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Community ecology:
in the capture of assembly processes

A central goal in community ecology is to
understand what processes drive the
distributions and dynamics of species




What we are interested about: assembly processes
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What we mostly have data about:
patterns that results from assembly processes
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Typical questions asked in community ecology
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How do environmental conditions
influence species
occurrences/community composition?
Environmental filtering

What are the species’ co-
occurrence patterns after the effects of
environmental conditions are taken
into account? Biotic filtering



Typical questions asked in community ecology
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Typical questions asked in community ecology
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Are the responses of the species to
the environment phylogenetically
structured? Phylogeographic processes

How do environmental conditions
influence species
occurrences/community composition?
Environmental filtering

What are the species’ co-
occurrence patterns after the effects of
environmental conditions are taken
into account? Biotic filtering

How do traits influence the
responses of the species to the
environment?



Typical questions asked in community ecology

How will communities
change over space and time?
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Are the responses of the species to
the environment phylogenetically

structured? Phylogeographic processes
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How do environmental conditions
influence species
occurrences/community composition?
Environmental filtering

What are the species’ co-
occurrence patterns after the effects of
environmental conditions are taken
into account? Biotic filtering

How do traits influence the
responses of the species to the
environment?



The BIG QUESTION in statistical community ecology:

How to best use the data to address

the research questions?
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Overview of (typical) methods in community ecology:
which data they utilize?

Input data (as a whole, without subsetting or pre-treatment)
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Overview of (typical) methods in community ecology:
which kinds of questions they answer?

Outputs (without post-hoc treatment)

Environmen | Biotic filtering Effects of traits Spatiotemporal
tal flltermg and phylogeny predlctlons
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Joint species distribution modelling

A fast emerging field in statistical community ecology
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How to make more out of community data? A conceptual
framework and its implementation as models and software
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Abstract

Community ecology aims to understand what factors determine the assembly and dynamics of
species assemblages at different spatiotemporal scales. To facilitate the integration between con-
ceptual and statistical approaches in community ecology, we propose Hierarchical Modelling of
Species Communities (HMSC) as a general, flexible framework for modern analysis of community
data. While non-manipulative data allow for only correlative and not causal inference, this frame-
work fac111tates the formulatlon of data drlven hypotheses regardmg the processes that structure
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With Applicationsin R
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Joint species distribution modelling with the r-package Hmsc
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Hierarchical Modelling of Species Communities (HMSC)
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Graphical description of the HMSC model as a Directed Acyclic Graph (DAG)



HMSC is a multivariate hierarchical generalized linear
mixed model fitted with Bayesian inference

Fixed effects Random effects

Linear predictor for sampling unit i and species j: Lij = Lll':j u Ll?j

Examples of data models:
Linear model: Vij = Lij + &
Probit model: yUNBernoulh(CI)(Ll]))

Lognormal Poisson model: yij~Poisson(exp(Lij 1+ gij))



Fixed effects ~ environmental filtering

Linear predictor for fixed effects for sampling unit i and species j:

n Response of species j to covariate k
C
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Random effects ~ biotic filtering and missing covariates

Number of factors
ny
R __
Li; = E NinAnj
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Site loadings  Species loadings

1y~ Multiplicative gamma process shrinking prior
hj " (Bhattacharya and Dunson 2011)
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HMSC input and output

Habitat Climate

L s s
I ON B O

N

SPECIES DATA

" Corvus monedula count

20

10

TRAITS AND PHYLOGENIES

—

Current distribution of
biodiversity

JOINT
SPECIES

DISTRIBUTION
MODELLING
BY HMSC

Response to
environmental covariates

Response to
environmental change

MODEL
FITTING

INFERENCE AND
PREDICTION

Corvus monedula

EXAMPLE DATA ON 50 MOST COMMON
SPECIES OF FINNISH BIRDS

Regions of
common profile

occurrence
probability

Species niches

Proportion of

O00DoEEDOO
= O 0O ~NO O~ WN -~

S 04
E
o 0.3
7]
I .
S 02
k=]
g 0.1 -
0-0- L) LJ L) L] L]
0 2 4 6 8
climate



R ONO0) /

m=Hmsc(Y, XData, XFormula, TrData, TrFormula, phyloTree, H @ E
studyDesign, ranLevels, distr) E‘ @ @ @

. . . (050
sampleMcmc(m,thin, samples, transient, nChains) O @

in the R-package Hmsc

Step 2. Examining MCMC convergence  * |

02 12

mpost = convertToCodaObject(m 00 .
P ject(m 02 - Not satisfactory?
effectiveSize(mpost) 04 Redo model
W00 w00 S0 oo 7000 fitting.

gelman.diag(mpost)

Kerations.

Step 3. Evaluating model fit and comparing models

Step 1. Setting model structure and fitting the model aredy = computePredictedvalues(n, partition
Not satisfactory?

MF = evaluateModelFit(m, predY) Define better model

WAIC = computeWAIC(m)

Step 2. Examining MCMC convergence

Step 4. Exploring parameter estimates

Step 3. Evaluating model fit and comparing models — +
E— 019 /0 o
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Step 4. Exploring parameter estimates — — of Lo
Species niches and their links Biotic interactions, dispersal limitation,
to traits and phylogenies missing covariates and ecological drift
Step 5. Making predictions Step 5. Making predictions
Species richness
new Predictor values of environmental Ynew
X covariates, e.g. representing an % Community-weighted
environmental gradient : mean traits
i . PrEdiCt?q Bioregionalization
Predictor values of spatio-temporal communities
Snew context, e.g. spatial coordinates of a Conservation
where predictions are to be made prioritization

Preparing predictors Making predictions Post-processing and interpretation




HMSC belongs to the class of Joint Species Distribution Models

 HMSC by Ovaskainen, Abrego et al: Hierarchical Modelling of Species Communities
 BORAL by Hui et al: Bayesian Ordination and Regression Analysis

e GLLVM by Hui, Taskinen et al.: Generalized Linear Latent Variable Models

* GJAM by Clark et al.: Generalised Joint Attribute Modelling

e JDSDM by Thorson et al: Joint Dynamic Species Distribution Models

* MISTN by Harris: Multivariate Stochastic Neural Network

 BC by Golding and Harris: Bayesian Community Ecology Analysis

* SSDM -= stacked Species Distribution Models: ”Pick your favourite single-species model and apply it one
by one to each species”



How “joint” is a joint species distribution model?

Niche structure Biotic interactions
N1: joint modelling of species niches B1: Estimation of association networks
N2: dependency on traits B2: dependency on traits
N3: dependency on phylogeny B3: dependency on phylogeny
MODEL N1 N2 N3 Bl B2 B3
HMSC X X X X
BORAL X X X
GJAM X
JDSDM X X
MISTN X
GLLVM X X X
BC X

SSDM
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Predictive performance of (joint)
species distribution models
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A Comprehensive evaluation of predictive performance of 33 species
distribution models at species and community levels
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How well do JSDMs do in terms of inference?

a. Metacommunity scenarios

FCOGRAPHY

Research

What can observational data reveal about metacommunity
processes?

Otso Ovaskainen, Joel Rybicki and Nerea Abrego

JSDM outputs were most
informative in
disentangling which
underlying community
assembly mechanisms
generated the patternsin
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b. Data collection

Spatial sampling design

Species sorting

Mass effects

¥
¥

{16

MJ

d. Linking patterns to
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c. Statistical analysis

ANALYSIS OF

HABITAT
VARIATION BETA-DIVERSITY
INDICES
Q DISTANCE-BASED
VARIATION
PARTITIONING

L/{%

A

DISTANCE-BASED
REDUNDANCY
ANALYSIS

JOINT SPECIES
DISTRIBUTION
MODELLING

Statistical approach HAB BETA db-VP db-RDA ALL
C1. presence versus absence of gradient 0.94 0.88 0.82 0.97
C2. patchy versus continuous landscape 1 0.99 0.78 0.97 1
C3. uniform versus varying patch quality

C4. dynamic versus.static patches 0.82
C5. slow versus.fast patch turnover 0.93
C6. generalists versus specialists 0.76 0.96
C7. partial versus strict specialists 0.81
C8. variation versus no variation in dispersal strategy

C9. short versus long dispersal 0.87 0.8 0.93
C10. missing versus not missing covariates 0.9




Conclusions

The processes underlying community assembly are complex, and we have typically not data directly
on them, merely on patterns generated by the processes.

We need statistical methods that can relate data on patterns to the underlying processes.

Joint species distribution models (JSDMs) are one promising approach for doing so. They have been
shown to be efficient both for inference and prediction.

JSDMs include single species distribution models and model-based ordinations as special cases, and
thus they are merging two fields that have long developed in isolation from each other.

Methods development with JSDMs is currently very rapid, with several research groups developing
related approaches.

In this course we will learn how to apply the R-package Hmsc!



