Computational methods for acoustic inverse problems

Lauri Oksanen University of Helsinki

Based on a joint work with Maarten de Hoop and Paul Kepley

Inverse boundary value problem

Consider the wave equation

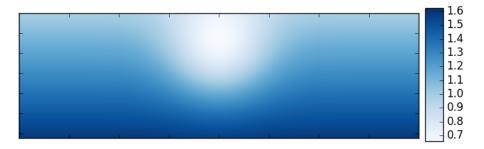
$$\begin{split} \partial_t^2 u - c^2(x) \Delta u &= 0, \quad \text{in } (0, \infty) \times \Omega, \\ \partial_\nu u|_{x \in \partial \Omega} &= f, \\ u|_{t=0} &= \partial_t u|_{t=0} = 0, \end{split}$$

and define the Neumann-to-Dirichlet map by $\Lambda f = u|_{x \in \partial \Omega}$. This corresponds to Green's function on the surface $\partial \Omega$ of the region Ω .

Inverse problem. Determine c given Λ .

Global uniqueness holds, that is, Λ determines c without any further information (such as a good initial guess for c).

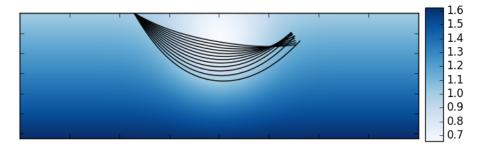
Example



Speed of sound c(x). Surface is on top.

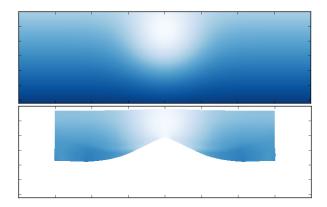
The speed increases in the depth and there is a slow region in the middle.

Example



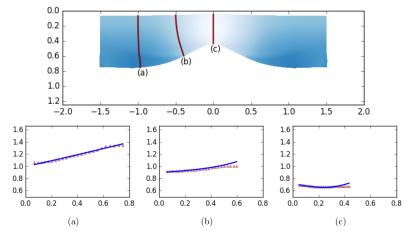
Shortest paths with respect to travel time focus behind the lens. These are geodesics with respect to the Riemannian metric $c^2(x)dx^2$.

Reconstruction



Reconstruction from simulated measurements with 241 point like sources on the top edge [DE HOOP-KEPLEY-L.O.'18]

Reconstruction



True c (blue) and its reconstuction (red) along a shortest path

Boundary Control method

Inverse problem. Determine c given Λ .

- Solved using the Boundary Control method [BELISHEV'87]
- The method is based on hyperbolic unique continuation [TATARU'95] which is unstable
- Regularization can be used to trade resolution for stability
- Prospect: find a good initial guess for data fitting, for example, full waveform inversion

Rough idea of the Boundary Control method

- 1. Construct localized waves by solving blind control problems
- 2. Probe the unknown medium by using localized waves

Localized pressure field at a fixed time, computed in the case c = 1

Rough idea of the Boundary Control method

- 1. Construct localized waves by solving blind control problems
- 2. Probe the unknown medium by using localized waves

Control problem from the boundary

Given a function ϕ on Ω and a regularization parameter $\alpha > 0$, minimize

$$\left\| u^{f}(T) - \phi \right\|_{L^{2}(\Omega)}^{2} + \alpha \left\| f \right\|_{L^{2}((0,T) \times \partial \Omega)}^{2}$$

subject to u^f satisfying the wave equation

$$\partial_t^2 u - c^2(x)\Delta u = 0, \quad \text{in } (0,\infty) \times \Omega,$$

$$\partial_\nu u|_{x \in \partial \Omega} = f,$$

$$u|_{t=0} = \partial_t u|_{t=0} = 0.$$

When T > 0 is large enough, the unique minimizer f_{α} satisfies

$$u^{f_{\alpha}}(T) \to \phi, \quad \alpha \to 0.$$

Blind control problem

Some control problems can be solved without knowing the speed of sound:

$$\underset{f}{\operatorname{argmin}} \| u^{f}(T) - 1 \|_{L^{2}(\Omega; c^{-2}d\times)}^{2} + \alpha \| f \|_{L^{2}((0,T)\times\partial\Omega)}^{2}$$
(1)

subject to u^f satisfying the wave equation.

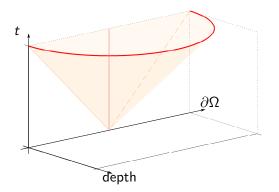
Minimization (1) is equivalent with solving $(K + \alpha)f = b$, where

$$K = J\Lambda - R\Lambda RJ, \quad b(t) = T - t.$$

Here Λ is the Neumann-to-Dirichlet map, and

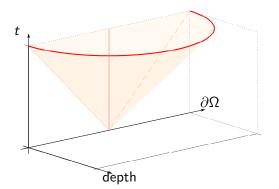
$$Jf(t) = \frac{1}{2} \int_{t}^{2T-t} f(s) ds, \quad Rf(t) = f(T-t).$$

Finite speed of propagation and supports



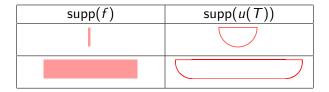
If the source f vanishes outside the pink line, then u vanishes outside the cone, and u(T), for fixed T, vanishes outside the half disk inside the red arc.

Finite speed of propagation and supports



If the source f vanishes outside the pink line, then u vanishes outside the cone, and u(T), for fixed T, vanishes outside the half

disk inside the red arc.



Blind control problem with a support constraint

Let $\Gamma \subset \partial \Omega$ and $r \in (0, T)$. Consider the minimization

$$\underset{f}{\operatorname{argmin}} \| u^{f}(T) - 1 \|_{L^{2}(\Omega; c^{-2}dx)}^{2} + \alpha \| f \|_{L^{2}((0,T) \times \partial \Omega)}^{2}$$

subject to u^f satisfying the wave equation and

$$\operatorname{supp}(f) \subset [T - r, T] \times \Gamma.$$

The unique minimizer f_{α} satisfies

$$\lim_{\alpha \to 0} u^{f_{\alpha}}(T, x) = \mathbb{1}_{M(\Gamma, r)}(x) := \begin{cases} 1, & x \in M(\Gamma, r) \\ 0, & \text{otherwise} \end{cases},$$

where $M(\Gamma, r) \subset \Omega$ is the maximal set that the waves from Γ can reach in r time units. It is often called a domain of influence.

Different support constraints

Let d(x, y) be the travel time between a pair of points in Ω (i.e. the distance function on the Riemannian manifold $(\Omega, c^{-2}dx^2)$). Then

$$\Gamma = \{x \in \Omega, \ u(x,1) \leq 1\}.$$

 $M(\Gamma, r) = \{v \in O, d(v, \Gamma) < r\}$

Blind control problem with wide $\boldsymbol{\Gamma}$

Blind control problem with narrow Γ and larger r

Localized waves in theory

1. Support of f constrained in the union of the wide and narrow Γ

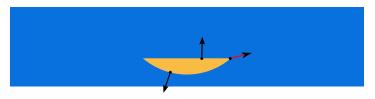
2. Support of f constrained in the wide Γ alone

3. Difference

Localized waves in practice

Localized waves have artifacts due to the instability of the control problem

The sharp corners can not be produced in a stable way by using wave fronts coming from the surface on ${\rm top}^1$



¹This can be turned to a theorem using microlocal analysis

Ongoing work: regularization of blind control problems

Regularization on the discrete level after a finite element discretization

- Gives optimal convergence for stable control problems [BURMAN-FEIZMOHAMMADI-MÜNCH-L.O.]
- Gives optimal convergence for unstable unique continuation problems in the frequency domain [BURMAN-NECHITA-L.O.'19]

Open questions

- How to treat unstable control problems?
- How to treat blind control problems?