Image Reconstruction in Low-dose Cone Beam Computed Tomography

Alexander Meaney, MSc Prof. Samuli Siltanen, PhD

Computational Inverse Problems Research Group
Department of Mathematics and Statistics
University of Helsinki, Finland
alexander.meaney@helsinki.fi

WORKSHOP:

Wave Physics and Imaging Applications

University of Helsinki 20 May 2022

Cone-beam Computed Tomography (CBCT)

Image: endocare.ca

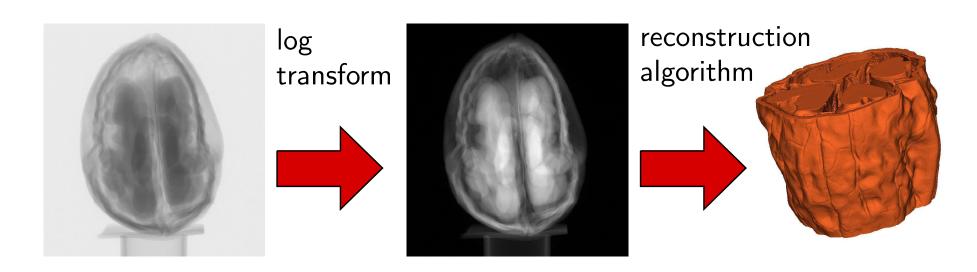
Cone-beam Computed Tomography (CBCT)

The CT measurement at detector pixel i is defined as

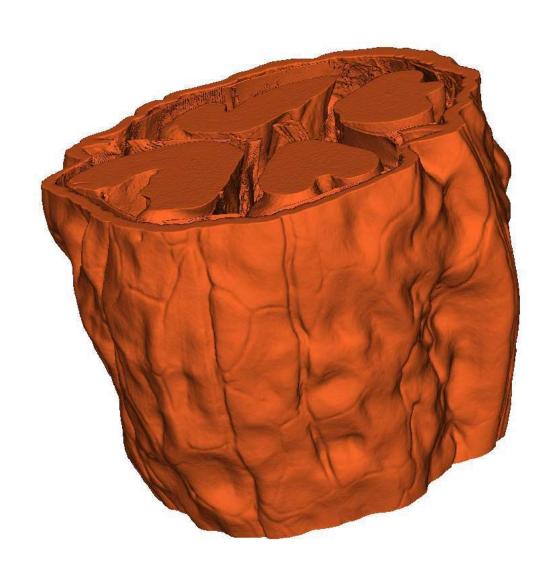
$$m_i = -\log \frac{I_i}{I_0} = \int_{\text{rav path}} f(x, y, z) ds.$$

By discretizing the distribution of attenuation coefficients f(x, y, z) as $f \in \mathbb{R}^n$ we can make a linear model for the X-ray measurements:

$$m = Af + \varepsilon$$
.



Cone-beam CT is a true 3D imaging modality (FDK reconstruction, isosurface)



Cone-beam CT is a true 3D imaging modality (FDK reconstruction, 3D slices)

Test case: simulated human patient X-ray data

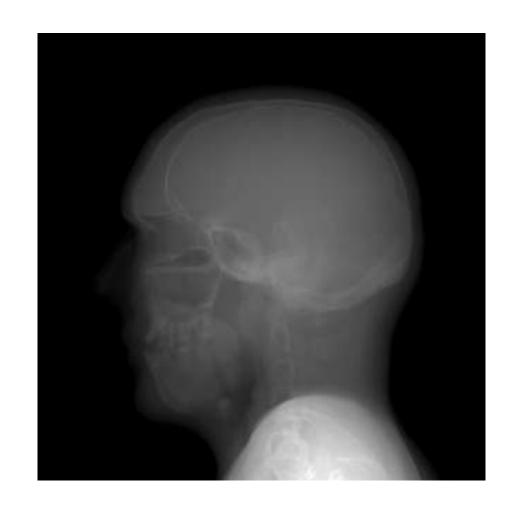
CBCT measurements of human head obtained with XCAT software

720 X-ray projections at 0.5° intervals.

100 kV X-ray tube (W target).

10 different dose levels on relative scale from 100% to 0.1%.

Projection size 320×320 pixels.



Cone-beam Computed Tomography: Analytical Reconstruction

Based on filtering + backprojection.

Most frequently used method is the algorithm proposed in 1984 by Feldkamp, Davis, and Kress (FDK) algorithm.

Pros:

- + Fast
- + Well understood
- + Approximately linear

Cons:

- Performs poorly with noisy data
- Performs poorly with undersampled data
- Suffers from cone-beam geometry artifacts

Dose and noise considerations in FDK

In linear reconstruction algorithms, we have

dose
$$\propto N$$

and

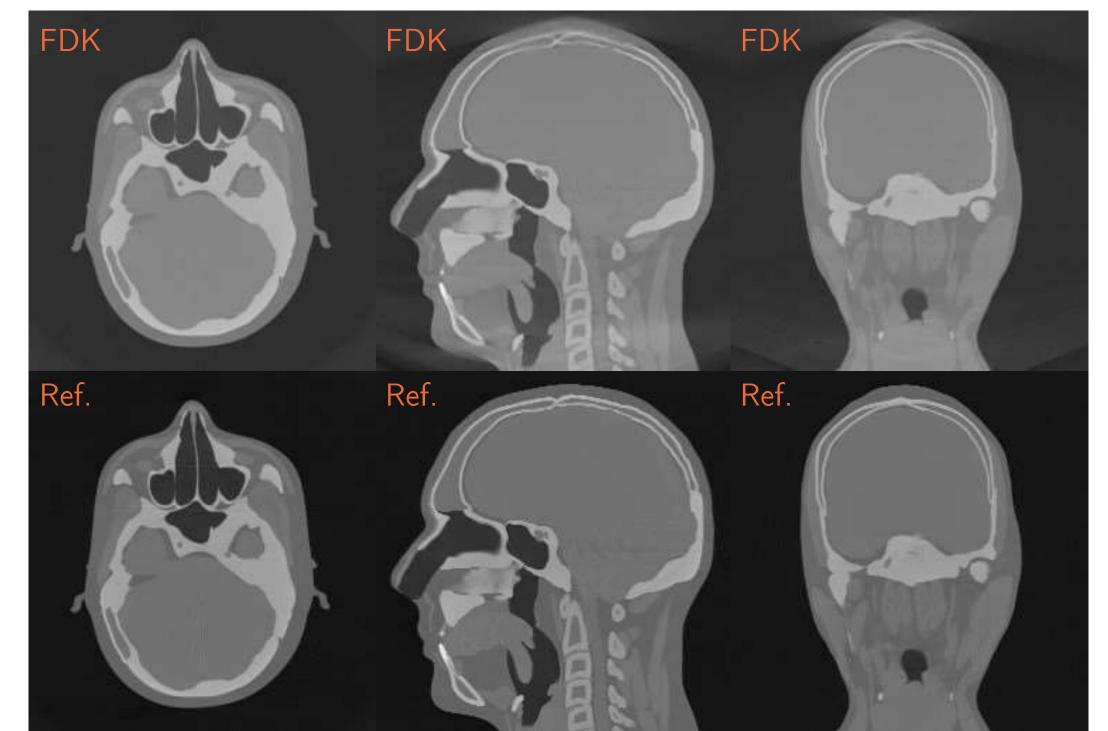
$$SNR \propto \sqrt{N}$$
,

where N is the number of photons used and SNR is signal-to-noise ratio.

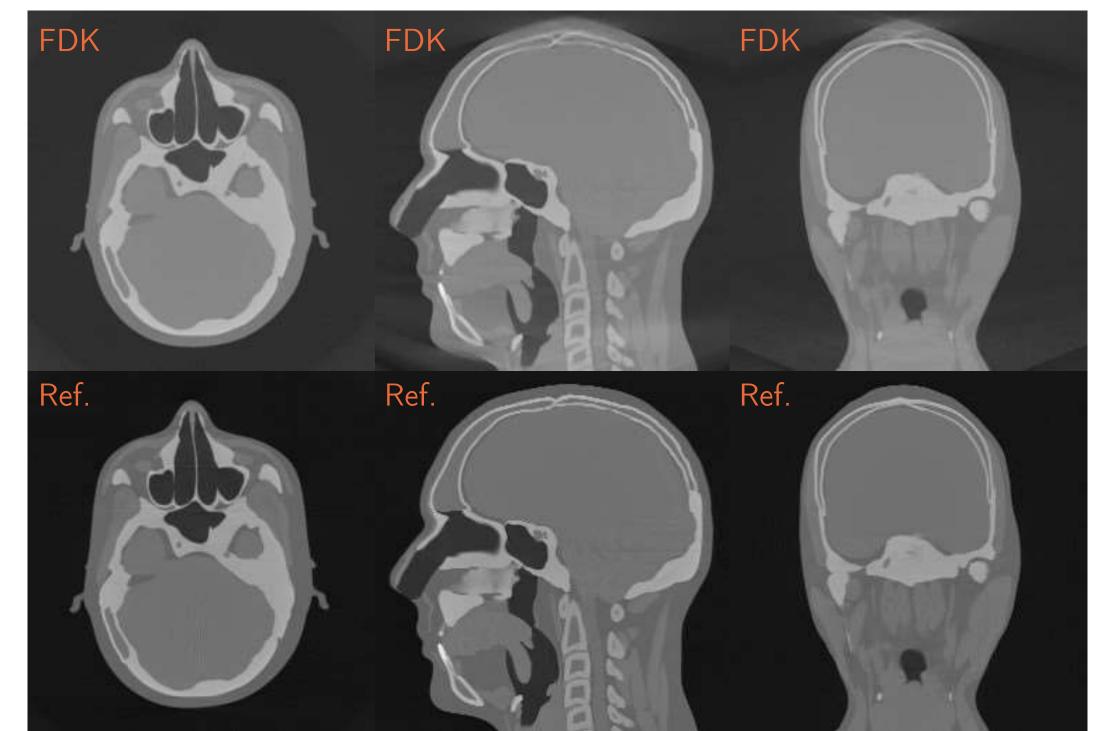
We therefore have

$$SNR \propto \sqrt{\mathrm{dose}}$$
.

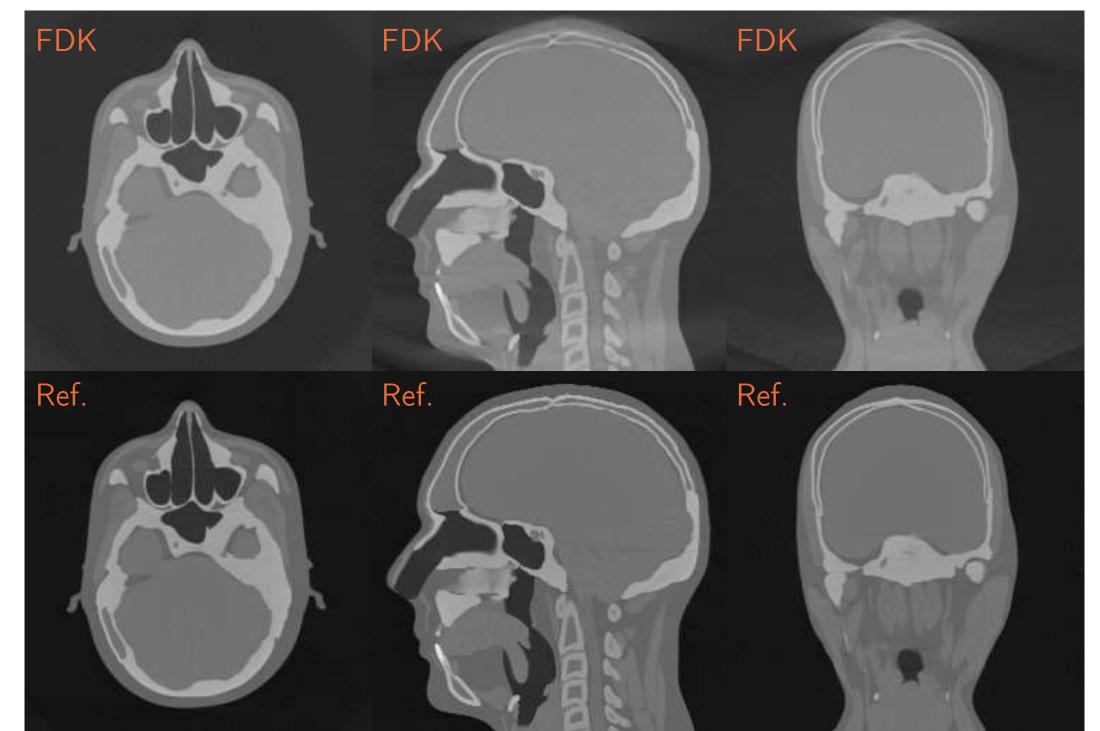
FDK vs. reference reconstruction, rel. dose 100%



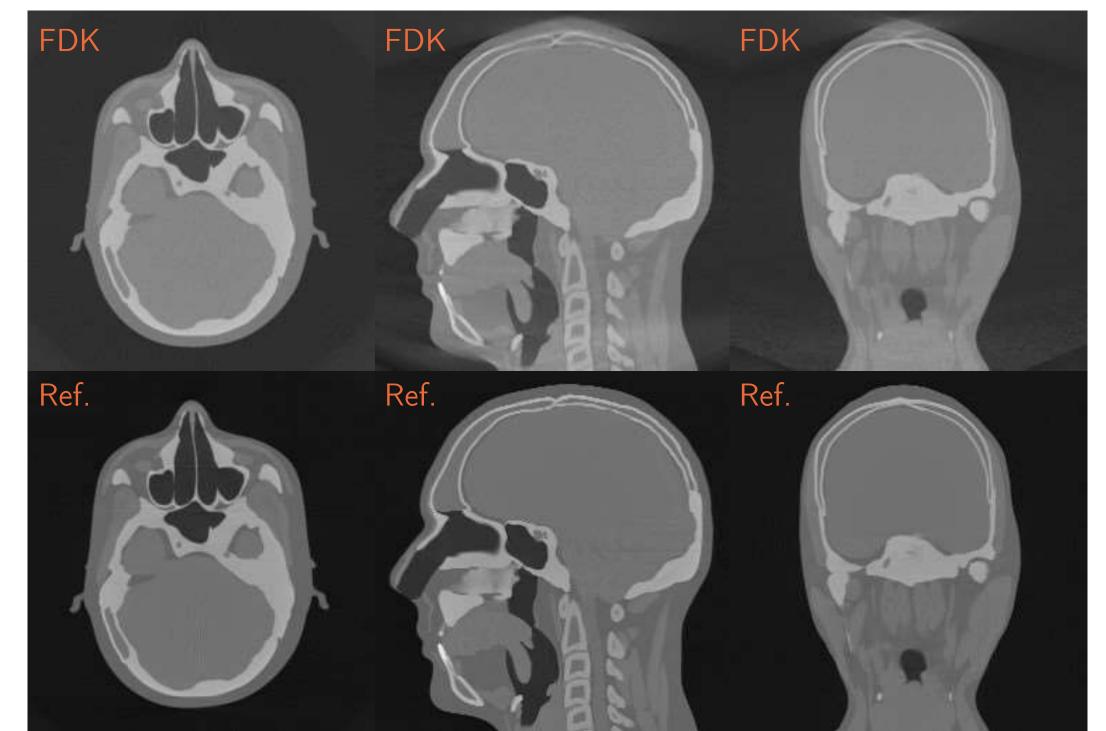
FDK vs. reference reconstruction, rel. dose 50%



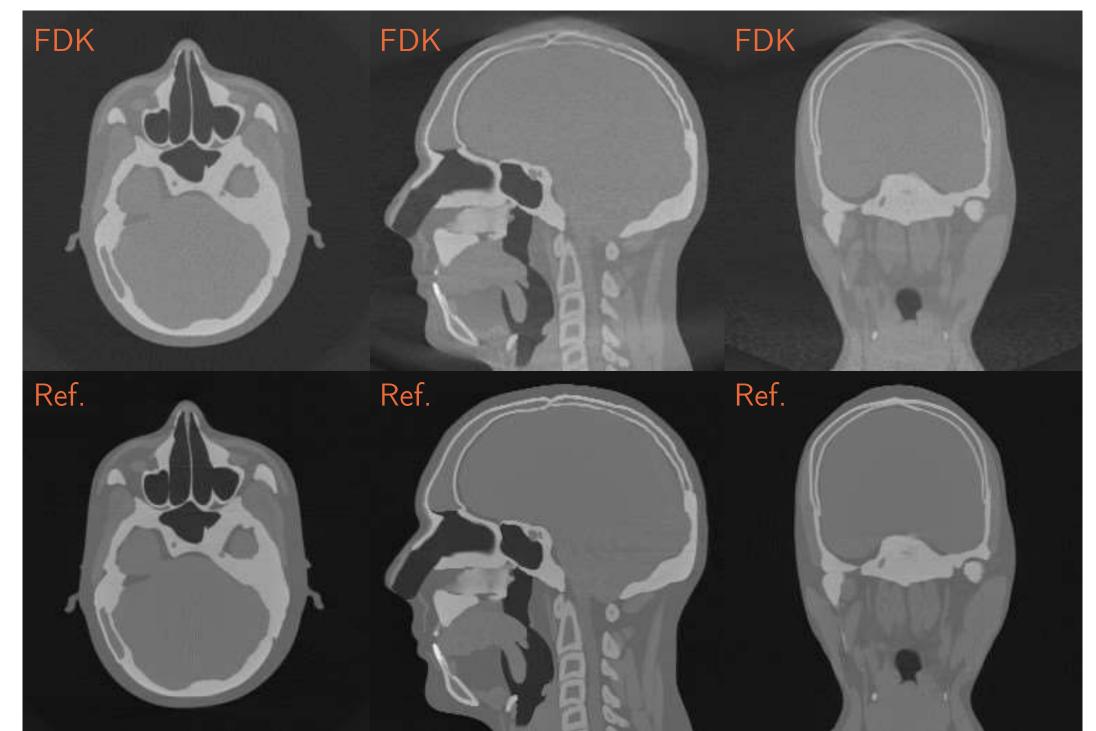
FDK vs. reference reconstruction, rel. dose 20%



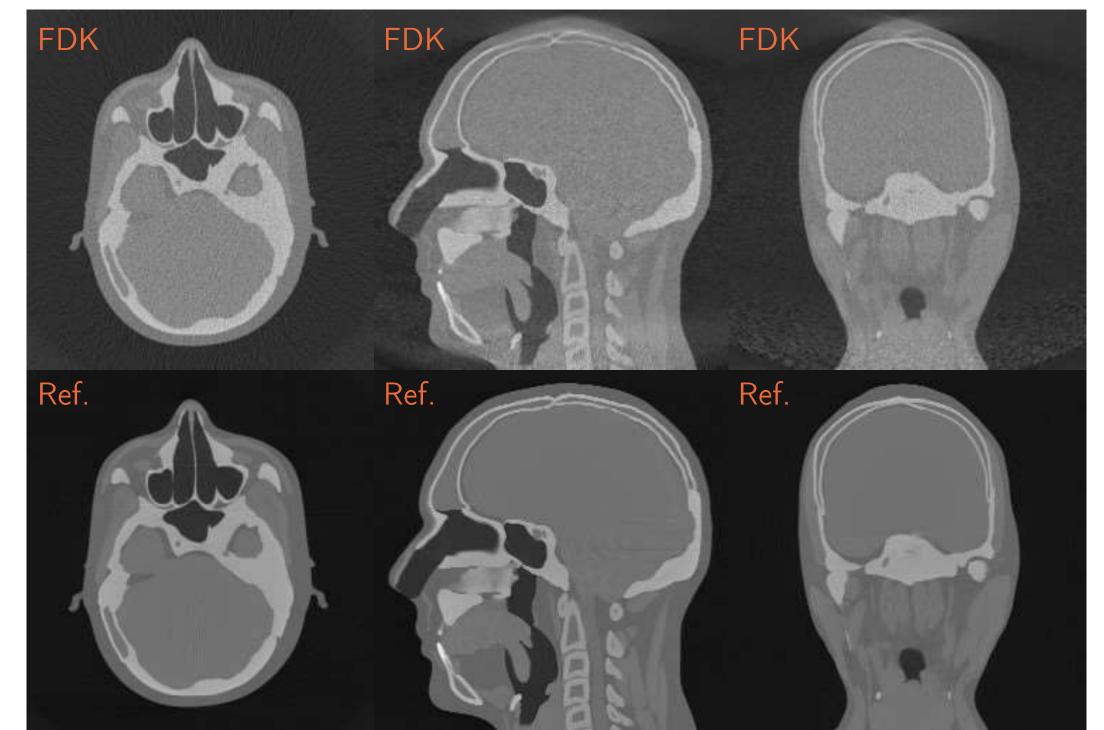
FDK vs. reference reconstruction, rel. dose 10%



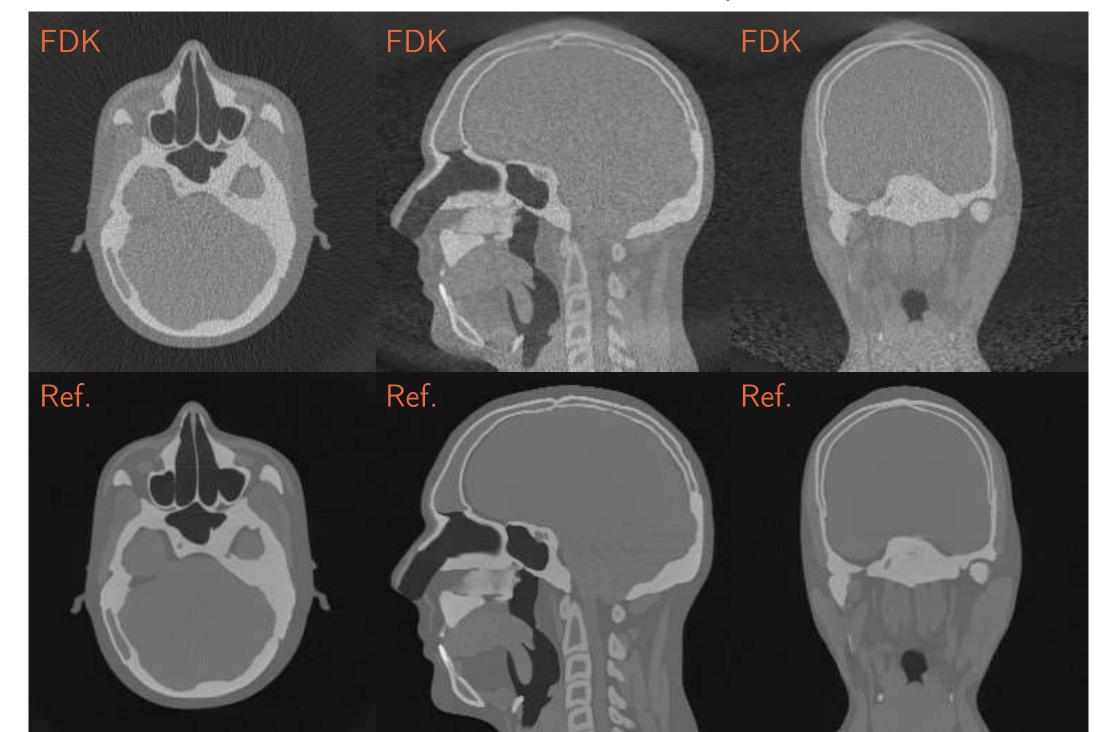
FDK vs. reference reconstruction, rel. dose 5%



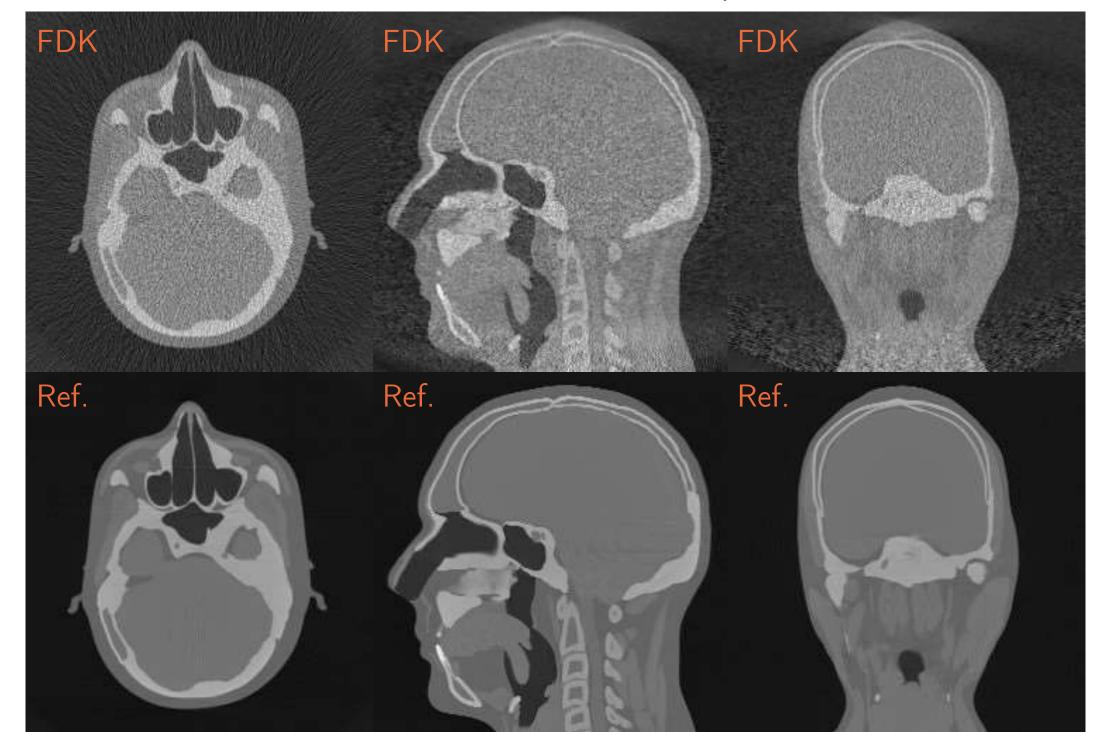
FDK vs. reference reconstruction, rel. dose 1%



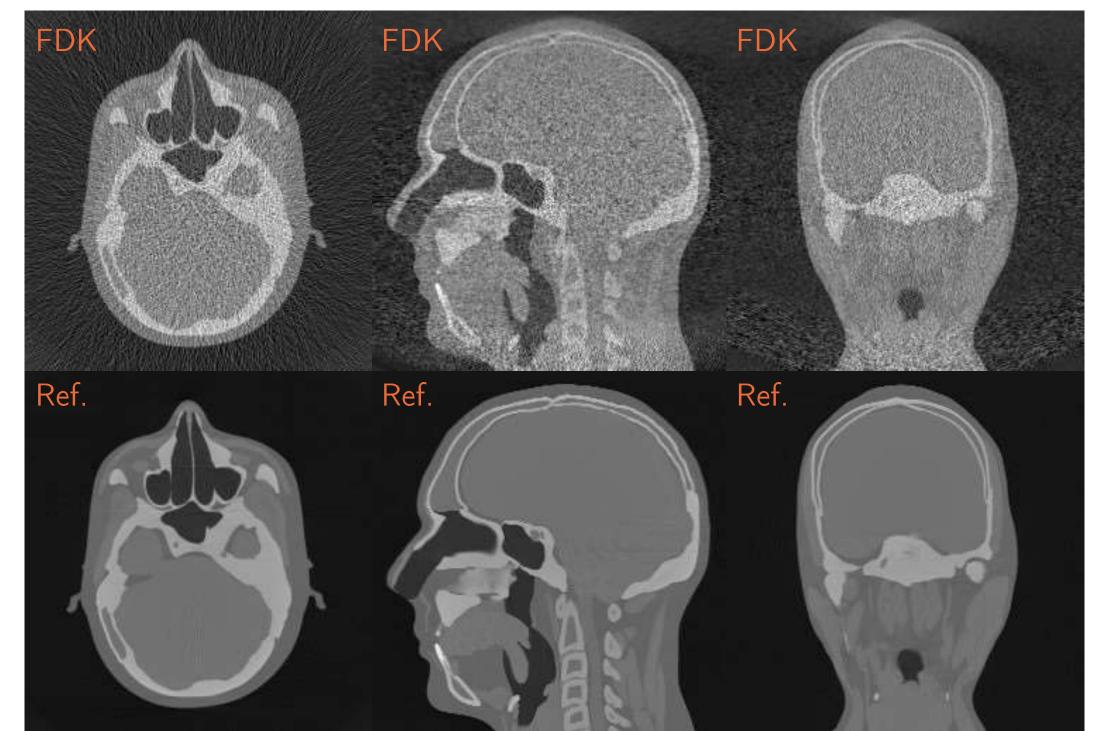
FDK vs. reference reconstruction, rel. dose 0.5%



FDK vs. reference reconstruction, rel. dose 0.2%



FDK vs. reference reconstruction, rel. dose 0.1%



Cone-beam Computed Tomography: Iterative Reconstruction

Usually formulated as a regularized optimization problem:

$$\min_{f\in\mathbb{R}^n}\frac{1}{2}||Af-m||^2+\mu R(f).$$

Pros

- + (Potentially) better performance with noisy and/or undersampled data
- + Allows incorporating physics modelling into the reconstruction problem

Cons:

- SLOW
- Highly sensitive to choice of the regularization parameter μ
- Choice of regularizer R(f) strongly affects reconstruction results

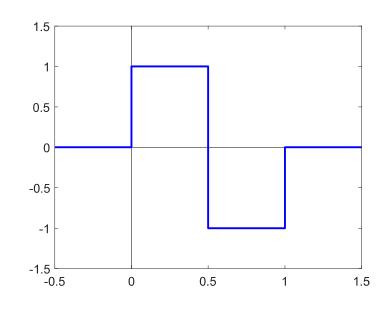
Approach 1: Haar-CT

We formulate the reconstruction problem as

$$\min_{f \in \mathbb{R}^n_+} \frac{1}{2} ||Af - m||^2 + \mu ||Bf||_1,$$

where B is the Haar transform of f.

Hypothesis: Enforcing sparsity in a Haar wavelet basis will result in improvements in reconstruction quality in low-dose CBCT.



Approach 2: Anisotropic Total Variation

We formulate the reconstruction problem as

$$\min_{f \in \mathbb{R}^n_+} \frac{1}{2} ||Af - m||^2 + \mu (||\partial_x f||_1 + ||\partial_y f||_1 + ||\partial_z f||_1),$$

where $\partial_x f$, $\partial_y f$, and $\partial_z f$ are the discrete derivatives of f.

Hypothesis: Enforcing sparsity in the components of the gradient will result in improvements in reconstruction quality in low-dose CBCT.

The primal-dual fixed point (PDFP) algorithm [Chen, Huang & Zhang, 2016]

Consider the following minimization problem:

$$\min_{x\in\mathbb{R}^n}f_1(x)+(f_2\circ B)(x)+f_3(x),$$

where f_1 , f_2 , and f_3 are proper lower semi-continuous convex functions, f_1 is differentiable on \mathbb{R}^n with a $1/\beta$ -Lipschitz continuous gradient, and $B: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation.

This can be solved using the algorithm

(PDFP)
$$\begin{cases} y^{k+1} &= \text{prox}_{\gamma f_3}(x^k - \gamma \nabla f_1(x^k) - \lambda B^T v^k), \\ v^{k+1} &= (I - \text{prox}_{\frac{\gamma}{\lambda} f_2})(By^{k+1} + v^k), \\ x^{k+1} &= \text{prox}_{\gamma f_3}(x^k - \gamma \nabla f_1(x^k) - \lambda B^T v^{k+1}), \end{cases}$$

where $0 < \lambda < 1/\lambda_{\max}(BB^T)$, $0 < \gamma < 2\beta$.

The primal-dual fixed point (PDFP) algorithm [Chen, Huang & Zhang, 2016]

Our formulation of the problem can be stated as:

$$\min_{f \in \mathbb{R}^n_+} \frac{1}{2} ||Af - m||_2^2 + \mu R(f),$$

where

 $\frac{1}{2}||Af - m||_2^2$ is the data fidelity term,

$$R(x) = ||[\partial_x f, \partial_y f, \partial_z f]^T||_1 \text{ OR}$$

$$R(x) = ||Wf||_1$$
, and

 μ is the regularization parameter.

The primal-dual fixed point (PDFP) algorithm [Chen, Huang & Zhang, 2016]

The optimization algorithm adapted to our problem is

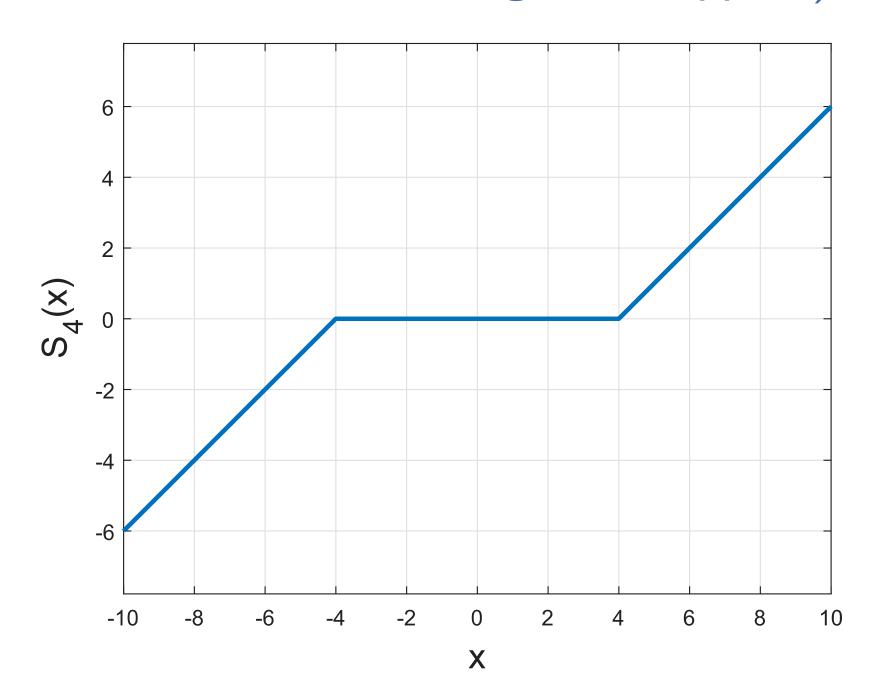
$$\begin{cases} y^{k+1} &= \operatorname{proj}_{C}(x^{k} - \gamma A^{T}(Ax^{k} - m) - \lambda B^{T}v^{k}), \\ v^{k+1} &= (I - S_{\mu \frac{\gamma}{\lambda}})(By^{k+1} + v^{k}), \\ x^{k+1} &= \operatorname{proj}_{C}(x^{k} - \gamma A^{T}(Ax^{k} - m) - \lambda B^{T}v^{k+1}), \end{cases}$$

where

 $\operatorname{proj}_{\mathcal{C}}$ is the projection operator to the non-negative orthant of \mathbb{R}^n , and

 S_{α} is the soft thresholding operator.

Soft thresholding (This is where the interesting stuff happens)



Reconstruction settings

Reconstruction size: $256 \times 256 \times 256$ pixels.

Voxel size in reconstruction: 1 mm.

Iteration stopping conditions: $||f_i - f_{i-1}|| < 10^{-3}$ or $n_{\text{iter}} > 200$.

Single precision floating-point numbers.

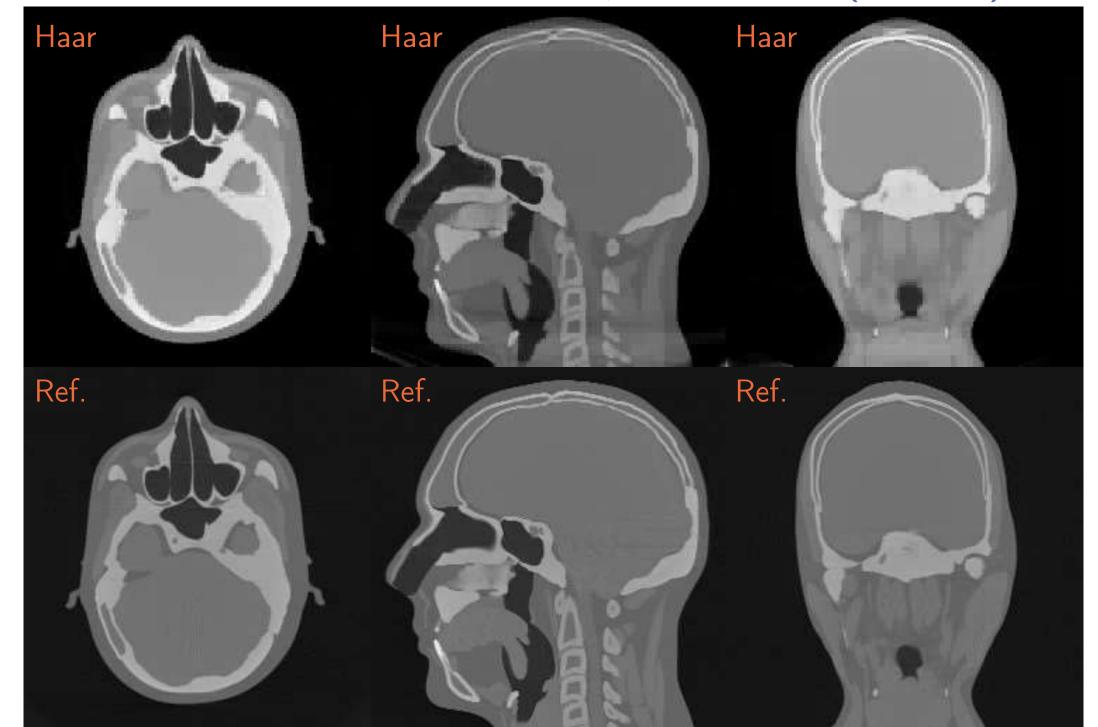
FDK recontruction used as f_0 (convergence acceleration).

Reconstructions: Haar-CT

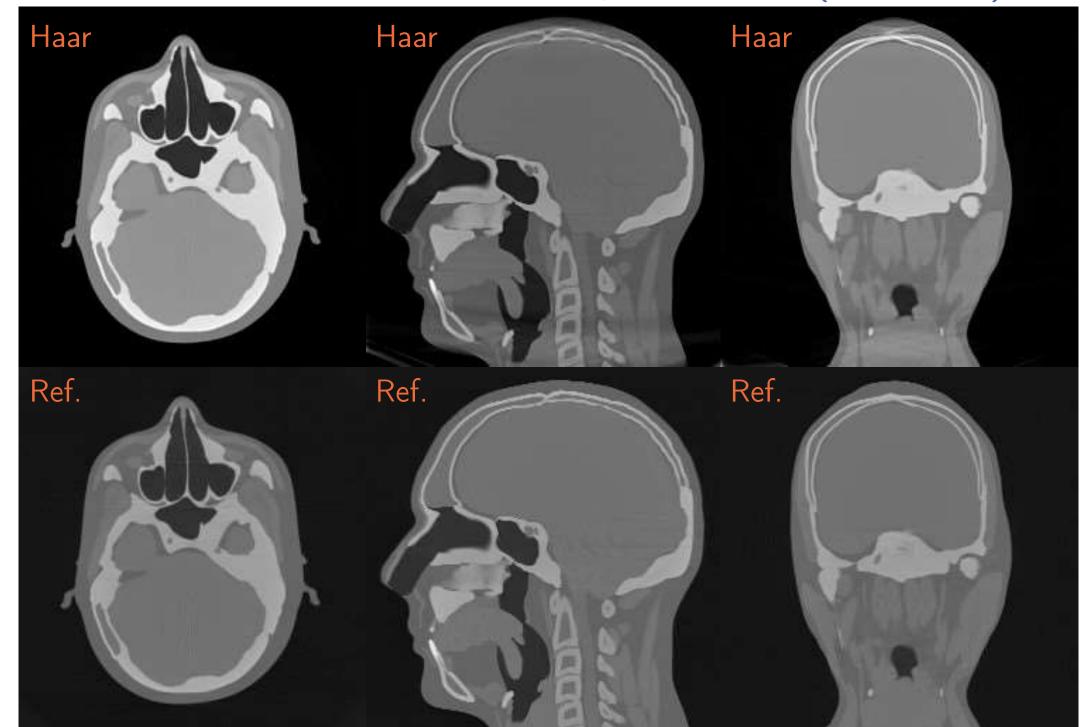
What does Haar wavelet sparsity look like?

How does choice of μ affect the reconstruction?

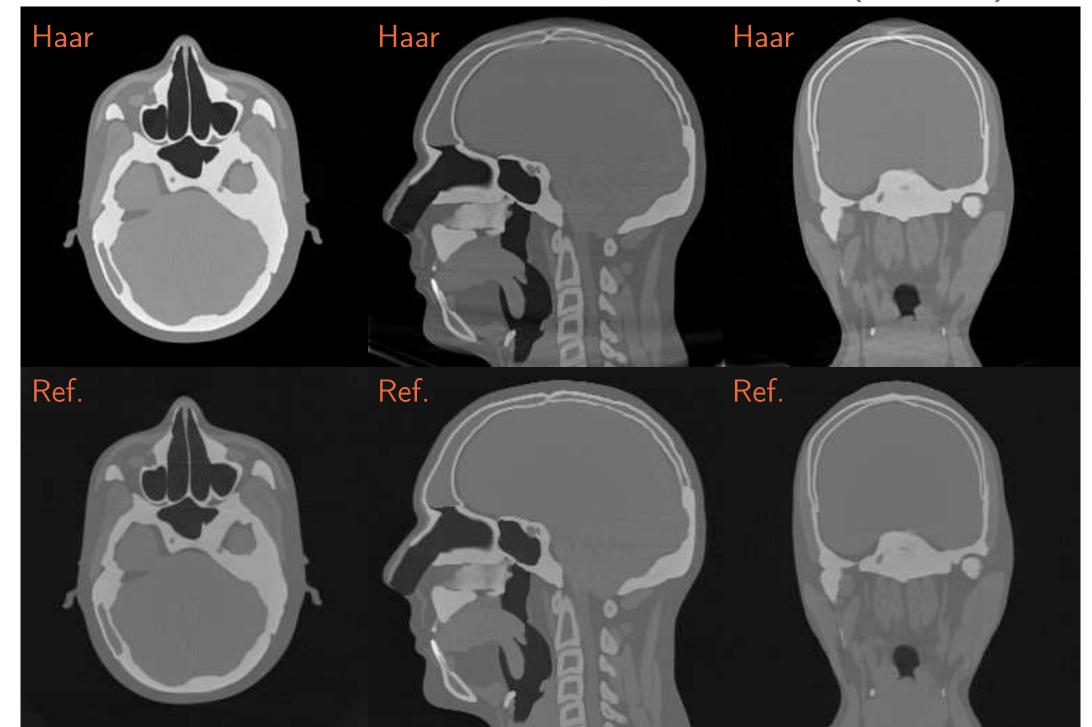
Haar wavelets, dose 100%, μ too large (5 · 10⁻⁵)



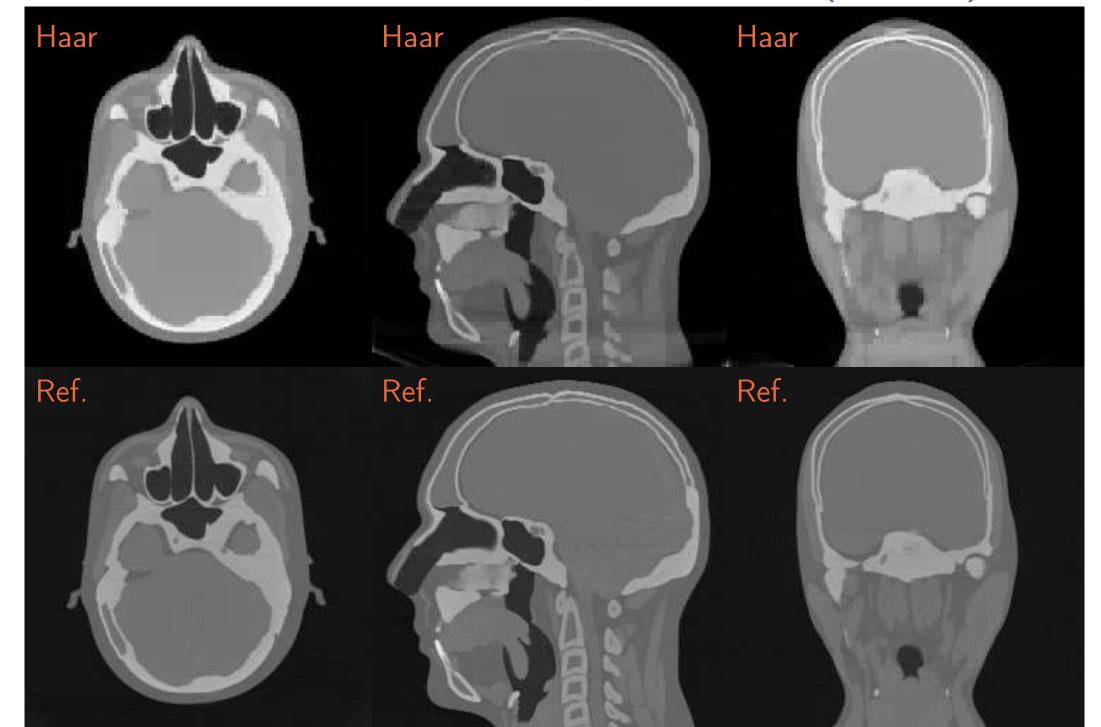
Haar wavelets, dose 100%, μ suitable (2.5 · 10⁻⁶)



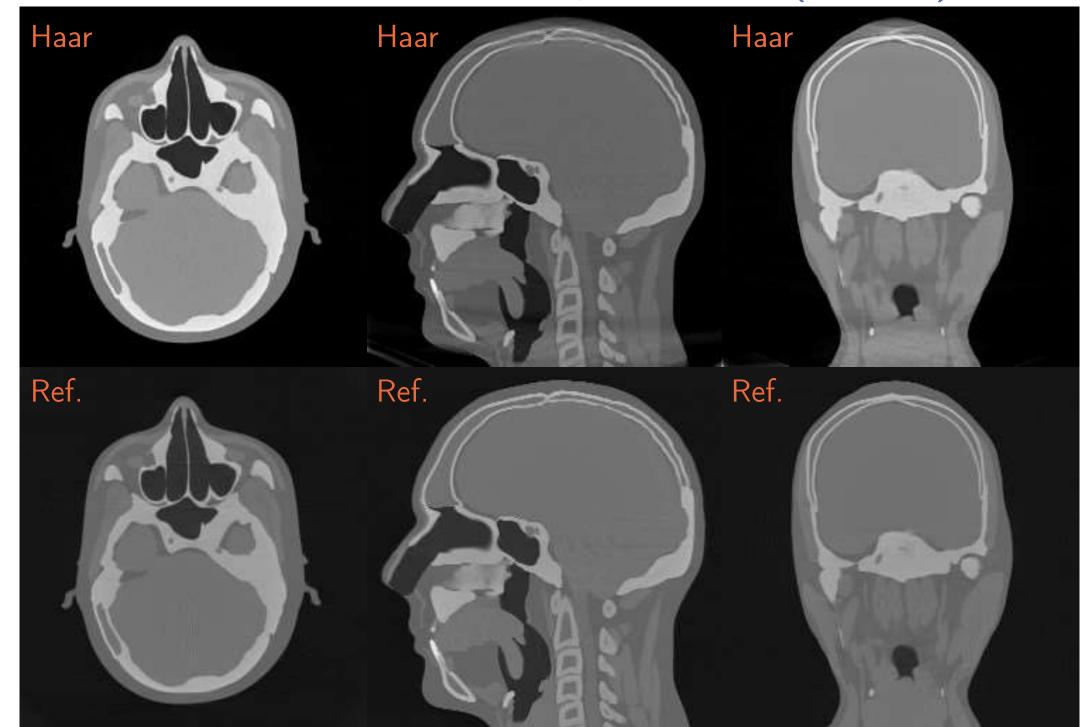
Haar wavelets, dose 100%, μ too small (1 · 10⁻⁷)



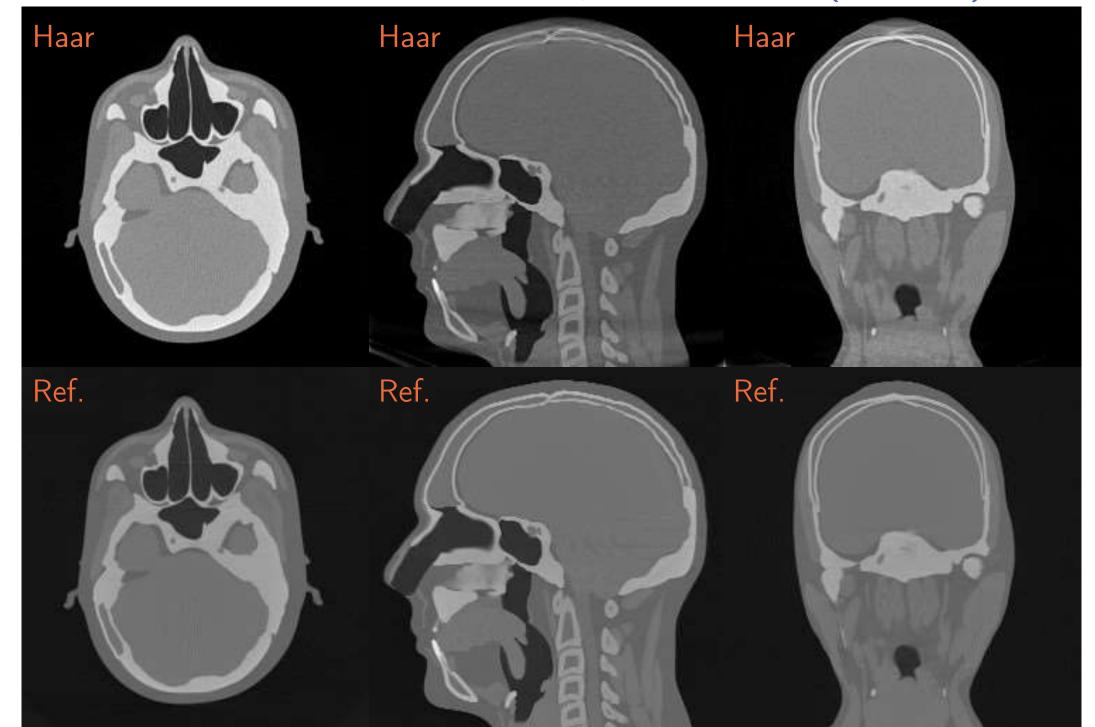
Haar wavelets, dose 10%, μ too large (5 · 10⁻⁵)



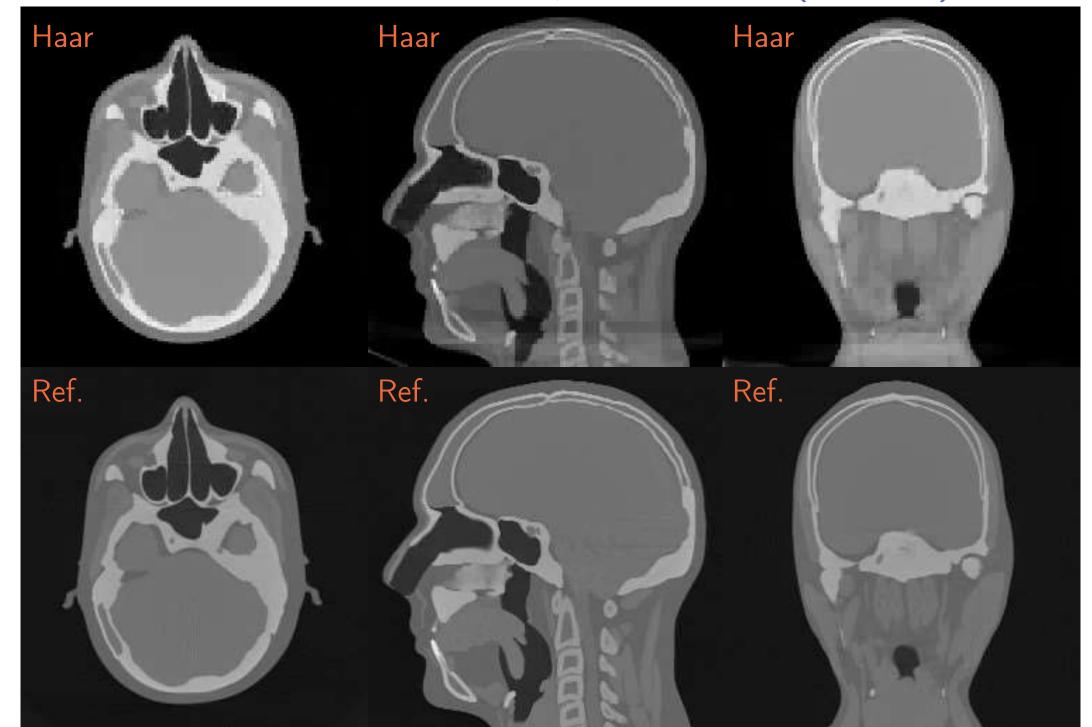
Haar wavelets, dose 10%, μ suitable (5 · 10⁻⁶)



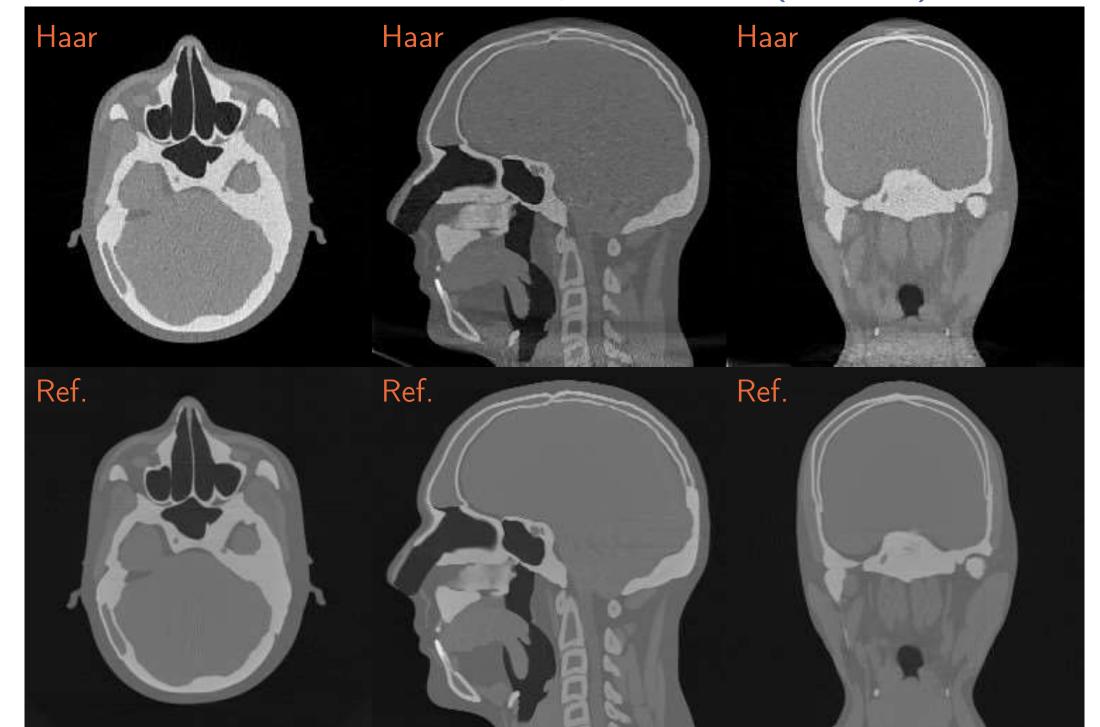
Haar wavelets, dose 10%, μ too small (5 · 10⁻⁷)



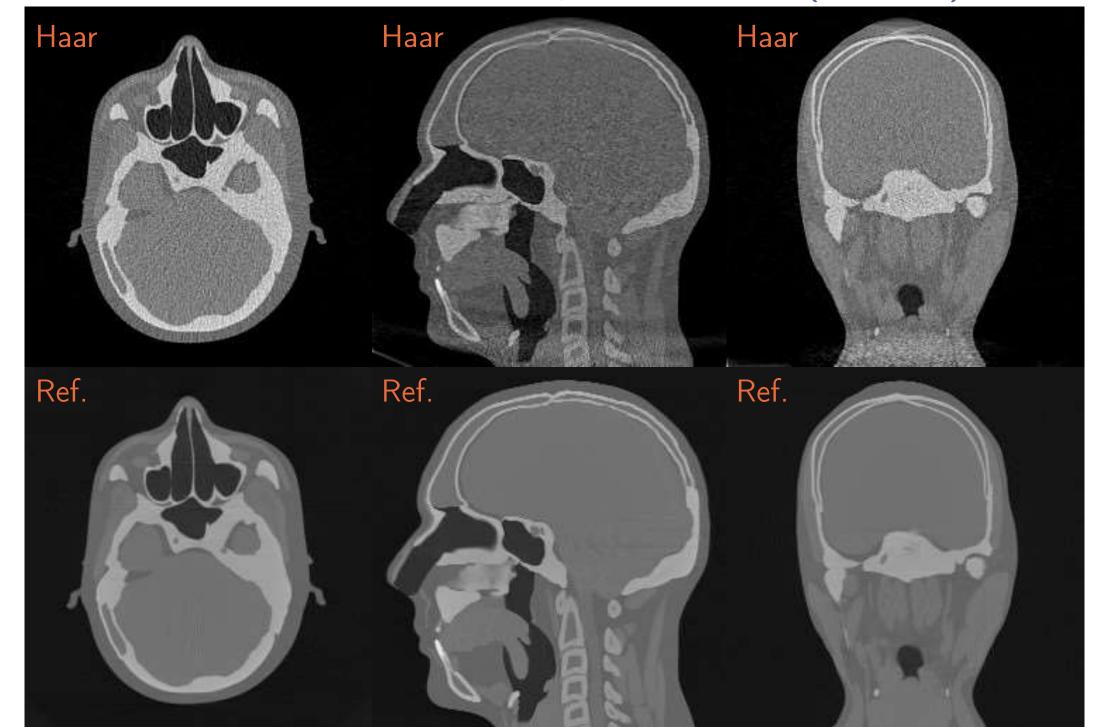
Haar wavelets, dose 1%, μ too large (5 · 10⁻⁵)



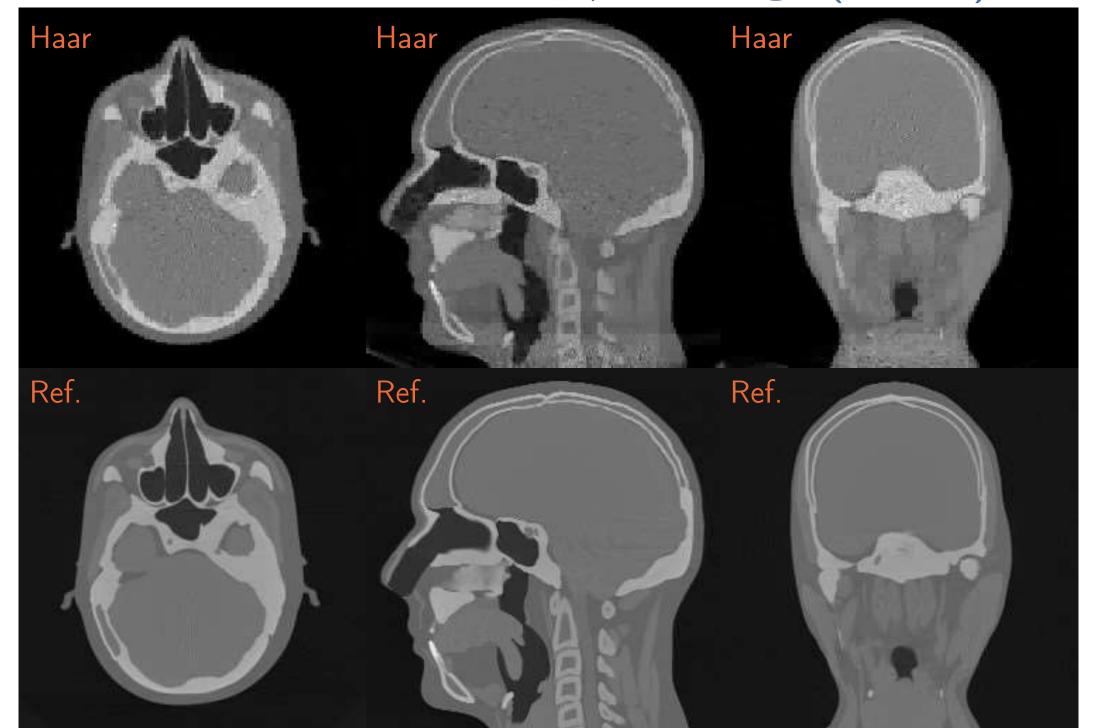
Haar wavelets, dose 1%, μ suitable (1 · 10⁻⁵)



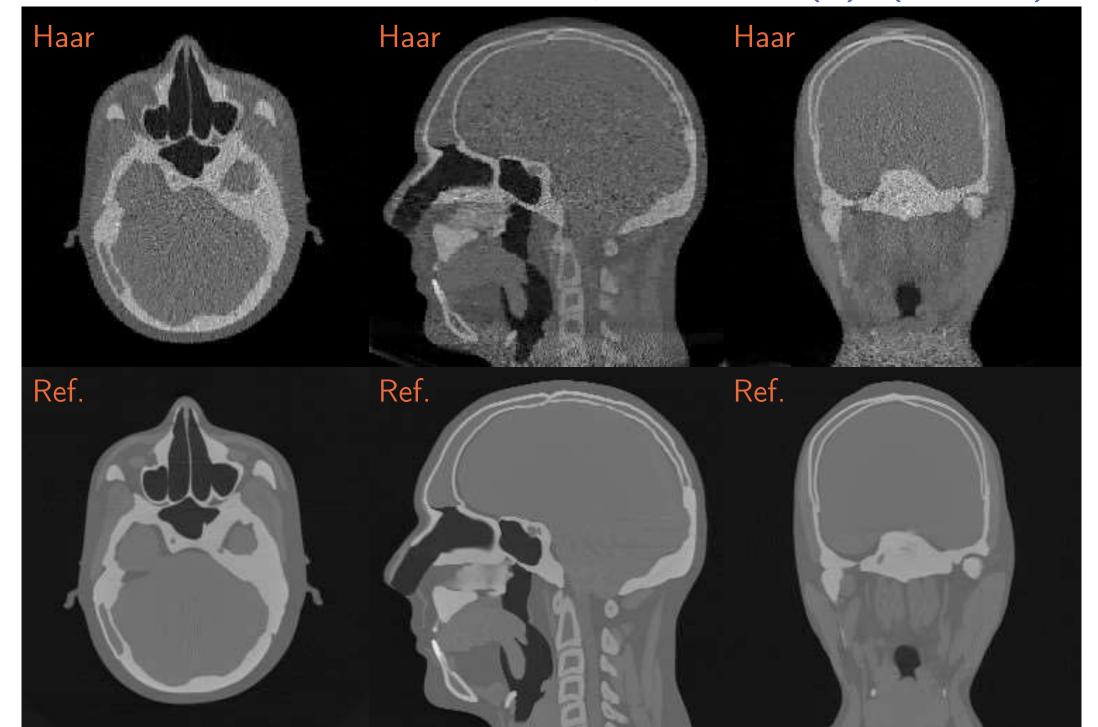
Haar wavelets, dose 1%, μ too small (1 · 10⁻⁶)



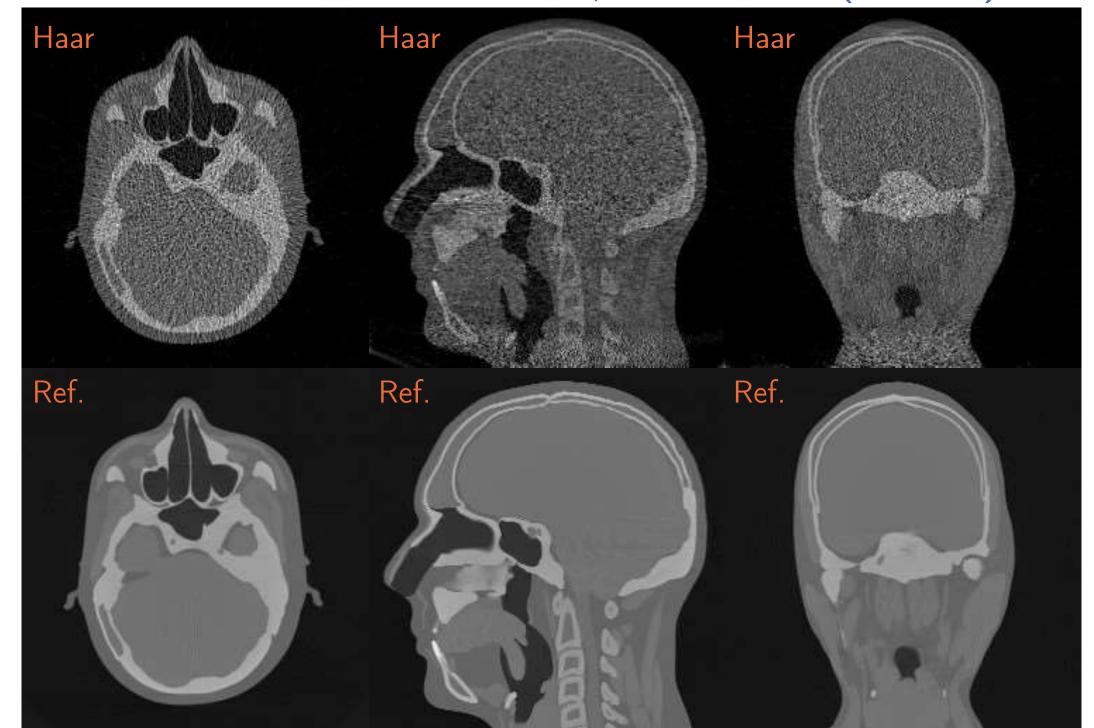
Haar wavelets, dose 0.1%, μ too large (1 · 10⁻⁴)



Haar wavelets, dose 0.1%, μ suitable (?) (5 · 10⁻⁵)



Haar wavelets, dose 0.1%, μ too small $(1 \cdot 10^{-5})$

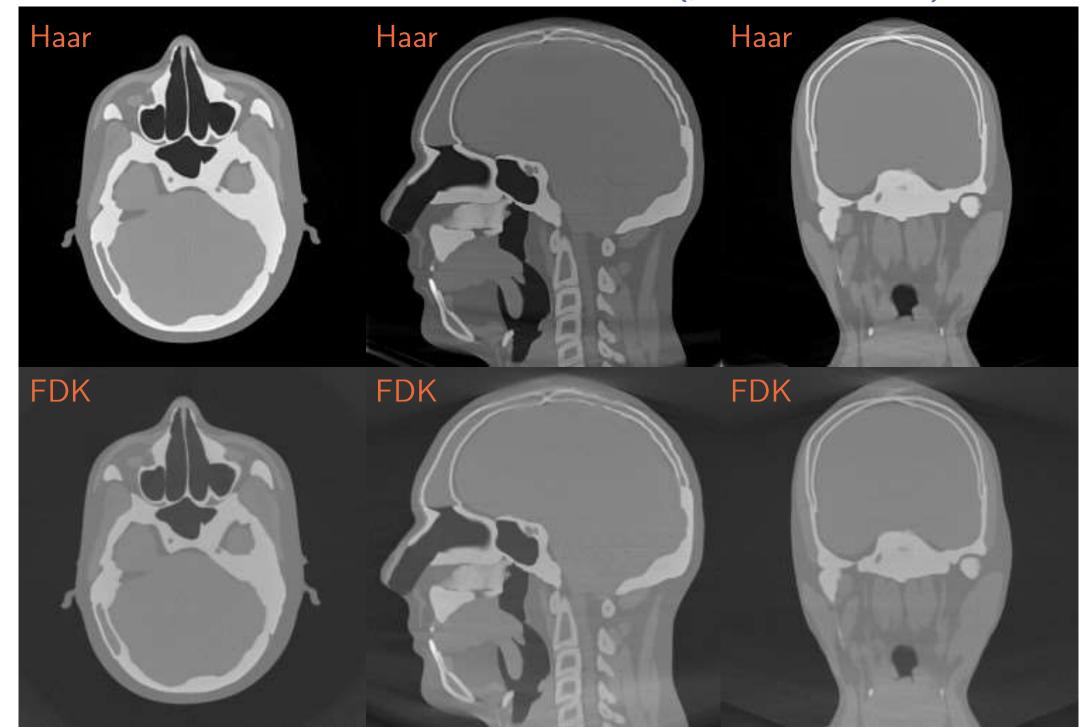


Haar Wavelet regularization

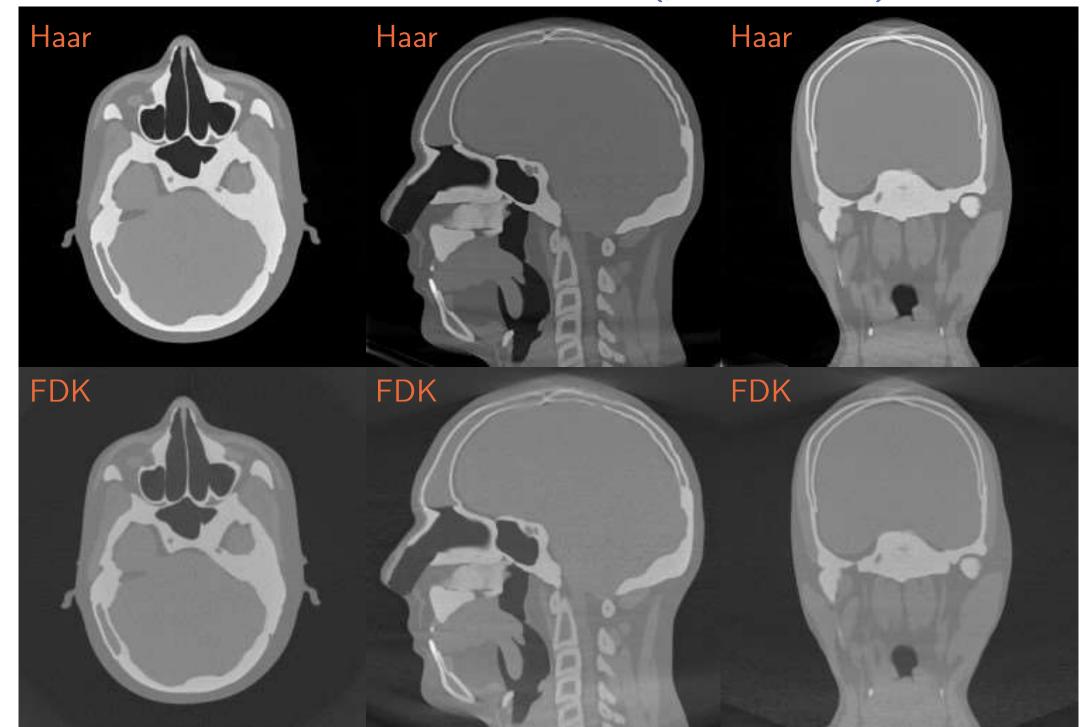
The true test:

How does Haar wavelet regularization compare to FDK?

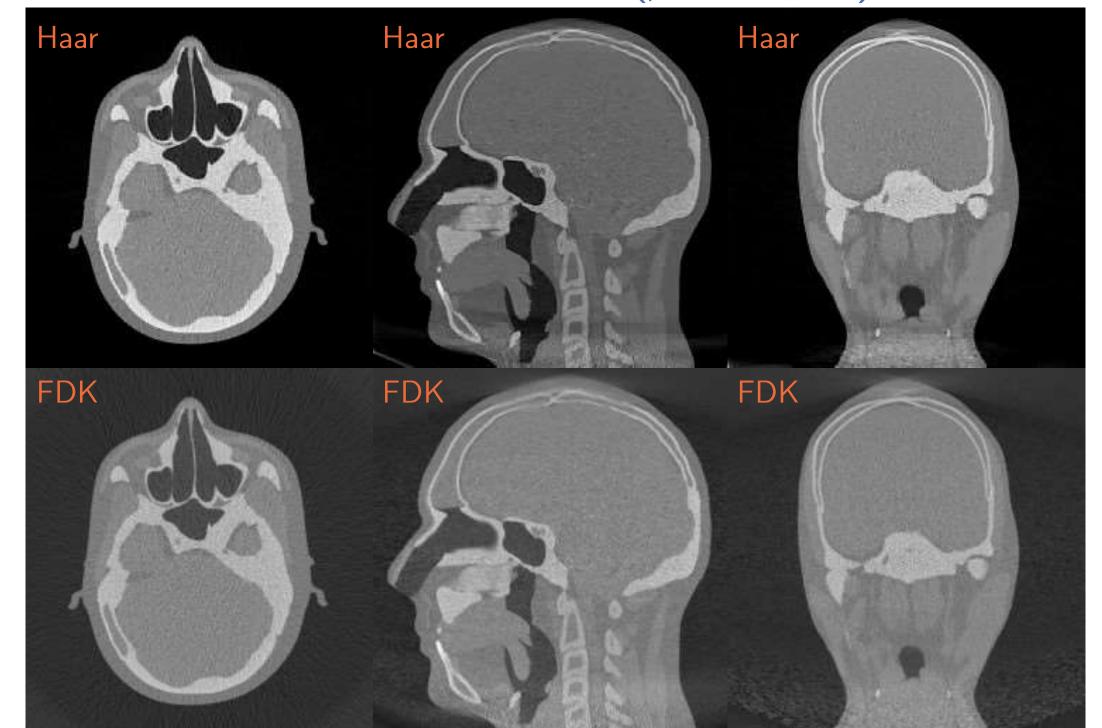
Haar-CT vs. FDK, dose 100% ($\mu = 2.5 \cdot 10^{-6}$)



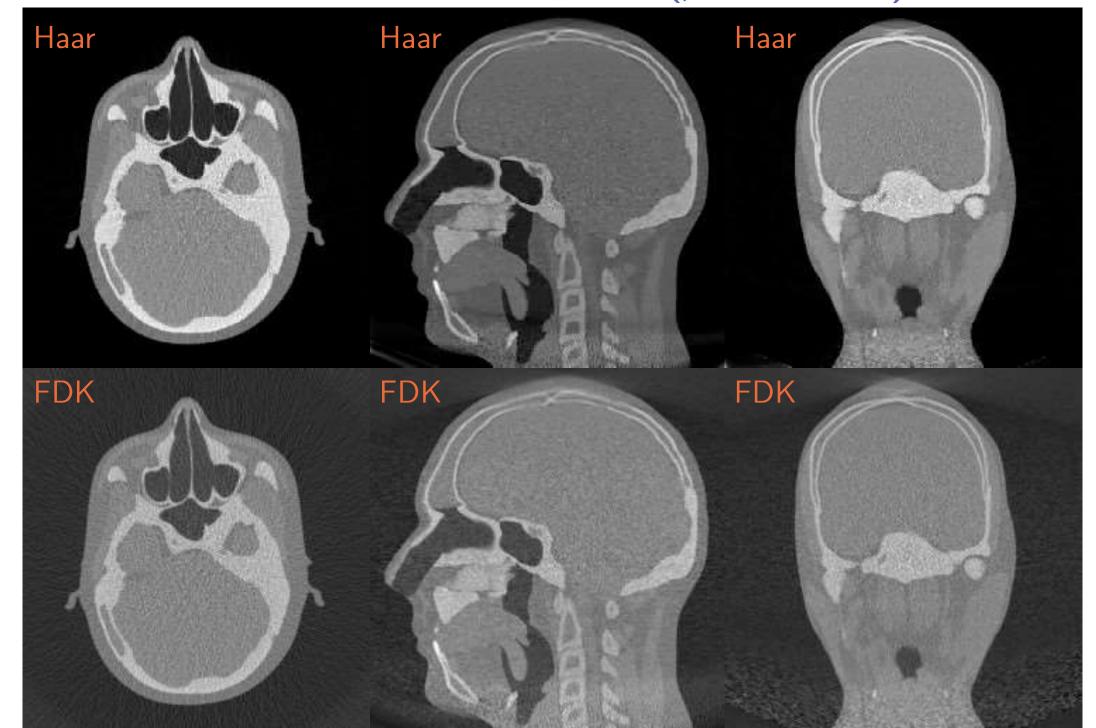
Haar-CT vs. FDK, dose 10% ($\mu = 5 \cdot 10^{-6}$)



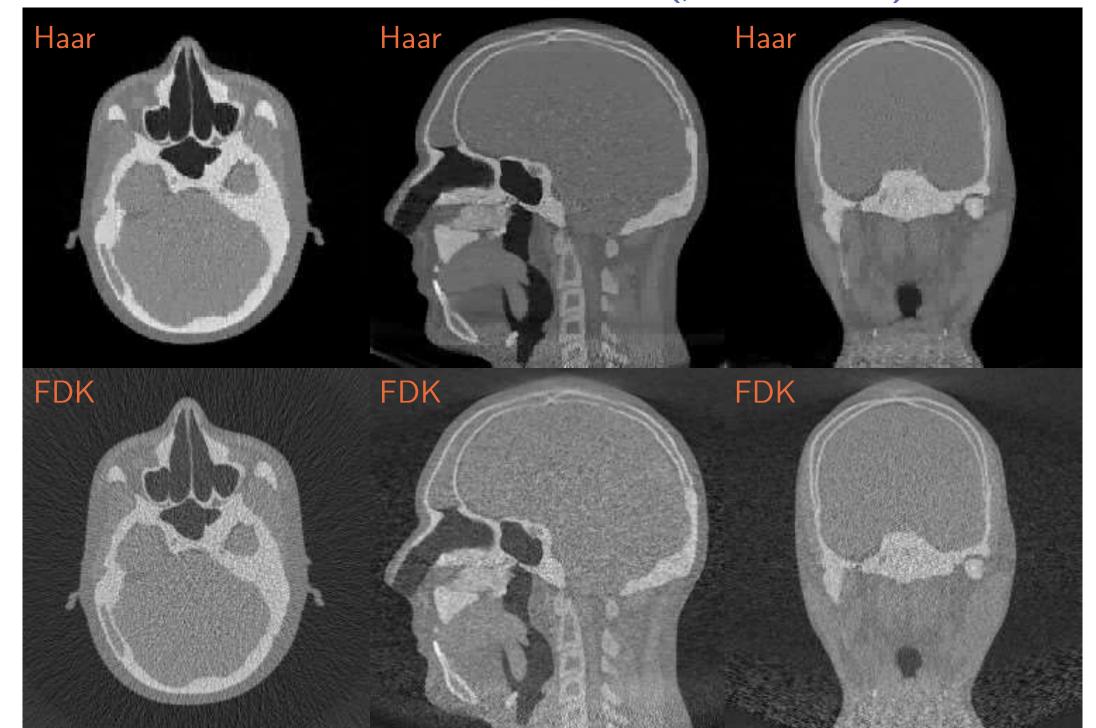
Haar-CT vs. FDK, dose 1% ($\mu = 1 \cdot 10^{-5}$)



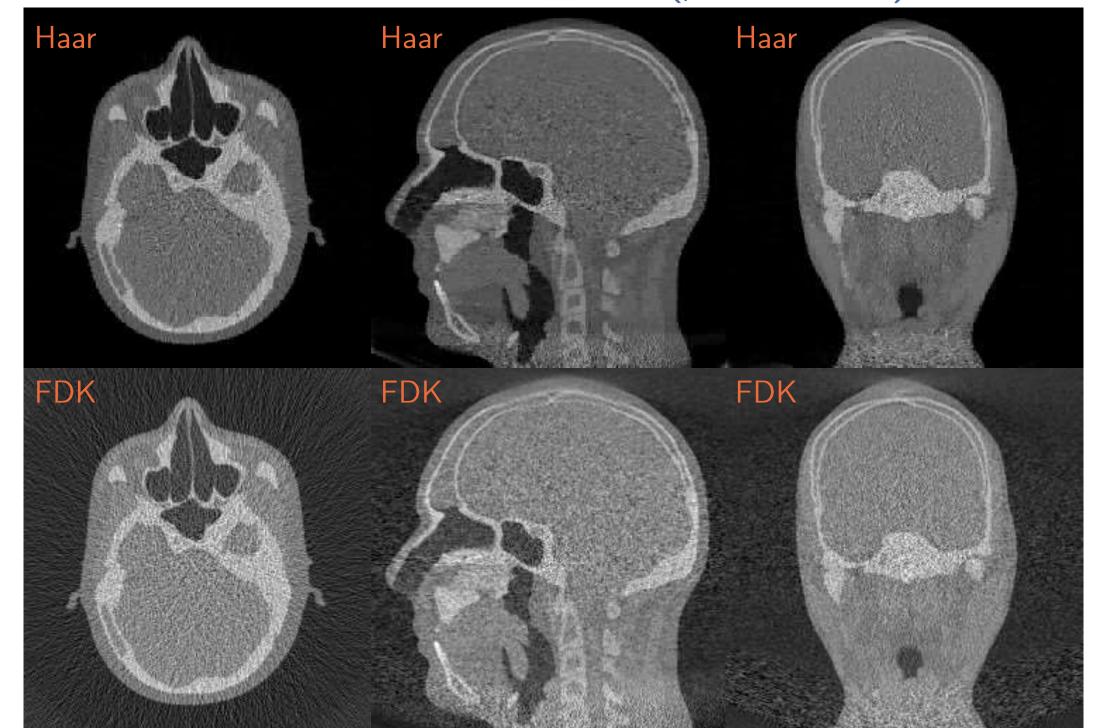
Haar-CT vs. FDK, dose 0.5% ($\mu = 2 \cdot 10^{-5}$)



Haar-CT vs. FDK, dose 0.2% ($\mu = 5 \cdot 10^{-5}$)



Haar-CT vs. FDK, dose 0.1% ($\mu = 5 \cdot 10^{-5}$)

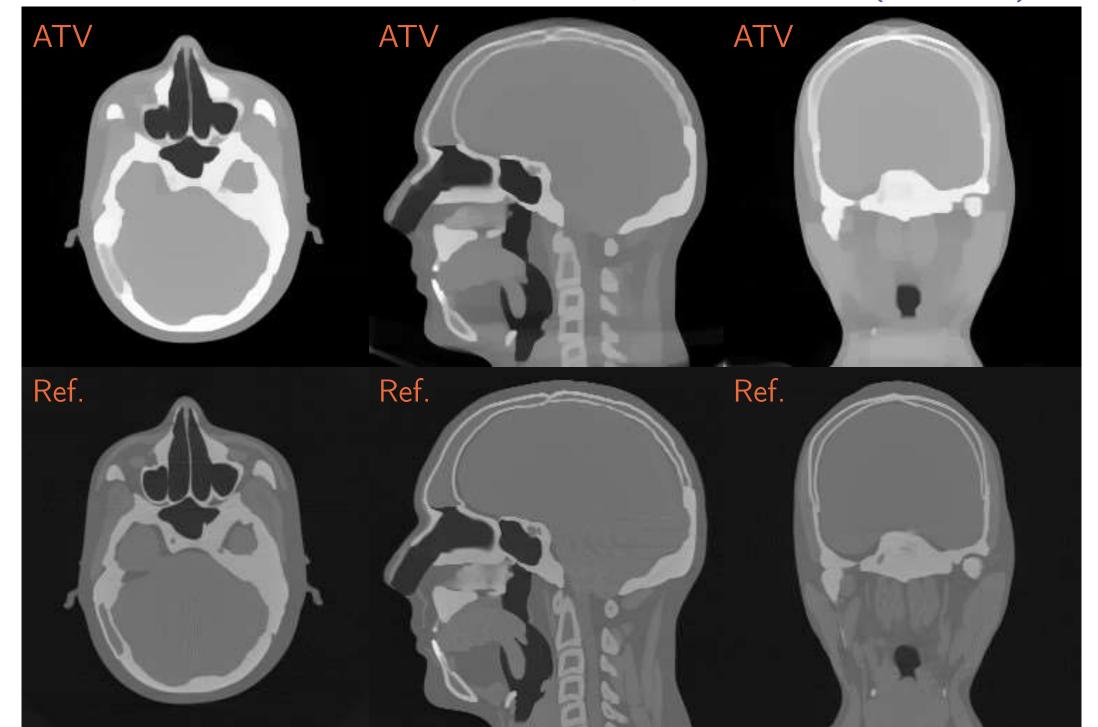


Reconstructions: Anisotropic Total Variation

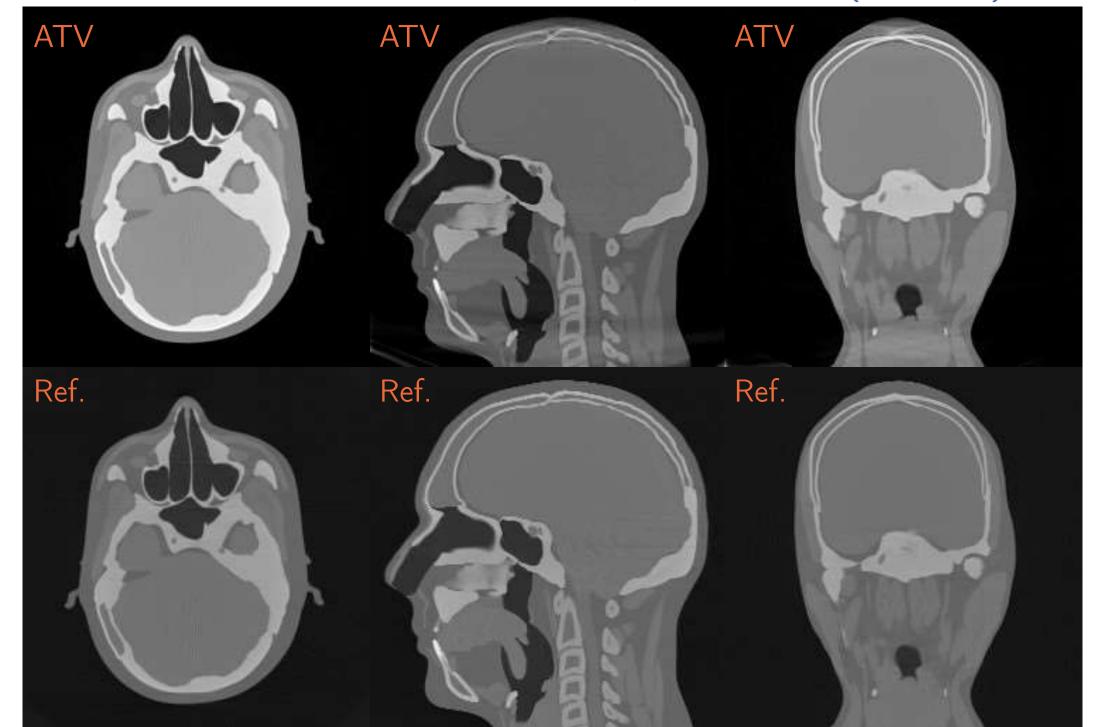
What does anisotropic total variation look like?

How does choice of μ affect the reconstruction?

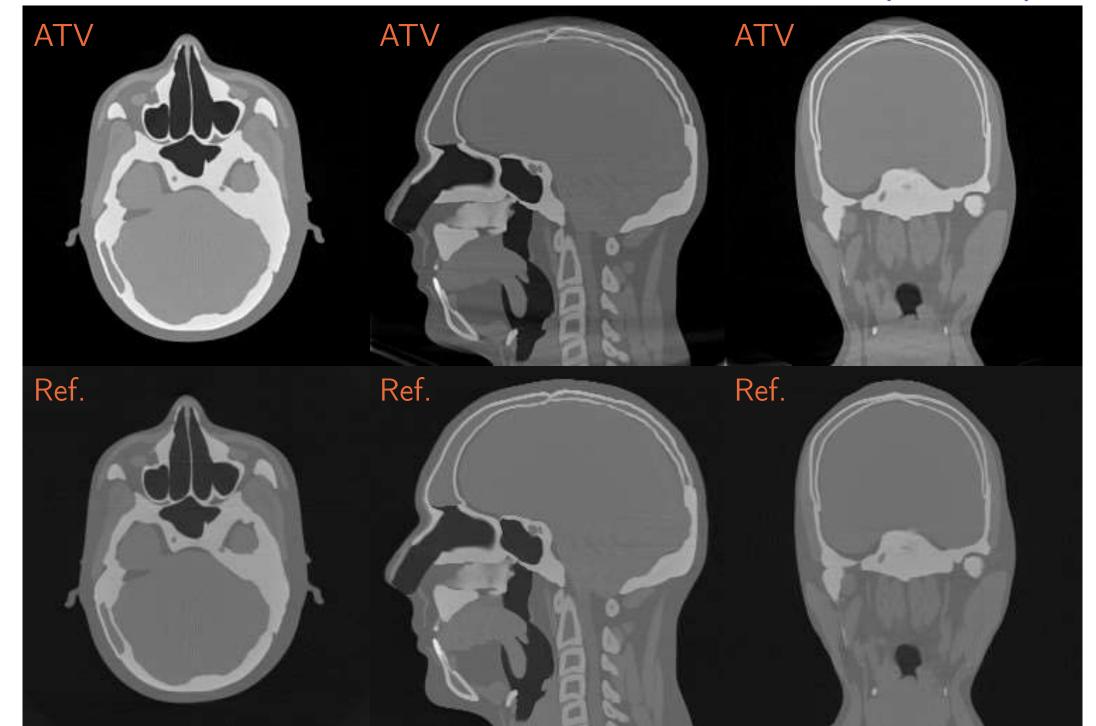
Anisotropic TV, dose 100%, μ too large (5 · 10⁻⁵)



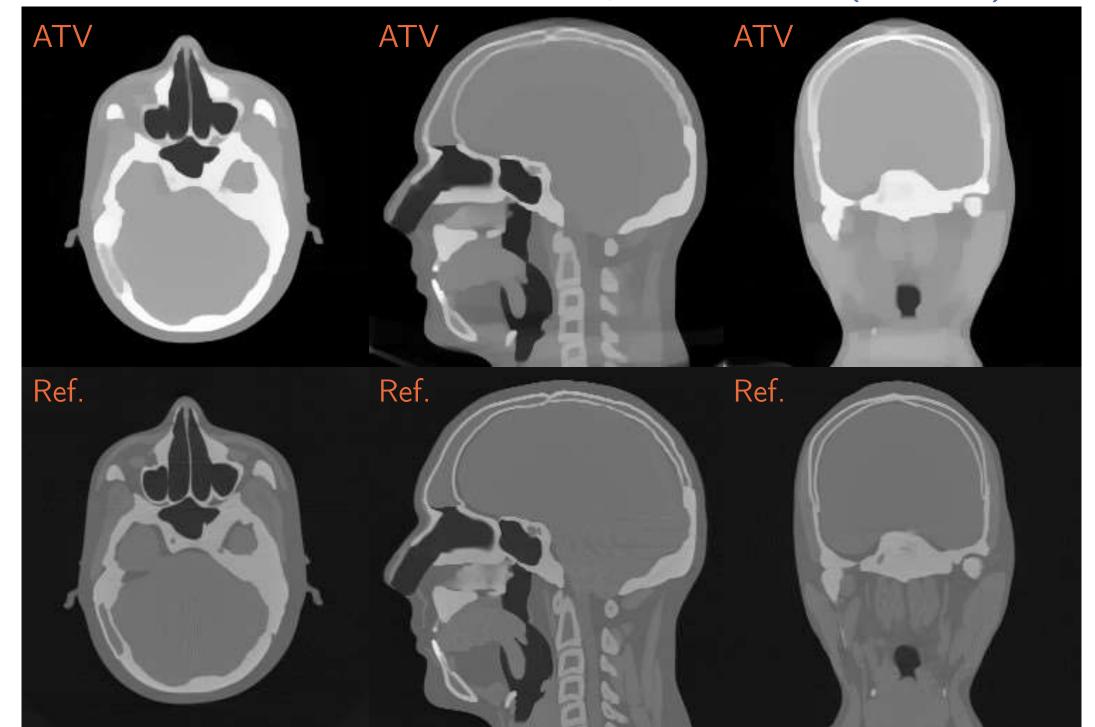
Anisotropic TV, dose 100%, μ suitable (5 · 10⁻⁷)



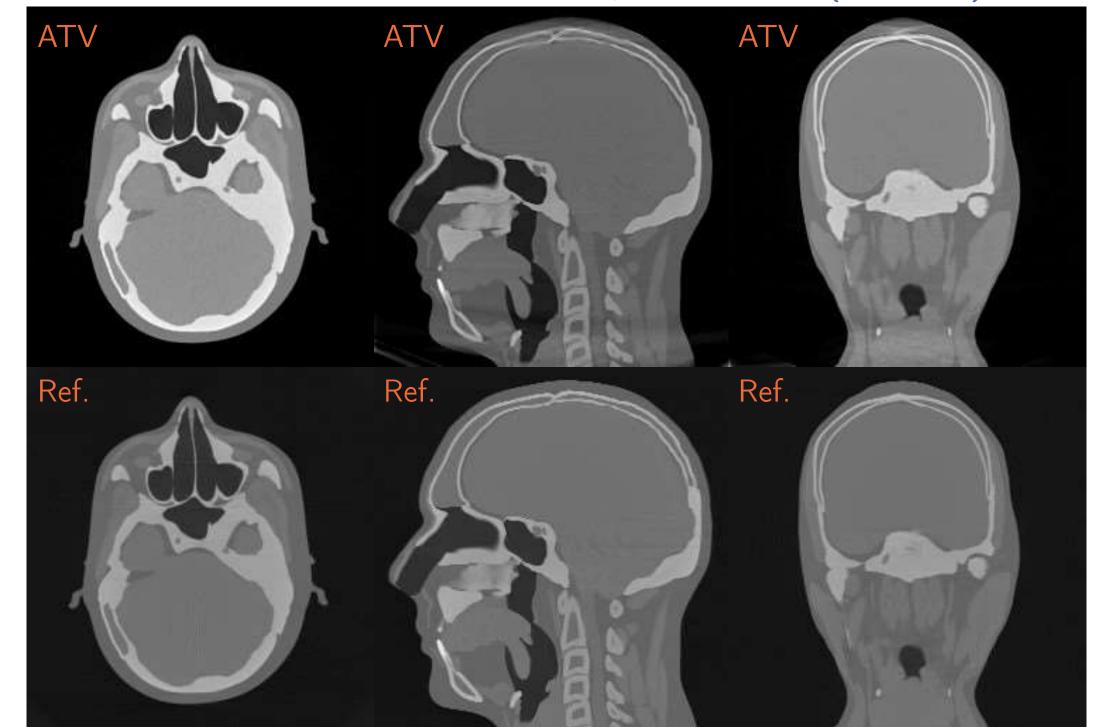
Anisotropic TV, dose 100%, μ too small $(1 \cdot 10^{-7})$



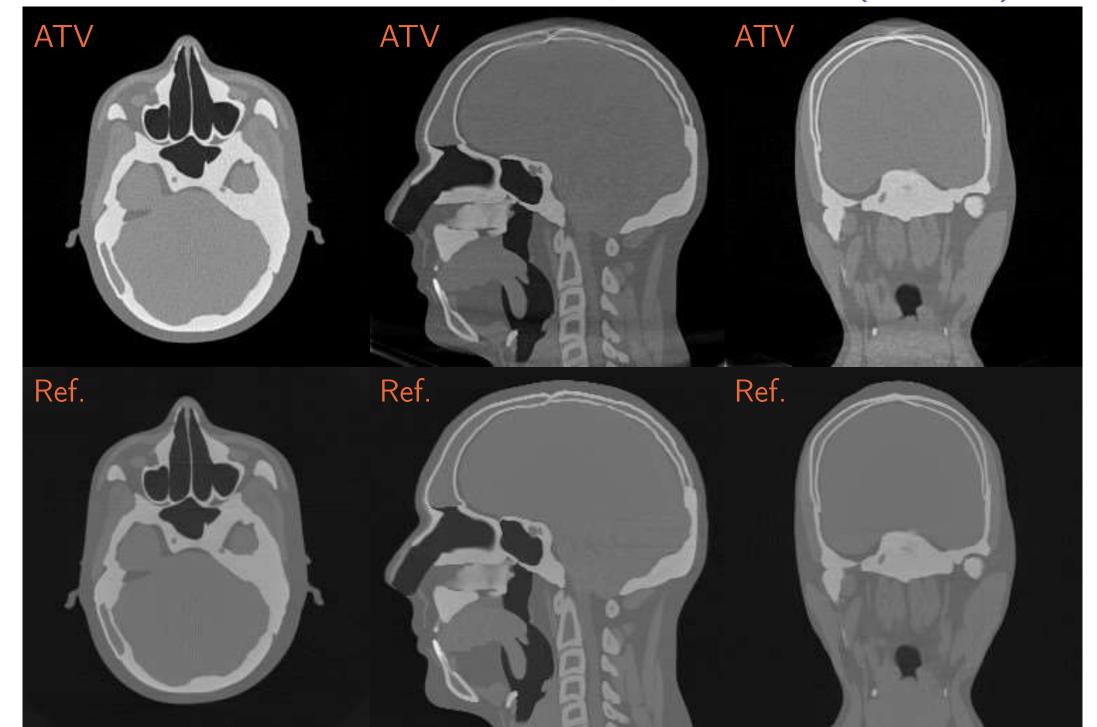
Anisotropic TV, dose 10%, μ too large (5 · 10⁻⁵)



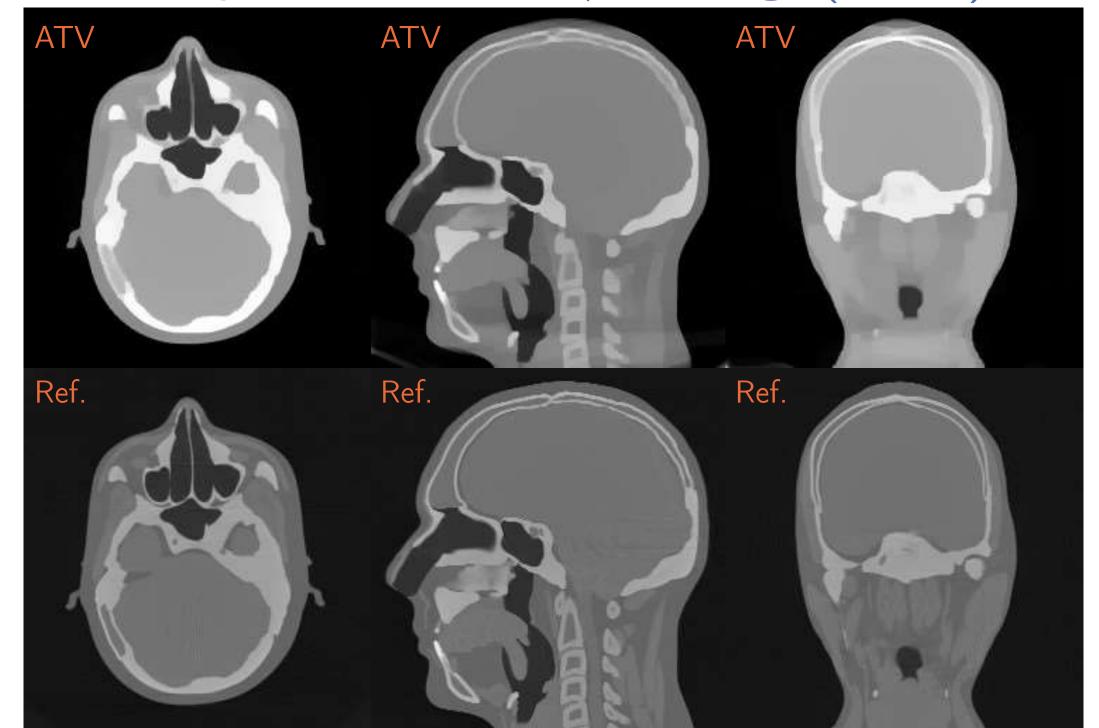
Anisotropic TV, dose 10%, μ suitable (1 · 10⁻⁶)



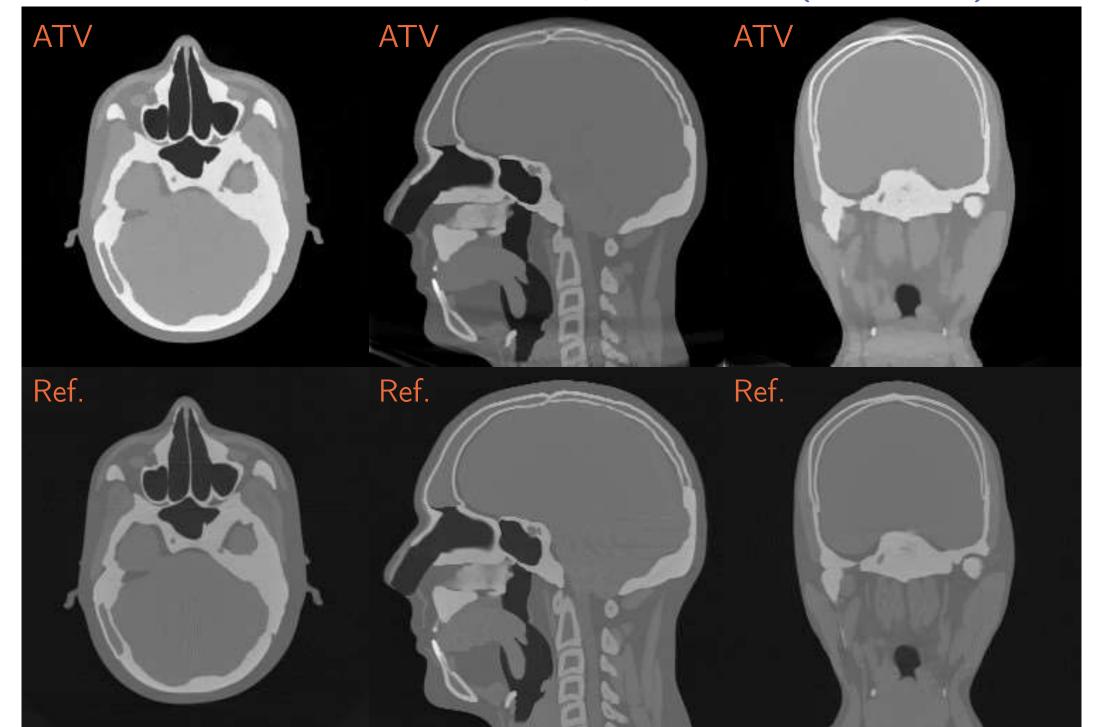
Anisotropic TV, dose 10%, μ too small $(1 \cdot 10^{-7})$



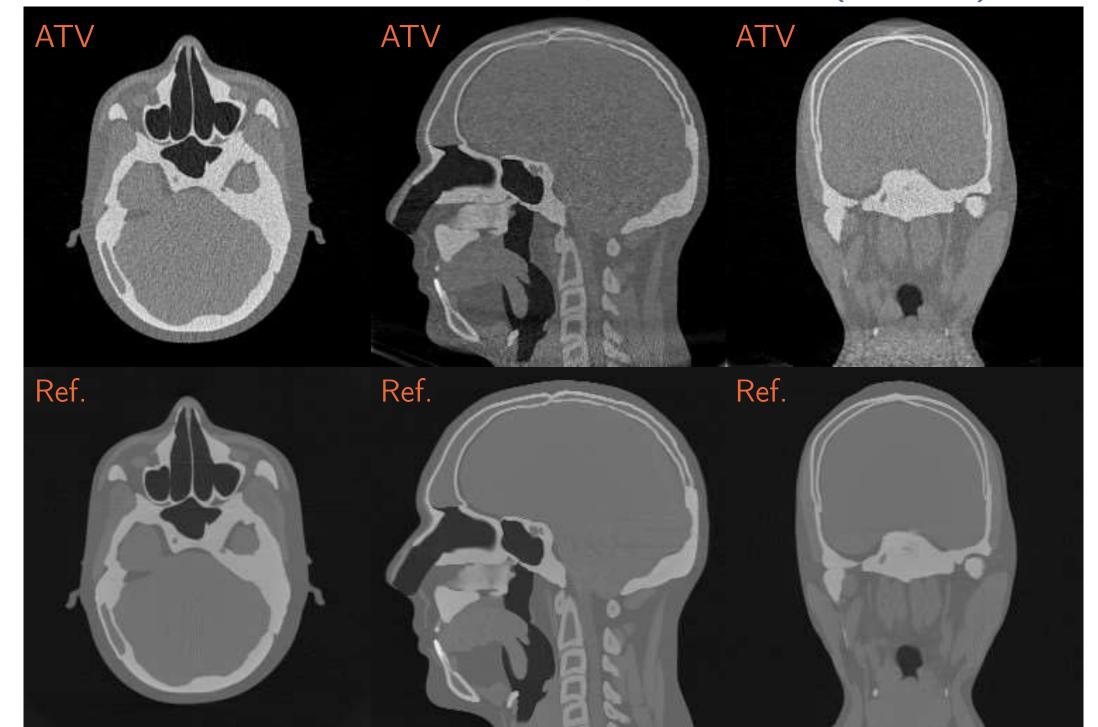
Anisotropic TV, dose 1%, μ too large (5 · 10⁻⁵)



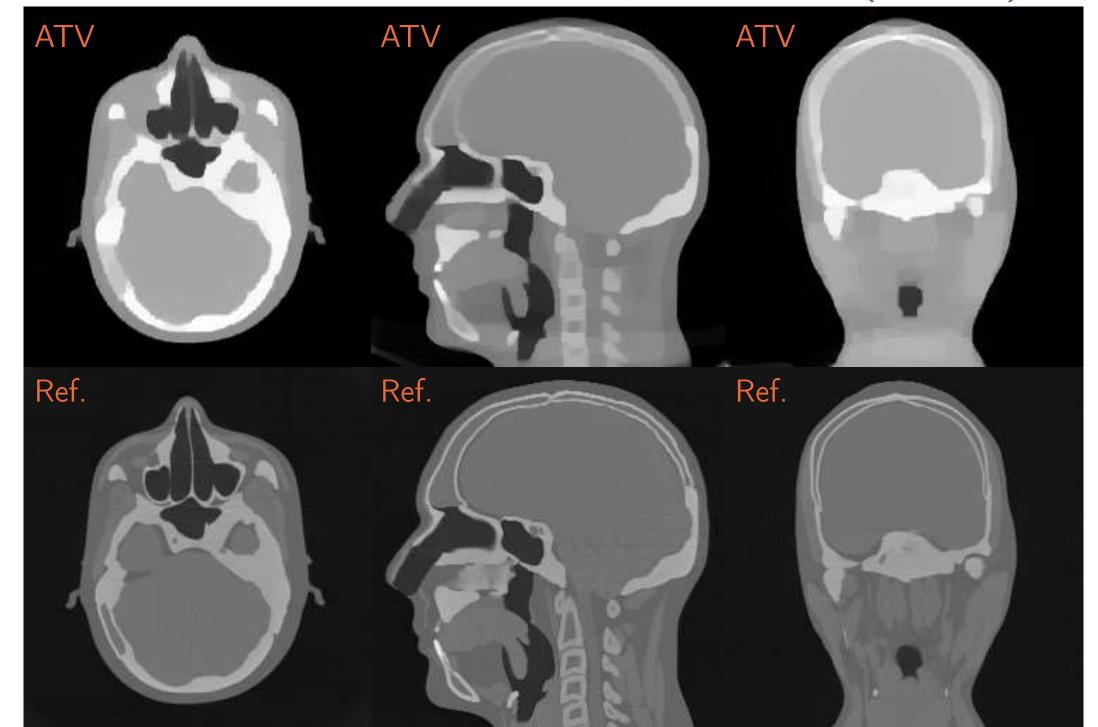
Anisotropic TV, dose 1%, μ suitable (7.5 · 10⁻⁶)



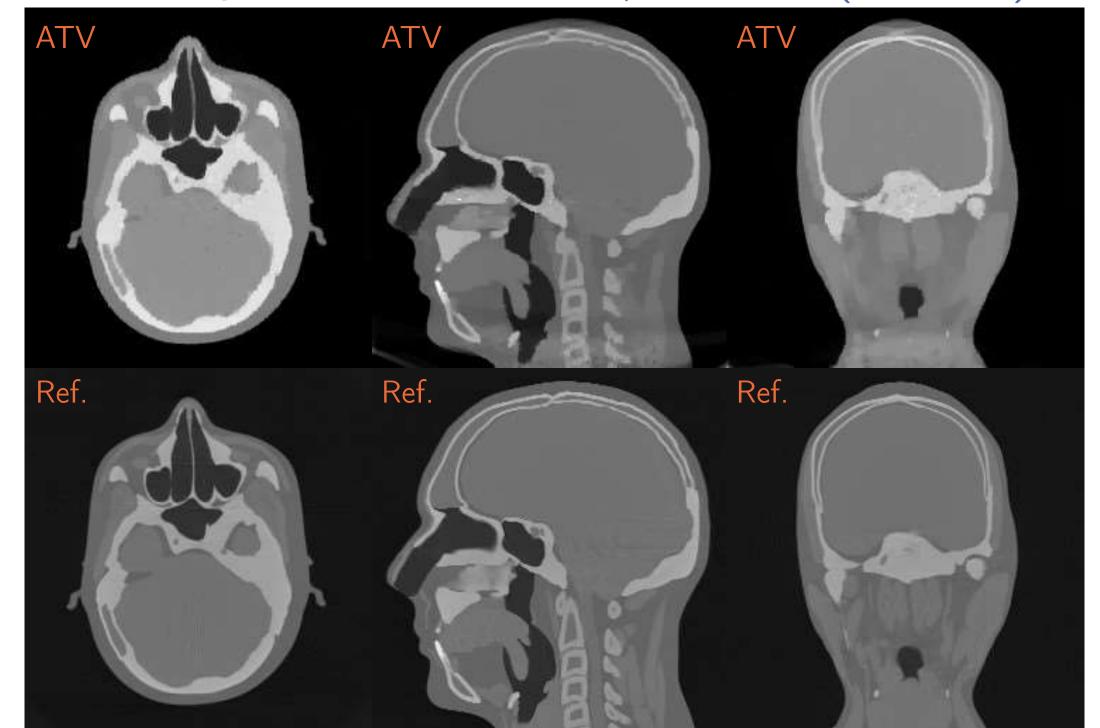
Anisotropic TV, dose 1%, μ too small (1 · 10⁻⁶)



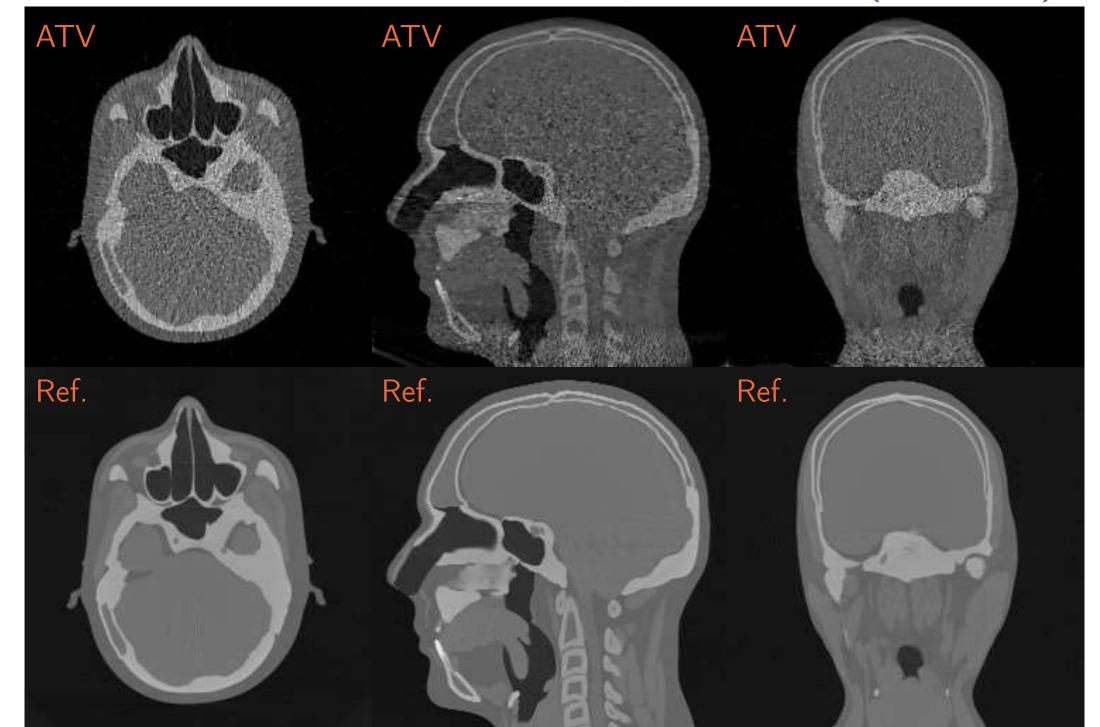
Anisotropic TV, dose 0.1%, μ too large $(1 \cdot 10^{-4})$



Anisotropic TV, dose 0.1%, μ suitable (2.8 · 10⁻⁵)



Anisotropic TV, dose 0.1%, μ too small (7.5 · 10⁻⁶)

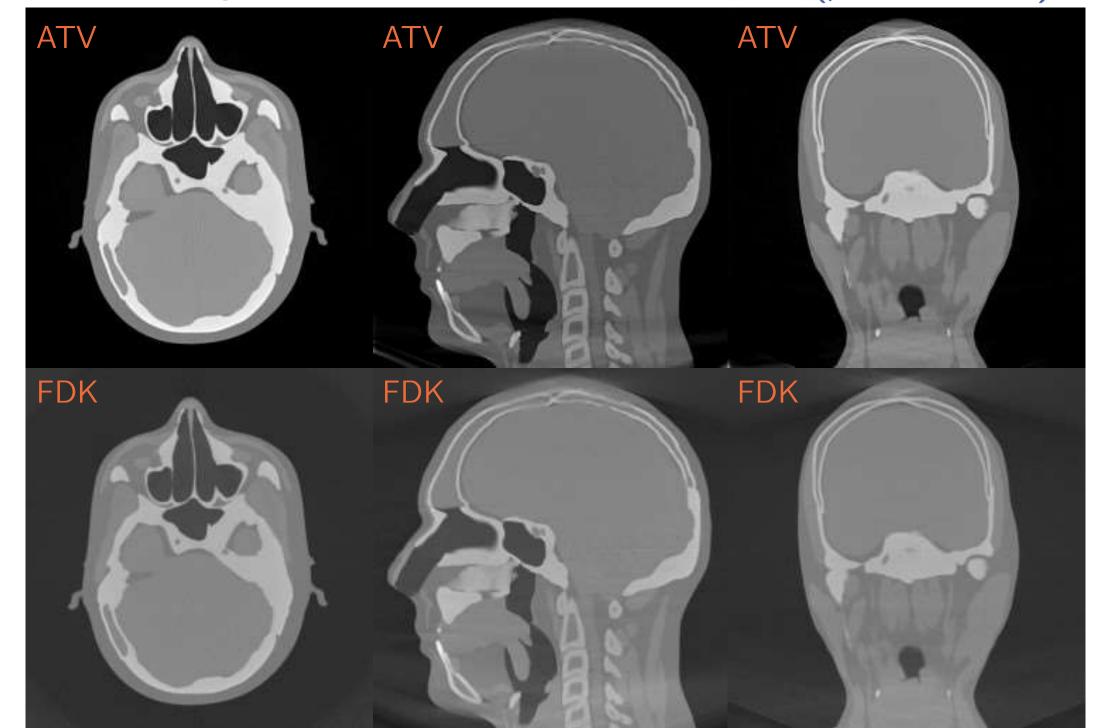


Anisotropic total variation regularization

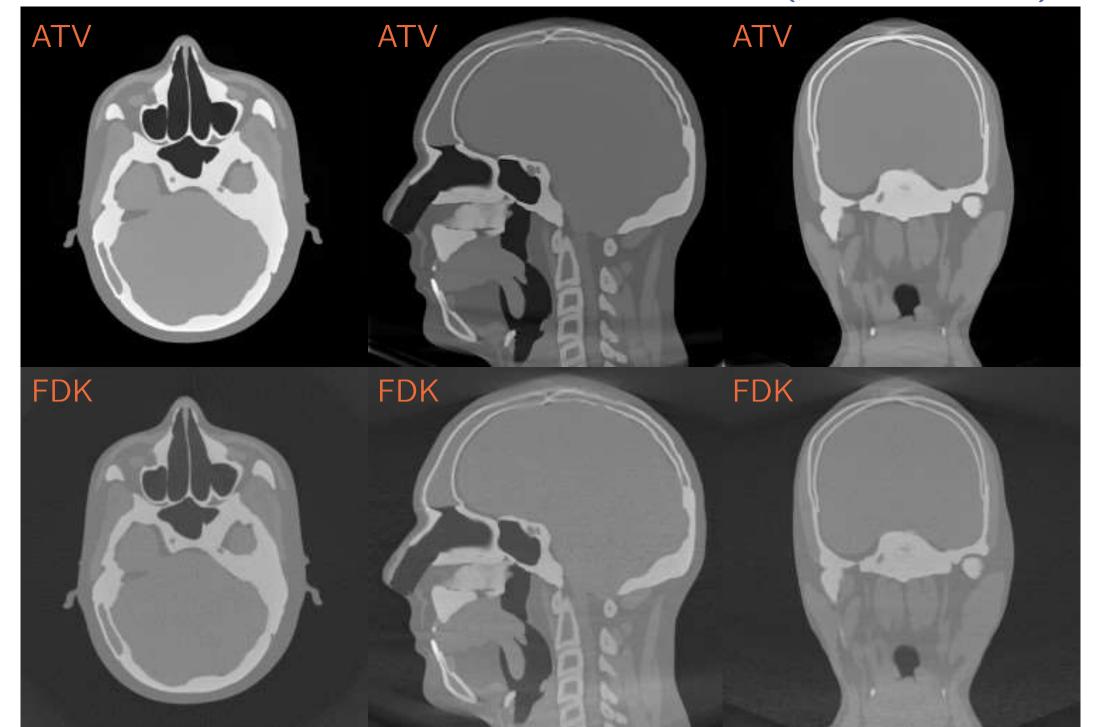
The true test:

How does anisotropic total variation regularization compare to FDK?

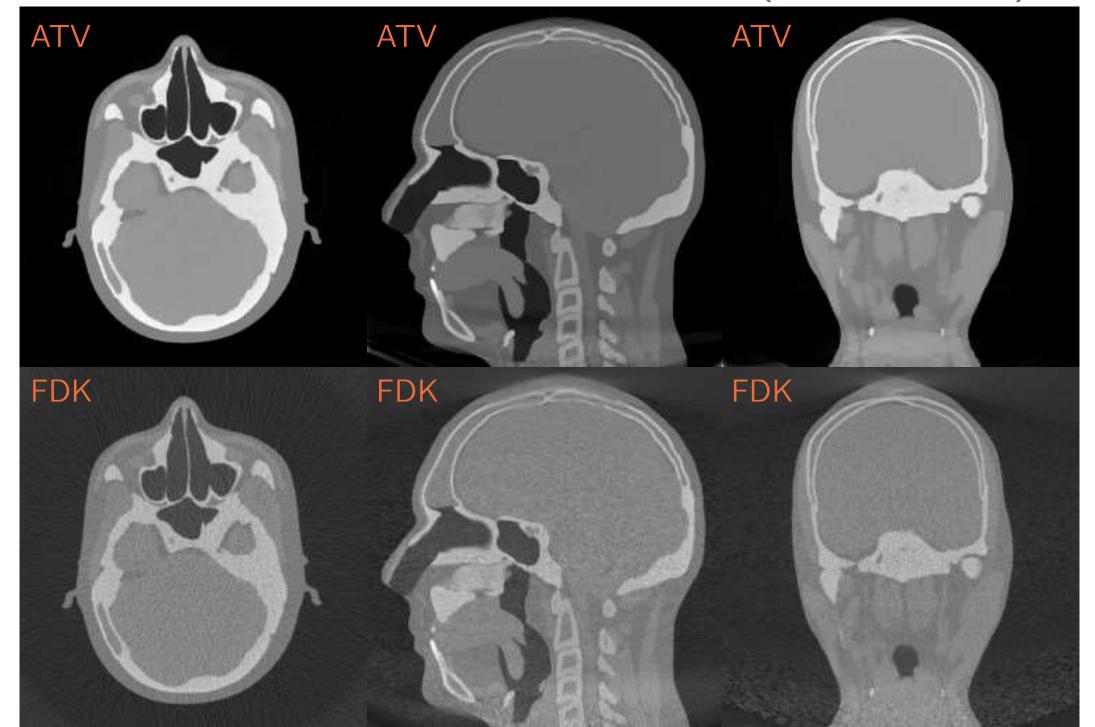
Anisotropic TV vs. FDK, dose 100% ($\mu = 5 \cdot 10^{-7}$)



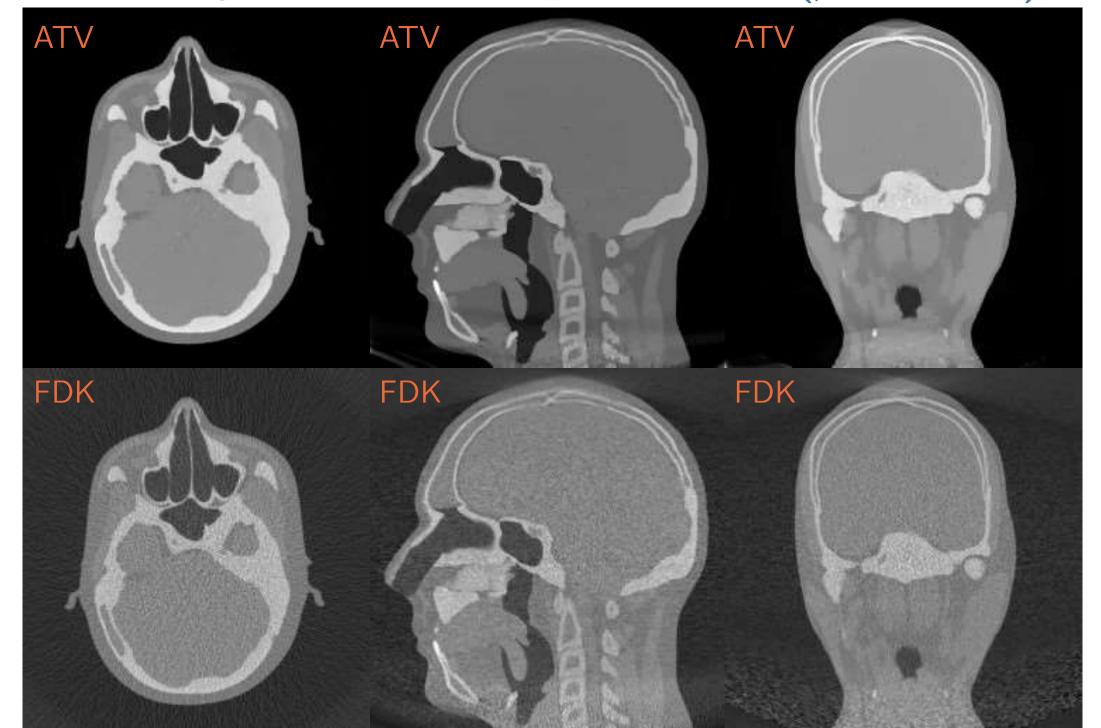
Anisotropic TV vs. FDK, dose 10% ($\mu = 2.5 \cdot 10^{-6}$)



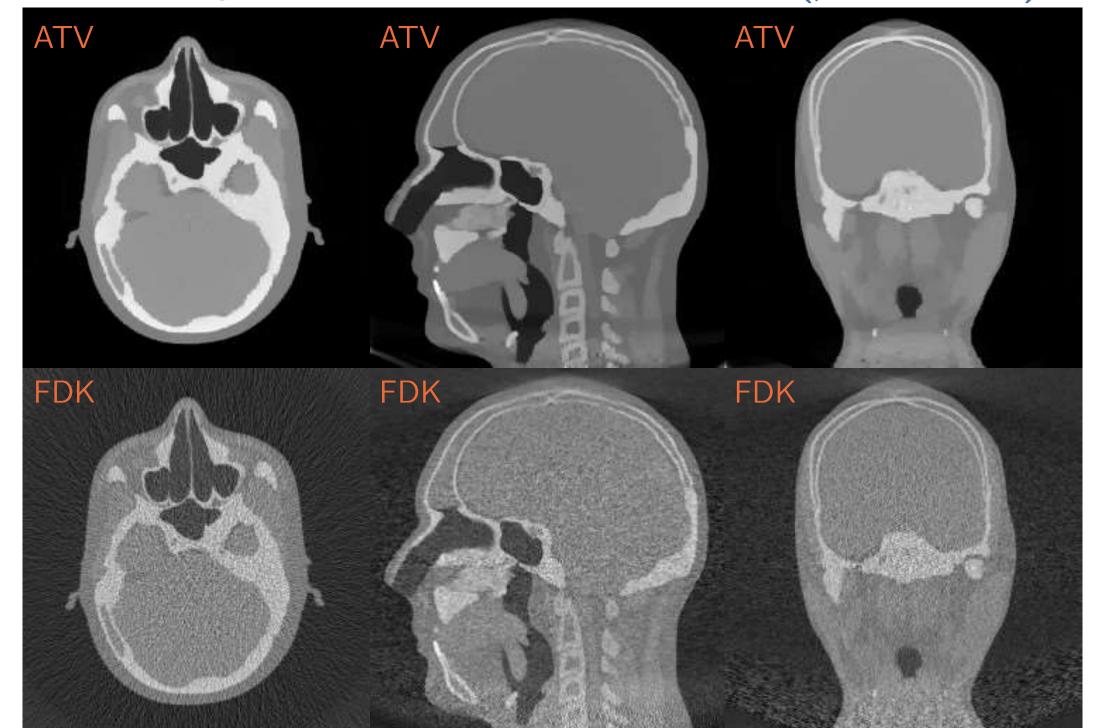
Anisotropic TV vs. FDK, dose 1% ($\mu = 7.5 \cdot 10^{-6}$)



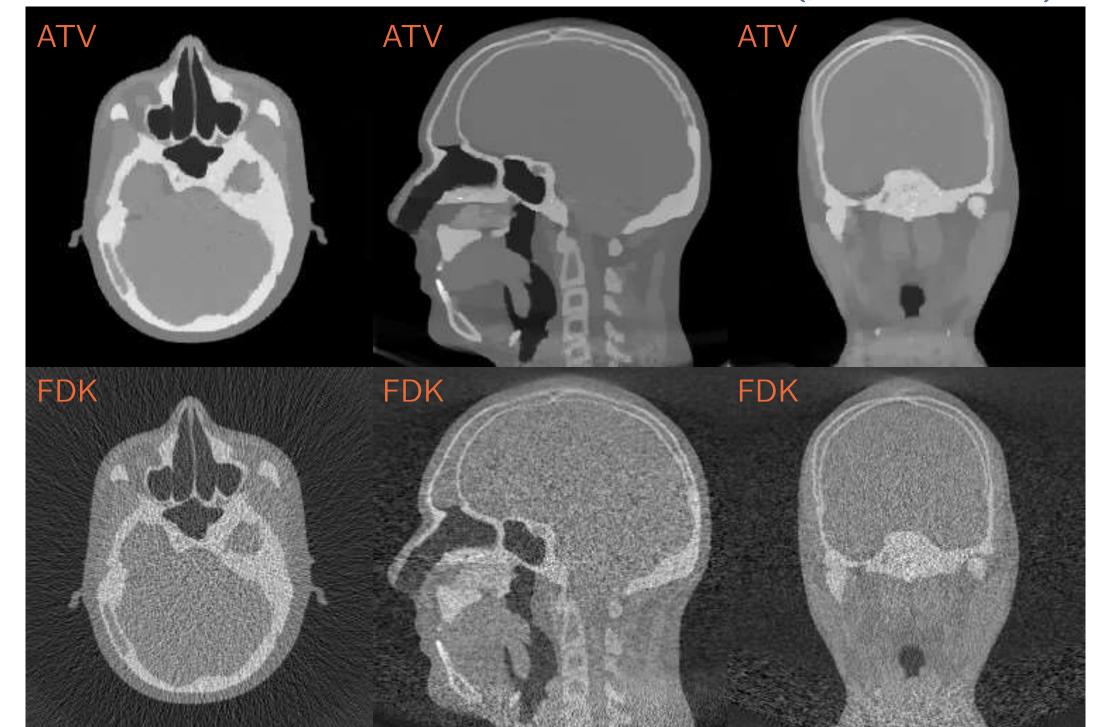
Anisotropic TV vs. FDK, dose 0.5% ($\mu = 1 \cdot 10^{-5}$)



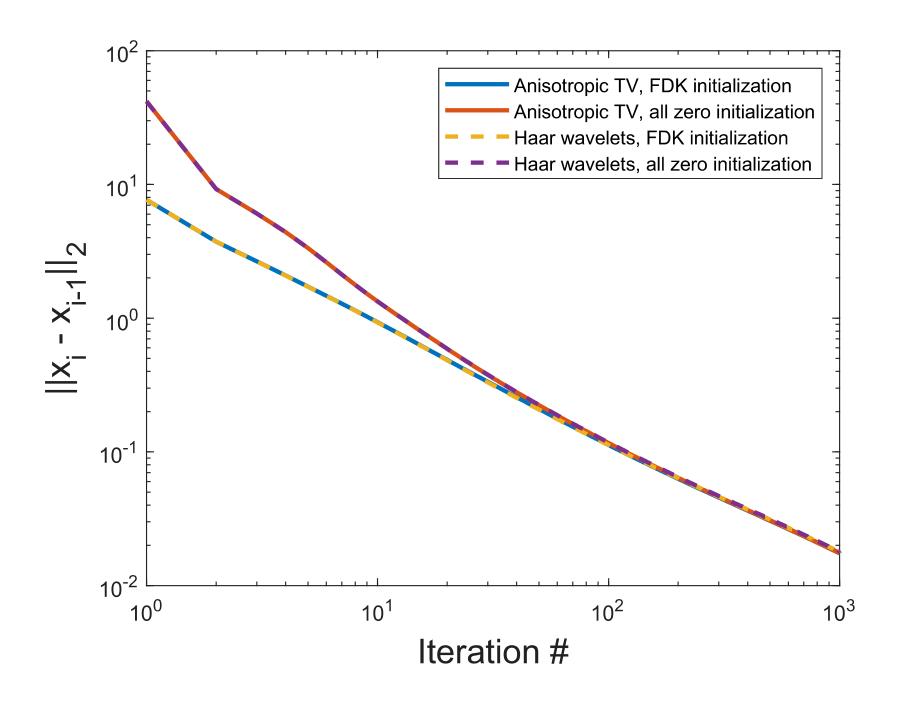
Anisotropic TV vs. FDK, dose 0.2% ($\mu = 2 \cdot 10^{-5}$)



Anisotropic TV vs. FDK, dose 0.1% ($\mu = 2.8 \cdot 10^{-5}$)



Convergence behaviour, dose 1%, $\mu = 1 \cdot 10^{-5}$



Conclusions and open questions

Iterative reconstruction techniques can improve soft tissue contrast in low dose CBCT.

Reconstruction quality is highly sensitive to choice of μ .

Long reconstruction times require semi-automated choice of regularization parameter.

Haar wavelet regularization begins to crumble at very low dose levels.

Sparsity of Haar and/or ATV components requires quantitative investigation.

