

Sisprobe and Helsinki region ambient noise surface wave tomography

Author: Roméo Courbis Geophysicist at Sisprobe romeo.courbis@sisprobe.com

20 May 2022

Wave physics and imaging applications workshop

Sisprobe overview

September 2019 :

- 3 offices (Grenoble/FRA, Los Angeles/USA, Hobart/AUS)
- 10 people + scientific board
- 200 Smartsolo IGU-16HR 3C nodes

September 2021 :

Egis buy Sisprobe

May 2022

(e)eqis

• 450 Smartsolo IGU-16HR 3C nodes

We are specialized in passive imaging and monitoring:

- Use ambient seismic noise to produce 3D Vs models and/or continuous seismic velocity monitoring.
- No use of active seismic sources as explosions or vibrating trucks.

- Allow us to work in city environments and protected areas
- Cost less
- Non-destructive
- Image with less resolution than active seismic

Sisprobe average project and applications

- Hundreds of nodes (1C or 3C)
- Array shape made by us to fit the objectives as much as possible
- 15 days 1 month of recording

Applications:

- Exploration for mine or oil industry
- Seismic hazard assessment
- Monitoring of infrastructures or subsurface

Node installation

Sources of ambient seismic noise

The seismic interferometry

The seismic interferometry in practice

Surface waves give:

- Information at depth;
- Average medium between the two stations

The seismic interferometry in practice

Surface waves give:

- Information at depth;
- Average medium between the two stations

Add stations to increase resolution.

9

ANSWT of a Messinian paleo-canyon in Tricastin region, Rhône valley, France

RIANCON

Extension of Messinian canyon and Pliocene infilling

Rhône paleo-canyon dug during Messinian crisis (-5.8Ma) and filled with sediments.

Credits:

- → High velocity contrast between sediments (sand, clay) and base rock (limestone).
- → Geological context favorable to ground motion amplification: site effects.
- → Need to investigate those effect to evaluate seismic hazard in the region where we have critical installations such as nuclear plants.
- → For this, we used a 3D velocity model obtained by ANSWT to image the paleo-canyon.

Experiment characteristics:

- \rightarrow 400 nodes (3 components)
- → 1 month of recording (February-March 2020)

ANSWT of a Messinian paleo-canyon in Tricastin region, Rhône valley, France

- → High velocity contrast between sediments (sand, clay) and base rock (limestone).
- → Geological context favorable to ground motion amplification: site effects.
- → Need to investigate those effect to evaluate seismic hazard in the region where we have critical installations such as nuclear plants.
- → For this, we used a 3D velocity model obtained by ANSWT to image the paleo-canyon.

Experiment characteristics:

- \rightarrow 400 nodes (3 components)
- → 1 month of recording (February-March 2020)

Monitoring of a stockpile at a mine facilities in Moanda, Gabon

Major Transportation Hub

• Crucial for mine operations

Challenging geotechnical context

- Steep slopes, locally 40°
- Unfavorably dipping clay-rich layer
- Two slippage surfaces
- Water table in the pelites is very sensitive to rainfall **Reinforcement measures**
- Construction of buttresses
- Pumping to lower the water table

20 May 2022

by *egis*

Objective of the project

- Use continuous recording to track seismic velocity change
- Create an automatic notification system when anomalous velocity change are detected.

Monitoring of a stockpile at a mine facilities in Moanda, Gabon

- Part of the Seismic Risk project: Mitigation of induced seismic risk in urban environments
- Example in Strasbourg (France): following induced earthquakes in 2019 and 2021 causing damages to infrastructures, no more authorization to continue.
- \Rightarrow Need to assess the seismic hazard!
- Sisprobe's job is to produce a 3D shear wave velocity model of the Helsinki capital region.
- Use of past deployments of seismic stations in 2016, 2018, and 2020.

Séismes à Strasbourg Au sommaire du dossier Vendenheim-Reichtetett • Géothermie profonde : « Plus aucune autorisation sur le site » Lors du comité de suivi, jeudi à Strasbourg, la préfète du Bas-Rhin a réaffirmé qu'il n'était pas question d'une reprise d'activité sur le site géothermique de Vendenheim-Reichstett. Par VB. - 05 mai 2022 à 20:511 mis à jour le 06 mai 2022 à 23:00 - Temps de lecture : 2 min Image: Im

https://www2.helsinki.fi/en/projects/seismic-risk

01/02

Suite aux séismes, la quasi-totalité des dossiers de sinistre ont été ex autour de 2 500 euros. Photo Archives DNA /JEAN-CHRISTOPHE DOR

Station map

Year	Number of stations	Number of components	Recording duration
2016	59	1	~32 days
2018	101	3	> 8 months
2020	90	3	> 8 months

Station map: area covered by the study

Year	Number of stations	Number of components	Recording duration
2016	59	1	~32 days
2018	101	3	> 8 months
2020	90	3	> 8 months

by **@egis**

Application of the seismic interferometry

- 2016 dataset
- Clear arrival at around 3km/s
- No clear dispersion
 => Rayleigh wave in
 a homogeneous
 medium?

Application of the seismic interferometry

- 2020 dataset
- Clear arrival at around 3km/s
- No clear dispersion

 => Rayleigh wave in
 a homogeneous
 medium?

Wave physics and imaging applications workshop

Application of the seismic interferometry

- 2020 dataset
- Clear arrival at around 3.5km/s
- No clear dispersion
 => Love wave in a homogeneous medium?

by **@egis**

00:00:06

0.4

 Different velocity at different frequency are measured
 => multiple layer(s)

00:00:10

00:00:08

Sensitive down to ~1000-1500m depth

20 May 2022

by **egis**

- Velocity more or less equal at different frequency are measured
 tend toward homogenous medium
- Sensitive down to ~1000-1500m depth

Cross-correlation between: OT.PM02atioOT.SS(00B|01|06)

Rayleigh wave dispersion curves

25

by **@egis**

- One map per frequency
- Each map contains N-paths
- Each path = group velocity

Frequency

by **@egis**

20 May 2022

by **@egis**

Rayleigh wave group velocity map at 1s

28

Wave physics and imaging applications workshop

by **@egis**

Group velocity maps to 3D Vs model

Rayleigh wave group velocity map at 1s

Group velocity maps to 3D Vs model

Rayleigh wave group velocity map at 1s

Wave physics and imaging applications workshop

by **@egis**

1D Vs model parameters explored by the inversion

by **@egis**

Parameters	Min	Max
d1	5 m	100 m
d2	750 m	2,5 km
d3	3 km	4.5 km
d4	6 km	10 km
v1	500 m/s	4 km/s
v2	3 km/s	4 km/s
v3	3 km/s	4 km/s
v4	3 km/s	4 km/s
v5	3 km/s	4.5 km/s

Example of inverted 1D Vs model

Example of inverted 1D Vs model

Slice in the inverted 3D Vs model

by **@egis**

Wave physics and imaging applications workshop

Slice in the inverted 3D Vs model

Tomography model of the Helsinki capital region: Conclusion and future work

20 May 2022

by **egis**