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Overview of the structure of HMSC

HMSC is a multivariate hierarchical generalized linear mixed model fitted with Bayesian inference 
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Random effects defined at 
hierarchically structured, 
spatially structured or 
temporally structured units
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HMSC is a multivariate hierarchical generalized linear mixed model fitted with Bayesian inference 

Parameters

Data

𝑝 𝜃 𝑦 ∝ 𝑝 𝑦 𝜃 𝑝(𝜃)

posterior prior

likelihood of data

Bayes theorem



HMSC as a directed acyclic graph

𝐿𝑖𝑗 = 𝐿𝑖𝑗
𝐹 + 𝐿𝑖𝑗

𝑅

Fixed effects Random effects



What data matrices HMSC takes as input and what are their dimensions?



What parameters are 
estimated in an HMSC 
model?



How does HMSC link to ecological theory?



Closer look at the fixed effects



Full HMSC Single-species HMSC

Let’s first look at the single-species case



Back to basics: the linear model 

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖

𝑖 = 1,2,3, … , 𝑛

𝑦

𝑥

𝜀𝑖~𝑁(0, 𝜎
2)

The linear model:

Index for data points:

Response (or dependent) variable:

Explanatory (or independent 
or predictor) variable:

Residual:
𝛽

Intercept: 

Slope:

𝛼



Several explanatory variables and the linear predictor

𝑦𝑖 = 𝛼 + 𝛽1𝑥𝑖1 + 𝛽1𝑥𝑖2 + 𝜀𝑖The linear model with two variables:

𝑦𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝜀𝑖Can also be parameterized as:

𝑥𝑖1 = 1where                      for all sampling units 𝑖

𝑛𝑐

Can be written more compactly as where

𝐿𝑖 =෍
𝑘=1

𝑛𝑐
𝛽𝑘𝑥𝑖𝑘

is the linear predictor and       is the number 
of covariates (including the intercept)

𝑦𝑖 = 𝐿𝑖 + 𝜀𝑖



Continuous versus categorical predictors

In the basic linear model

𝐿𝑖 =෍
𝑘=1

𝑛𝑐
𝛽𝑘𝑥𝑖𝑘

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖

𝑥 is a continuous explanatory variable (covariate)

Often 𝑥 is a categorical explanatory variable (factor), e.g. habitat type

classified as coniferous forest, broadleaved forest, or mixed forest.

𝑥𝑖1 = 1 for all sampling units

𝑥𝑖2 = 1 if 𝑖 is in broadleaved forest, otherwise 𝑥𝑖2 = 0

This can be incorporated as:

𝑥𝑖3 = 1 if 𝑖 is in mixed forest, otherwise 𝑥𝑖3 = 0



Full HMSC Single-species HMSC

Let’s now look at the multi-species case



Full HMSC Single-species HMSC

𝐿𝑖𝑗 =෍
𝑘=1

𝑛𝑐
𝛽𝑘𝑗𝑥𝑖𝑘

𝐿𝑖 =෍
𝑘=1

𝑛𝑐
𝛽𝑘𝑥𝑖𝑘



Variation in species niches among the species



Variation in species niches among the species

Hui, Warton, Foster, 
Dunstan et al.: species 
archetype models (SAMs)

HMSC



Variation in species niches among the species

𝜷∙𝑗 ~𝑁(𝝁, 𝐕)

A simple statistical 
model for variation 
in species niches:



How to utilize data on species traits? 



Modelling the influence of species traits on their niches

𝜷∙𝑗 ~𝑁(𝝁∙𝑗 , 𝐕)

Species-specific expected value: Symbol size illustrates 
species trait

𝜇𝑘𝑗 =෍
𝑙=1

𝑛𝑡
𝑡𝑗𝑙𝛾𝑘𝑙

Modelled as regression to 
species traits:

The trait 𝑙 of species 𝑗
The influence of trait 𝑙 on how the species 
is expected to respond to covariate 𝑘



How to utilize data on phylogenetic relationships? 



Modelling the influence of phylogeny on species niches
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Modelling the influence of phylogeny on species niches
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Ilustration of systematic variation in species niches across the phylogeny



𝜷∙𝑗 ~𝑁(𝝁, 𝐕)

The basic model in matrix notation:

The parameter 𝜌 measures the strength 
of phylogenetic signal in species niches

Modelling the influence of phylogeny on species niches

vec 𝐁 ~𝑁(vec 𝐌 , 𝐈 ⊗ 𝐕)

Phylogenetically structured model 
in matrix notation:

vec 𝐁 ~𝑁(vec 𝐌 ,𝐖⊗𝐕)

𝐖 = 𝜌𝐂 + (1 − 𝜌)𝐈



Modelling the joint influence of species traits and phylogeny on species niches



Distribution of species niches, as estimated with HMSC (BetaPlot)



Closer look at the random effects



Full HMSC Single-species HMSC

Let’s first look at the single-species case



Mixed models: fixed effects and random effects

Linear model with fixed effects only:

𝐿𝑖 =෍
𝑘=1

𝑛𝑐
𝛽𝑘𝑥𝑖𝑘

𝑦𝑖 = 𝐿𝑖 + 𝜀𝑖

𝜀𝑖~𝑁(0, 𝜎
2)

iid

Hierarchical 
study design: Plot

Sampling unit



Mixed models: fixed effects and random effects

Linear model with fixed and random effects:

𝐿𝑖 =෍
𝑘=1

𝑛𝑐
𝛽𝑘𝑥𝑖𝑘

𝑦𝑖 = 𝐿𝑖 + 𝑎𝑝(𝑖) + 𝜀𝑖

𝜀𝑖~𝑁(0, 𝜎
2)

iid

Hierarchical 
study design: Plot

Sampling unit

𝑎𝑝~𝑁(0, 𝜎𝑃
2)

iid



Mixed models: fixed effects and random effects

Spatial study 
design:
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Spatial study 
design:

Linear model without spatial structure:
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Mixed models: fixed effects and random effects

Spatial study 
design:

Linear model with spatial structure:

𝐿𝑖 =෍
𝑘=1

𝑛𝑐
𝛽𝑘𝑥𝑖𝑘

𝑦𝑖 = 𝐿𝑖 + 𝑎𝑖 + 𝜀𝑖

Cov 𝑎𝑖 , 𝑎𝑗 = 𝜎𝑆
2 exp −𝑑𝑖𝑗/𝛼

𝜀𝑖~𝑁(0, 𝜎
2)

iid𝑎𝑖~𝑁(0, 𝜎𝑆
2)



Fitting a spatial model enables using spatial 
information when generating predictions



Full HMSC Single-species HMSC

Let’s now look at the multi-species case



Occurrence and co-occurrence probabilities

Capercaillie
(Tetrao urogallus)

White-backed woodpecker 
(Dendrocopos luecotos)

Source: Wikimedia

Source: Wikimedia



Occurrence probabilities Co-occurrence probabilities

+ 𝑞11 = ⋯

+ 𝑞10 = ⋯

+ 𝑞01 = ⋯

+ 𝑞00 = ⋯

𝑝1 = 0.5

𝑝2 = 0.5



Occurrence probabilities

+ 𝑞11 = 0.25

+ 𝑞10 = 0.25

+ 𝑞01 = 0.25

+ 𝑞00 = 0.25

Co-occurrence probabilities
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Occurrence probabilities

+ 𝑞11 = 0

+ 𝑞10 = 0.5

+ 𝑞01 = 0.5

+ 𝑞00 = 0.0

Co-occurrence probabilities
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Occurrence probabilities Co-occurrence probabilities

+ 𝑞11 = 0.5

+ 𝑞10 = 0

+ 𝑞01 = 0

+ 𝑞00 = 0.5
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Occurrence probabilities Co-occurrence probabilities

𝑝1 = 0.5

𝑝2 = 0.5

+ 𝑞11 = 0.1

+ 𝑞10 = 0.4

+ 𝑞01 = 0.4

+ 𝑞00 = 0.1
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HMSC with fixed and random effects

𝐿𝑖𝑗 = 𝐿𝑖𝑗
𝐹 + 𝐿𝑖𝑗

𝑅

Fixed effects:

𝐿𝑖𝑗
𝐹 =෍

𝑘=1

𝑛𝑐
𝑥𝑖𝑘𝛽𝑘𝑗

Random effects:

𝐿𝑖𝑗
𝑅 =෍

ℎ=1

𝑛𝑓
𝜂𝑖ℎ𝜆ℎ𝑗

Site loadings Species loadings



HMSC with fixed and random effects (in matrix notation)

𝐿𝑖𝑗 = 𝐿𝑖𝑗
𝐹 + 𝐿𝑖𝑗

𝑅

Fixed effects:

𝐿𝑖𝑗
𝐹 =෍

𝑘=1

𝑛𝑐
𝑥𝑖𝑘𝛽𝑘𝑗

Random effects:

𝐿𝑖𝑗
𝑅 =෍

ℎ=1

𝑛𝑓
𝜂𝑖ℎ𝜆ℎ𝑗

𝐋 = 𝐋𝐹 + 𝐋𝑅

𝐋𝑅 = 𝐇𝚲𝐋𝐹 = 𝐗𝐁



Prior distributions for site and species loadings

𝐿𝑖𝑗
𝑅 =෍

ℎ=1

𝑛𝑓
𝜂𝑖ℎ𝜆ℎ𝑗

Number of factors

Site loadings Species loadings

𝜂𝑖ℎ~𝑁(0,1) 𝜆ℎ𝑗~
Multiplicative gamma process shrinking prior 
(Bhattacharya and Dunson 2011)

iid



Prior distributions for site and species loadings

𝐿𝑖𝑗
𝑅 =෍

ℎ=1

𝑛𝑓
𝜂𝑖ℎ𝜆ℎ𝑗

Number of factors

Site loadings Species loadings

𝜂𝑖ℎ~𝑁(0,1)

Multiplicative gamma process shrinking prior for 𝜆ℎ𝑗:iid



Covariance between linear predictors

𝐿𝑖𝑗
𝑅 =෍

ℎ=1

𝑛𝑓
𝜂𝑖ℎ𝜆ℎ𝑗

Number of factors

Site loadings Species loadings

𝜂𝑖ℎ~𝑁 0,1 ⇒ Cov 𝐿𝑖1𝑗1
𝑅 , 𝐿𝑖2𝑗2

𝑅 =෍
ℎ=1

𝑛𝑓
𝜆ℎ𝑗1𝜆ℎ𝑗2𝛿𝑖1𝑖2

iid



Covariance between linear predictors

𝐿𝑖𝑗
𝑅 =෍

ℎ=1

𝑛𝑓
𝜂𝑖ℎ𝜆ℎ𝑗

Number of factors

Site loadings Species loadings

𝜂𝑖ℎ~𝑁 0,1 ⇒ Cov 𝐿𝑖1𝑗1
𝑅 , 𝐿𝑖2𝑗2

𝑅 =෍
ℎ=1

𝑛𝑓
𝜆ℎ𝑗1𝜆ℎ𝑗2𝛿𝑖1𝑖2

iid

⇒ 𝑳𝑖∙
𝑅~𝑁(0,𝛀) 𝛀 = 𝚲T𝚲



Association matrix at the correlation scale

𝑅𝑗1𝑗2 =
𝛺𝑗1𝑗2

𝛺𝑗1𝑗1𝛺𝑗2𝑗2

𝐑 = scale(𝛀)

𝐑

Species 𝑗1

Sp
ec

ie
s 
𝑗 2



Unstructured & structured (spatial) site loadings

𝐿𝑖𝑗
𝑅 =෍

ℎ=1

𝑛𝑓
𝜂𝑖ℎ𝜆ℎ𝑗

iid
𝜂𝑖ℎ~𝑁 0,1 ⇒ Cov 𝐿𝑖1𝑗1

𝑅 , 𝐿𝑖2𝑗2
𝑅 =෍

ℎ=1

𝑛𝑓
𝜆ℎ𝑗1𝜆ℎ𝑗2𝛿𝑖1𝑖2

⇒ Cov 𝐿𝑖1𝑗1
𝑅 , 𝐿𝑖2𝑗2

𝑅 =෍
ℎ=1

𝑛𝑓
𝜆ℎ𝑗1𝜆ℎ𝑗2 exp −𝑑𝑖1𝑖2/𝛼ℎ

𝜼∙ℎ~𝑁 0, 𝚺ℎ ,     𝛴ℎ,𝑖1𝑖2 = exp −𝑑𝑖1𝑖2/𝛼ℎ

Un-structured 
site loadings:

Spatial site 
loadings:

HmscRandomLevel(sData=xy)

HmscRandomLevel(units=levels(studyDesign$plots))



Multiple random effects in the same model

Radula
complanata

Neckera
pennata

Ovaskainen et al. 2017 (ELE), Oldén et al. (2014)



Multiple random effects in the same model



How to implement the hierarchical random effect in Hmsc?

studyDesign = data.frame(Site=as.factor(Xdata$Site), Tree=as.factor(XData$Tree))

rL.Site = HmscRandomLevel(units = levels(studyDesign$Site))

rL.Tree = HmscRandomLevel(units = levels(studyDesign$Tree))

m = Hmsc(…, studyDesign = studyDesign, ranLevels=list(Site=rL.Site))

OR

m = Hmsc(…, studyDesign = studyDesign, ranLevels=list(Site=rL.Site, Tree=rL.Tree))



Multiple random effects in the same model

𝐿𝑖𝑗
𝑟,𝑅 =෍

ℎ=1

𝑛𝑓
𝑟

𝜂𝑢𝑟 𝑖 ℎ
𝑟 𝜆ℎ𝑗

𝑟

𝐿𝑖𝑗
𝑅 =෍

𝑟=1

𝑛𝑟
𝐿𝑖𝑗
𝑟,𝑅

Units (e.g. plots) of random effect 𝑟

Number of random effects



Spatial random effects / site loadings as hidden environmental covariates

Ovaskainen et al. 2016 (MEE): butterflies in UK

𝐋 = 𝐗𝐁 + 𝐇𝚲



Fitting a multivariate spatial model enables using spatial information 
OF THE SAME AND OTHER SPECIES when generating predictions


