carlo sampling is equally complex as 
denominator integration.

MCMC can be used to resolve this issue. Sequentially acquiring 
draws based on 𝑝 𝑌|𝜃 𝑝2 𝜃 only into chains of MCMC samples. 

Asymptotic guarantees. Autocorrelation – thinning. Starting 
position – transient.

Many different algorithms exist, constant field of development in 
Bayesian statistics. Hmsc uses Gibbs sampling.

Good visualization of various MCMC algorithms: 
https://chi-feng.github.io/mcmc-demo/app.html

Prior: 𝑝2 𝜃 = 𝑁 𝜃|0,1#

Likelihood: 𝑝 𝑌|𝜃 = 𝑁 𝑌|𝜃, 0.5#

Observation: 𝑌 = 2
Posterior: ???

Maximum likelihood 
estimate

https://chi-feng.github.io/mcmc-demo/app.html


Gibbs sampling
Basic concept – avoid solving a complex problem directly, but repeatedly solve much simpler problem.

It is done by sampling only a single scalar parameter at once 𝜽 = 𝜃(, 𝜃#, … , 𝜃;

∀𝑖 ∈ 1…𝑚, 𝑝 𝜃!|𝜽:! , 𝑌 =
𝑝 𝑌|𝜃! , 𝜽:! 𝑝2 𝜃! , 𝜽:!

∫5) 𝑝 𝑌|𝜃! , 𝜽:! 𝑝2 𝜃! , 𝜽:! 𝑑𝜃!

Unlike in the original 𝑝 𝜃|𝑌 = , 3|5 ,& 5
∫' , 3|5 ,& 5 75

, the univariate conditional distributions 𝑝 𝜃!|𝜽:! , 𝑌 feature only a 1D 

integration, and it can be computed much easier.

Sampling from conditional distributions is called conditional update.

Cycling conditional updates through all parameters sequentially yields valid MCMC.

Many popular software available e.g. BUGS, JAGS. 

If 𝑝 𝜃!|𝜽:! , 𝑌 can be derived analytically within some known family, there is no need for numerical integration.

One important special case is when 𝑝 𝜃!|𝜽:! , 𝑌 is of the same family of distributions as 𝑝2 𝜃! , 𝜽:! , which is denoted 
that conditional likelihood 𝑝 𝑌|𝜃! , 𝜽:! is conjugate to the prior 𝑝2 𝜃! , 𝜽:! .

Sometimes conditional sampling can be done jointly 𝑝 𝜃! , 𝜃"|𝜽:!," , 𝑌 . This is called block-Gibbs update, reduces MCMC 
autocorrelation, but 𝑝 𝜃! , 𝜃"|𝜽:!," , 𝑌 is generally more challenging than 𝑝 𝜃!|𝜽:! , 𝑌 and 𝑝 𝜃"|𝜽:" , 𝑌 .



Gibbs sampling example
Toy statistical model with 𝜽 = 𝑥(, 𝑥#, 𝜎 :

𝑦 = 𝑥( + 𝑥# + 𝜀

𝑥(~𝑁 0,1# , 𝑥#~𝑁 0,1# , 𝜀~𝑁 0, 𝜎#

Observed data 𝑦 = 1

Conditional updaters for 𝑥( and 𝑥# have closed form:

𝑝 𝑥(|𝑥#, 𝜎# ∝ 𝑁 𝑦|𝑥( + 𝑥#, 𝜎# 𝑁 𝑥(|0,1
= 𝑁 𝑥(|𝜇 𝑥#, 𝜎 , 𝜔 𝑥#, 𝜎

𝜇 𝑥#, 𝜎 = 𝜎:# + 1 :(𝜎:# 𝑦 − 𝑥# , 𝜔 𝑥#, 𝜎 = 𝜎:# + 1 :(

𝑝 𝑥#|𝑥(, 𝜎# = 𝑁 𝑥#|𝜇 𝑥(, 𝜎 , 𝜔 𝑥(, 𝜎

If 𝜎 is small, then magnitude of conditional updaters is small 
compared to the size of whole posterior. This causes autocorrelation 
in MCMC.

Autocorrelation is addressed by increasing number of iterations and 
thinning.

Block updater 𝑝 𝑥(, 𝑥#|𝜎# completely removes the autocorrelation.
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Gibbs sampling in HMSC
Get some random initialization

1. Update parameter 𝛽 with others 
being fixed

2. Update parameter Γ with others 
being fixed

3. ….

4. ….

5. Update parameter Λ with others 
being fixed

6. Update parameter 𝐻 with others 
being fixed

7. Move to step 1
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Advanced Gibbs sampling in HMSC
For some of the HMSC components’ 
combinations, it is possible to derive their 
joint conditional updates.

These enable to reduce autocorrelation in 
MCMC and thus run for shorter chains.

Derivation is much more complex than for 
unicomponental updaters.

Many of them are numerically more
heavy than corresponding 
unicomponental updaters.

The trade-off between autocorrelation 
improvement and increased numerical 
cost is problem-specific.

Many of these are optional in Hmsc
sampler, but generally recommended to 
stick with default set-up. 



Options of Gibbs sampling in HMSC

• Number of samples
• Length of transient phase
• Thinning between recorded samples
• Start values for MCMC chains
• Number of chains
• How many processes to use
• What type of R parallelization
• Provide internal Hmsc preprocessed objects
• Which updaters not to use
• Sample from the prior only
• Try to align the order of latent loadings in the posterior



Customizable priors in Hmsc
All model parameters that are sources in the DAG are given priors, 
which have hyperparameters.

Priors defined for whole model:  

• Tolerance to stochastic variation in species niches 𝑉~𝐼𝑊 𝑓!, 𝑉!
• Phylogenic strength 𝜌~grid prior on 0,1

• Contribution of traits to species niches  𝜸~𝑁 𝝁" , Σ"
• Residual variation 𝜎#~𝐺𝑎$% 𝑎& , 𝑏&

Priors defined for each random level: 

• Spatial covariance lengthscale 𝛼~grid prior on 0, 𝛼' , 𝛼'-max 
spatial distance

• Local shrinkage of latent loadings 𝜙(#~𝐺𝑎
)
*
, )
*

• Progressive shrinkage of latent loadings 𝛿%~ 𝐺𝑎 𝑎%, 𝑏% , 𝛿(~
𝐺𝑎 𝑎*, 𝑏*
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