

Gravitational wave cosmology

Oavid J. Weir [they/he] david.weir@helsinki.fi - J davidjamesweir Wave physics and imaging applications workshop, 2022 This talk: saoghal.net/slides/waves

Hello

- Academy Research fellow and Associate Professor (tenure track) in gravitational wave cosmology
- From Scotland, Finnish citizen since 2019
- Our Computational Field Theory group has approximately 3 faculty, 2 postdocs, 5 graduate students and 5 research assistants
- Member of the LISA gravitational wave mission consortium; holds Finland's seat on Executive Board

History of gravitational waves

- 1915: General relativity
- 1916: Prediction of gravitational waves
- 1936: 'Proof' they don't exist (wrong!)
- 1957: Persuasive "Sticky bead argument"
- 1960s: Searches start
- 1975: Inferred from Hulse-Taylor pulsar (1993 Nobel Prize)
- 2015: Directly detected by LIGO [2017 Nobel Prize]

What is a gravitational wave?

- Stretches and squeezes a ring of matter

Sources: Wikimedia; ESA

Two polarisations

- just like light

First evidence: Hulse-Taylor pulsar

Source: Shane L. Larson

Hulse-Taylor pulsar

- Two neutron stars, of which at least one pulsar
- Orbital diameter: 3 light seconds
- Orbital period: 7.75 hours
- Orbit slowly contracting [3.5 metres per year]
- Energy must be going somewhere... gravitational waves
- Gravitational wave power output: 7×10^{24} W (about 2% of the Sun's EM radiation).

Orbital decay of Hulse-Taylor pulsar

Solid line - GR prediction; red dots - measurements

The Gravitational Wave Spectrum

Source: NASA

Direct detection of GWs

Measure time-dependent strain with an interferometer:

LIGO at the Hanford Site

Source: [CC-BY-NC-ND] Prachatai

LIGO design

Source: [CC-BY] Phys. Rev. Lett. 116, 061102

Two black holes merging

Two neutron stars merging

Light and gravitational waves from neutron stars

Source: [CC-BY] ApJ 848 L12 [2017]

Neutron star merger and cosmology

- 1. Photons arrived 1.7s later, after travelling 100 M ly \Rightarrow gravitational waves travel at the speed of light
- 2. Independent measurement of universe's expansion:
 - Luminosity of gravitational waves \rightarrow distance
 - Telescopes observe host galaxy \rightarrow velocity

What happened in the early universe? when the universe was optically opaque? to dark matter?

Source: arXiv:1205.2451

LISA mission

Need to study longer wavelengths, need to go to space!

- Three arms (six lasers), 2.5 M km separation
- Launch mid-2030s as ESA L-class mission

Source: LISA Consortium.

LISA's orbit

Nicolas Douillet - ARTEMIS

LISA: "Astrophysics" signals

Source: arXiv:1702.00786

LISA: Stochastic background?

[qualitative curve, sketched on]

Higgs boson

How did the Higgs get that way?

Source: Anna Kormu

How did the Higgs get that way?

To conclude: key points

- Scale of the problem?
 - Strains around 10⁻²¹
 - Frequencies around 100 Hz (LIGO), 1 mHz (LISA)
- Measurement devices?
 - Michelson interferometers (LIGO etc.)
 - Time delay interferometers (LISA etc.)
- Unresolved questions
 - Existence and amplitude of stochastic background
 - Whether it can be detected, given foregrounds