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Cone-beam Computed Tomography (CBCT)

Image: endocare.ca



Cone-beam Computed Tomography (CBCT)

The CT measurement at detector pixel / is defined as

/

mj = — Iogl—i = / f(x,y,z)ds.
0 ray path

By discretizing the distribution of attenuation coefficients f(x, y, z)
as f € R" we can make a linear model for the X-ray measurements:

m = Af + ¢.
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Cone-beam CT is a true 3D imaging modality
(FDK reconstruction, isosurface)




Cone-beam CT is a true 3D imaging modality
(FDK reconstruction, 3D slices)




Test case: simulated human patient X-ray data

CBCT measurements of human
head obtained with XCAT
software

720 X-ray projections at 0.5°
intervals.

100 kV X-ray tube (W target).

10 different dose levels on relative
scale from 100% to 0.1%.

Projection size 320 x 320 pixels.



Cone-beam Computed Tomography:
Analytical Reconstruction

Based on filtering + backprojection.

Most frequently used method is the algorithm proposed in 1984 by
Feldkamp, Davis, and Kress (FDK) algorithm.

Pros:

+ Fast
+ Well understood
+ Approximately linear

Cons:

- Performs poorly with noisy data
- Performs poorly with undersampled data

- Suffers from cone-beam geometry artifacts



Dose and noise considerations in FDK

In linear reconstruction algorithms, we have

dose oc N

and

SNR < VN,

where N is the number of photons used and SNR is signal-to-noise
ratio.

We therefore have

SNR o Vv dose.



FDK vs. reference reconstruction, rel. dose 100%




FDK vs. reference reconstruction, rel. dose 50%
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FDK vs. reference reconstruction, rel. dose 20%
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FDK vs. reference reconstruction, rel. dose 10%
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FDK vs. reference reconstruction, rel. dose 5%
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FDK vs. reference reconstruction, rel. dose 1%
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FDK vs. reference reconstruction, rel. dose 0.5%
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FDK vs. reference reconstruction, rel. dose 0.2%




FDK vs. reference reconstruction, rel. dose 0.1%




Cone-beam Computed Tomography:
Iterative Reconstruction

Usually formulated as a regularized optimization problem:

1
in =||Af — ml||? + uR(f).
g@zH m||* + pR(f)

Pros
+ (Potentially) better performance with noisy and/or
undersampled data

+ Allows incorporating physics modelling into the reconstruction
problem

Cons:

- SLOW

- Highly sensitive to choice of the regularization parameter u

- Choice of regularizer R(f) strongly affects reconstruction
results



Approach 1: Haar-CT

We formulate the reconstruction problem as

fER?

where B is the Haar transform of f.

Hypothesis: Enforcing sparsity in
a Haar wavelet basis will result in
Improvements In reconstruction
quality in low-dose CBCT.
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Approach 2: Anisotropic Total Variation

We formulate the reconstruction problem as

1 )
frg&gl\%\f— m| [ + ([0« 11 + 1|0y fl[1 + 10:F[|1),

where Oxf, 0,f, and O,f are the discrete derivatives of f.

Hypothesis: Enforcing sparsity in the components of the gradient
will result in improvements in reconstruction quality in low-dose

CBCT.



The primal-dual fixed point (PDFP) algorithm
|Chen, Huang & Zhang, 2016]

Consider the following minimization problem:

min f1(x) + (f o B)(x) + f3(x),

x€eRn

where f1, f», and f3 are proper lower semi-continuous convex
functions, f; is differentiable on R” with a 1/3-Lipschitz continuous
gradient, and B : R"” — R™ is a linear transformation.

This can be solved using the algorithm

(y* T = prox. g (x* —yVA(X) = ABTvF),

(PDFP) v ¥ = (I — proxyg )(By*™ + v¥),
k+1 (Xk — ’}/Vfl(Xk) — )\BTvk+1),

| X = Prox.f,

where 0 < A < 1/Anmax(BBT), 0 < v < 2.



The primal-dual fixed point (PDFP) algorithm
|Chen, Huang & Zhang, 2016]

Our formulation of the problem can be stated as:

1
in Z||Af — m||5 + pR(f
g&zH m||5 + pR(f),

where

S||Af — m|[3 is the data fidelity term,
R(x) = ||[0xf, 0y f,0,f] || OR
R(x) = ||Wf]]1, and

(4 is the regularization parameter.



The primal-dual fixed point (PDFP) algorithm
|Chen, Huang & Zhang, 2016]

The optimization algorithm adapted to our problem is
y*tt = proje(x* — AT (Ax* — m) = ABTv¥),
(PDFP) vt = (1 = §,2)(By ! + v¥),
xk1 = projo(x* — yAT (AxK — m) — ABT vkT1),
where

projc is the projection operator to the non-negative orthant of R”,
and

S. is the soft thresholding operator.



Soft thresholding
(This is where the interesting stuff happens)

S, (x)
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Reconstruction settings

Reconstruction size: 256 x 256 x 256 pixels.

Voxel size in reconstruction: 1 mm.

lteration stopping conditions: ||fi — fi_1|| < 1073 or njter > 200.
Single precision floating-point numbers.

FDK recontruction used as fy (convergence acceleration).



Reconstructions: Haar-CT

What does Haar wavelet sparsity look
like?

How does choice of p affect the
reconstruction?’

































Haar wavelets, dose 0.1%, . suitable (?) (5-107°)
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Haar wavelets, dose 0.1%, . too small (1-107°)




Haar Wavelet regularization

The true test:

How does Haar wavelet regularization
compare to FDK?


















Haar-CT vs. FDK, dose 0.1% (. =5-107°)

Haar




Reconstructions: Anisotropic Total Variation

What does anisotropic total variation
ook like?

How does choice of p affect the
reconstruction?’




































Anisotropic TV, dose 0.1%, u too small (7.5-107°)
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Anisotropic total variation regularization

The true test:

How does anisotropic total variation
regularization compare to FDK?






















Convergence behaviour, dose 1%, =1-10""
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Anisotropic TV, FDK initialization
Anisotropic TV, all zero initialization
Haar wavelets, FDK initialization
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Conclusions and open questions

lterative reconstruction techniques can improve soft tissue
contrast in low dose CBCT.

Reconstruction quality is highly sensitive to choice of p.

Long reconstruction times require semi-automated choice of
regularization parameter.

Haar wavelet regularization begins to crumble at very low dose
levels.

Sparsity of Haar and/or ATV components requires quantitative
Investigation.
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