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Motivation

» Joint species distribution models have gained considerable popularity
in recent years in many fields of applied science.

» A prime example is modeling multivariate abundance data in
community ecology, where model-based approaches allow us to
specify a joint statistical model for abundance across many taxa®.

» One way to formalize the models is to use generalized linear latent
variable modeling (GLLVM) framework.

» One of the main features of GLLVMs is their capacity to handle a
variety of responses types, such as (overdispersed) counts, binomial
and (semi-)continuous responses, and proportions data.

» Thanks to recent advances in computational methods, we have
nowadays lots of computationally scalable tools for fast and efficient
fitting of GLLVMs.

IWarton et al. (2015). So many variables: Joint modeling in community ecology.
Trends in Ecology & Evolution, 30, 766—779



Multivariate generalized linear models (GLM)

» The models we use are extensions of multivariate generalized linear
models that can be used to model impacts of g environmental

(site-specific) covariates on abundances, y;, i =1,...,n,
j=1...,m
» Let g(-) be a known link function and x; = (xi1, ..., Xig)" be a vector

of environmental covariates. In multivariate GLM (stacked SDM)
the mean response, denoted by uj; = E[y;i|x/] is assumed to be

g(uij) = Boj +xiB;,

where fo; and 3; are (fixed) species-specific intercept and
environmental effect corresponding to jth species.

» See R package mvabund? for tools for model fitting, inference,
visualization, etc.

2Wang et al. (2012). mvabund — an R package for model-based analysis of
multivariate abundance data. MEE, 3, 471-474.



Generalized linear mixed models (GLMM)

» A joint model for abundance requires the inclusion of random effects
to capture the correlation in abundance across taxa. One way to
incorporate correlation is to introduce it directly via a multivariate
random effect applied to each sample.

» In GLMM the mean response pj; = E[y;|uj, x;] is assumed to be
g(wi) = ai + Boj +xiB; + uj,

where «; is (optional) sample-specific intercept (fixed or random),
foj and B; are as before, and u; = (Ui, .. ., tim) ~ Npn(0, X).

» Note that when the variance-covariance matrix X controlling the
correlation between taxa is assumed to be unstructured, the model
fitting is problematic when n < m.



Generalized linear latent variable models (GLLVM)

» A flexible way to incorporate correlation is to regress the mean
response (i against a vector of p < m unknown latent variables,
u; = (ujn, ..., ujp), along with covariates.

» This forms a multivariate generalized linear latent variable model®
g(uij) = ai + Boj + xiB; + uiA;,

where u; ~ N,(0,7) and Aj = (Aj1,...,Ajp)’ denotes a set of
species-specific loadings which quantify the relationship between the
mean response and the latent variables.

3Moustaki and Knott (2000). Generalized latent trait models. Psychometrika, 65,
391-411.



Fourth-corner GLLVM

» If r trait covariates t; = (tj1,..., ;)" are also recorded, we can use
them to explain interspecific variation in environmental response.

» This leads to an extension of the so-called fourth-corner model*.
» The fourth-corner GLLVM then has a mean model
g(pi) = ai + Boj +xiBe + (t; @ x;)'B) + uiA;,

where 3, is a vector of main effects for environmental covariates,
and 3, is the fourth-corner coefficient.

4Jamil and ter Braak (2013). Generalized linear mixed models can detect unimodal
species-environment relationships. PeerJ, 1, €95.



Generalized linear latent variable models (GLLVM)

» The term u/A; accounts for any residual correlation not accounted
for by the covariates. Latent variables also represent missing
predictors.

» On the linear predictor scale, the m x m covariance matrix is
¥ = AN, that is, GLLVMs are reduced-rank versions of GLMMs
with general covariance structure.

» The number of latent variables (p) controls model complexity. One
can use model selection tools (AIC, BIC, etc.) to guide the choice.

» If p =2, latent variables and loadings can be use to build
model-based ordination plots and biplots®.

5Hui et al. (2015). Model-based approaches to unconstrained ordination. MEE, 6,
399-411.



Model fitting by maximum likelihood

» Collect now all model parameters and latent variables into vectors W
and u = (u},...,u,), respectively.

»¥n

> We estimate the model parameters using the maximum likelihood
method, that is, we find such W which maximizes the marginal
likelihood

log L(W; u) = log (/ f(y]u, ll-')f(u)du) .



Benefits of model-based approaches and the use of ML

» One can explicitly account for key statistical properties of the data
(e.g. mean-variance relationship) by choosing proper response
distribution,

» use residual analysis tools for model checking,

» use model selection tools (AIC, BIC, etc.) to choose the most
appropriate model for data at hand,

» use the standard tools developed for statistical inference
(large-sample theory for ML estimates),

» enables fast model-fitting.



Laplace approximation (LA)

» As p-dimensional integral in log L cannot be solved analytically,
numerical approximation methods are needed.

» Computationally most feasible maximum likelihood approaches for
fitting GLLVMs are those that approximate the marginal likelihood
in a closed form.

» A classical approach is the Laplace approximation (LA) method.®

> LA is easy to implement and it can handle any response distribution
and link function combination.

» Unfortunately the method performs poorly with highly discrete
responses (binary, ordinal, etc.).

SNiku et al. (2017a), Generalized linear latent variable models for multivariate
count and biomass data in ecology, JABES, 22, 498-522.



Variational approximation (VA)

» One recent, attractive choice in likelihood-based estimation is the
variational approximation method”.

» The basic idea of VA is to develop so-called variational lower bound
to marginal log-likelihood function.

» Plug-in so-called variational distributions g(-) of the latent variables
to log L and apply Jensen’s inequality to construct a lower bound,

log L(W) = Iog/ { flylu. \:()llj)(u)q(u) } du

> / o(u) Iog{f(yu’w)f(u)}du 2 fup(Wlq).

q(u)

"Ormerod and Wand (2012). Explaining variational approximations. JCGS, 21,
2-17



Variational approximation (VA)

» To obtain a tractable form for fy5(W|q), we choose a parametric
form for q. Specifically, we employ a mean-field approximation and

set q(ul€) = T1; qi(wi|€;), where g;(u;|€;) = Ny(a;, A;) yielding
tya(W,€lq) = /q(u|£) log f(y|u, W) du
1 n
+5 ; {log det(A;) — ala; — tr(A)}.

» VA has proven to be accurate and computationally efficient in cases
where ¢y (W, €|q) can be attained in a closed form®.

» Sadly this is not always the case. A prime example is the case of
Bernoulli distributed responses with logit link function.

8Hui et al. (2017). Variational approximations for generalized linear latent variable
models. JCGS, 26, 35-43



Extended variational approximation (EVA)

» Motivated by the method of Laplace approximation, we approximate
log f(y|u, W) by its second-order Taylor expansion w.r.t. the latent
variables u, centered around a, that is,°

log (y|u, W) ~ log f(yla, W) + (u — a)’ Vylog f(y|u, W)

u=a
1
+ E(u —a) V2log f(y|u, \U)‘u:a (u—a).
» This leads to a closed-form approximation of the variational lower

bound for GLLVMs with any type of response and link function
combination, as now

/ a(u) log F(y|u, W)du

1
~ log f(yla, W) + Etr(VfI log f(y|u, \Il)’ A).

u=a

9Korhonen et al. (2022). Fast and universal estimation of latent variable models
using extended variational approximations. arXiv:2107.02627.



Estimation and inference

>

>

GLLVM model fitting is performed by maximizing £gyva (¥, &|q)
simultaneously over W and &.

The estimated variational distributions §;(u;) = N,(a;, A;) provide
an approximation of f(uly, W), that is, &; provide appropriate
approximations to best predictors of u; (BP), and A; can be used to
measure their variability.

For the analysis of model parameters, the approximate asymptotic
standard errors may be obtained using

N 4 Plryva(W, )
(Wg)va, §myva) = T oW, E)o(W, €)T s e
=Y(E)VA; S=§(E)VA



Implementation using TMB

» We use TMB (Template Model Builder) for fast estimation of model
parametersi®.

» TMB is an R package for fitting using automatic differentiation (AD)
in optimization.

» TMB can calculate first and second order derivatives of the likelihood
function written in C++. The likelihood function can be called from
R and optimized using optim().

» Standard errors for estimated parameters will be obtained by
producing Hessian matrix with optimHess () in R.

» The full implementation of LA, VA and EVA via TMB are available in
the R package gllvm!l.

OKristensen et al. (2015). TMB: Automatic differentiation and Laplace
approximation, JSS, 70, 1-21.

"Niku et al. (2019). gllvm: Fast analysis of multivariate abundance data with
generalized linear latent variable models in R, MEE, 10, 2173-2182



Reponse distributions available in R package gllvm

Response Distribution Link Method
Binary Bernoulli logit EVA/LA
probit EVA/VA/LA
Counts Poisson log VA/LA
Negative binomial log EVA/VA/LA
ZIP log LA
Plant cover Beta probit EVA/LA
Biomass Tweedie log EVA/LA
Ordinal Multinomial probit VA
Normal Gaussian Identity VA/LA
Non-negative continuous Gamma log VA/LA




Data input

Main function of the gllvm package is gl1lvm(), which can be used to fit
GLLVMs for multivariate data with the most important arguments listed
in the following:

NULL, X = NULL, TR = NULL, family, num.lv = NULL,
NULL, method = "VA", row.eff = FALSE, n.init = 1,...)

gllvm(y
formula

e y: matrix of abundances

e X: matrix or data.frame of environmental variables

e TR: matrix or data.frame of trait variables

e family: distribution for responses

e num.lv: number of latent variables

e method: approximation used ("VA”, "EVA” or "LA")
e row.eff: type of row effects

e n.init: number of random starting points for latent variables



Example: Finnish peatland study

Distribution
of peatlands
in Finland




Example: Finnish peatland study

» Finnish environment institute was looking for new tools for
ecological monitoring of peatlands.

» Former studies indicated that amoeba species might be useful when
assessing biologial impacts of peatland use.

» In Daza Secco et al. (2018)'2 we studied if amoeba species
communities differ in terms of land use (natural, forestry, restored),
and how environmental covariates affect species abundance.

2Daza Secco et al. (2018). Testate amoebae community analysis as a tool to assess
biologial impacts of peatland use, Wetlands Ecology and Management, 26, 597611.



Data

» Three types of study sites located in the boreal zone of Central and
Western Finland:

» two natural peatlands
» two peatlands that are used for forestry
P two restored peatlands

» 15 sampling plots from each study site. Altogether n = 270 moss
samples were taken.

» Amoeba species were identified and counted. Altogether m = 51
species were detected.

» Environmental covariates: water pH, temperature and water table
depth).
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» To visualize the main trends between sampling sites in terms of their
species composition we fitted a GLLVM model with p = 2 latent
variables, that is,

log(pij) = ap(iy + Boj + UiA;,
where a,(;) is now a plot-level random effect.

» To overcome overdispersion in responses, negative binomial
distribution was used.
» Model can be fitted using gllvm package with

fit <- gllvm(y = Y, family = "negative binomial, num.lv = 2,
row.eff = (1 | Site),...)



» Predicted latent variables can plotted on a standard scatterplot to
look for patterns between sites (model-based unconstraint ordination

plot).

ordiplot (fit)

» |f estimated factor loadings are added in the ordination plot, we can find
indicator species for sites (model-based biplot).

ordiplot(fit, biplot = TRUE)

» For constrained ordination, see van der Veen et al., (2021)."3

Byvan der Veen et al. (2021). Model-based ordination with constrained latent
variables, bioRxiv.
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Figure: Model-based unconstrained ordination of the sites in the peatland data,
along with 95% CMSEP-based prediction regions (left) and model-based biplot
showing 15 indicator species for sites (right).



» To find out how environmental variables affect the abundance, we
fitted NB-GLLVM including water pH, temperature, water table
depth and land use type (as a factor with dummy variables) as
covariates

|0g(/1'l'j) = Qp(j) + BOJ + X; ﬁ + u; )‘J;

» This can be done using:

X, family = "negative binomial,

fitX <- gllvm(y X =
= 2, row.eff = “(1 | Site),...)



Information on correlation stored in the factor loadings can be used
to estimate the correlation matrix of the linear predictor across
species:

getResidualCor (fitX)

The amount of covariation within and between species that is explained

by the covariates can be quantified by calculating the relative change in
. . . . S anl

the trace of the estimated residual covariance matrix X =TT .

According to NB-GLLVM, water pH, temperature and water table depth
together explain 31.8% of the covariation in the model. When the land
usage was also included as covariate, 47.0% of covariation was explained.

Plots of the estimated regression coefficients and corresponding 95%
Wald intervals for covariates can be plotted using

coefplot(fitX, ...)
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Figure: Coefficient plots containing the point estimates and 95% Wald
confidence intervals for the effect of water pH, temperature and water table

depth.



» For diagnosing model fit one can plot randomized quantile-based
residuals designed for discrete data (Dunn and Smyth, 1996) against
linear predictors:

plot (fitX)
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Summary

» GLLVMs offer a flexible framework for modeling multivariate
abundance data.

» The R package gllvm offers relatively fast methods to fit GLLVMs
via maximum likelihood, along with tools for model checking,
visualization and inference.

» Methods implemented in package are applicable for the most
common types of responses in ecological studies: presence-absence,
overdispersed counts, biomass and percent cover data.



Future work

» Implementation of mixed-response GLLVMs.

» GLLVMs involving temporally and/or spatially dependent latent
variables.

» GLLVMs for compositional data.

» Computational solutions for high-dimensional data settings (parallel
computation techniques, mini-batching, etc.). Regularization.

» Large sample properties of estimators.



For more details...

https://jenniniku.github.io/gllvm/


https://jenniniku.github.io/gllvm/
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