David J. Weir - Publications

You might be looking for my Google Scholar profile, arXiv papers list, or Inspire record. Of these options, the Google record is the most comprehensive. Alternative, you could read on...

Preprints

[1]
Anders Tranberg, Sara Tähtinen, and David J. Weir. Gravitational waves from non-abelian gauge fields at a tachyonic transition. 2017.
[2]
David J. Weir. Gravitational waves from a first order electroweak phase transition: a review. 2017.
[3]
Mark Hindmarsh, Stephan J. Huber, Kari Rummukainen, and David J. Weir. Shape of the acoustic gravitational wave power spectrum from a first order phase transition. 2017.
[4]
R. J. Rivers, D. A. Steer, D. J. Weir, C.-Y. Lin, and D.-S. Lee. A new Gross-Pitaevskii action for cold Fermi condensates. 2016.

Publications

[1]
Mark Hindmarsh, Kari Rummukainen, and David J. Weir. Numerical simulations of necklaces in SU(2) gauge-Higgs field theory. Phys. Rev., D95(6):063520, 2017. (doi:10.1103/PhysRevD.95.063520)
[2]
Tomáš Brauner, Tuomas V. I. Tenkanen, Anders Tranberg, Aleksi Vuorinen, and David J. Weir. Dimensional reduction of the Standard Model coupled to a new singlet scalar field. JHEP, 03:007, 2017. (doi:10.1007/JHEP03(2017)007)
[3]
Mark Hindmarsh, Kari Rummukainen, and David J. Weir. New solutions for non-Abelian cosmic strings. Phys. Rev. Lett., 117(25):251601, 2016. (doi:10.1103/PhysRevLett.117.251601)
[4]
David J. Weir. Revisiting the envelope approximation: gravitational waves from bubble collisions. Phys. Rev., D93(12):124037, 2016. (doi:10.1103/PhysRevD.93.124037)
[5]
Chiara Caprini and others. Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions. JCAP, 1604(04):001, 2016. (doi:10.1088/1475-7516/2016/04/001)
[6]
Kari Enqvist, Sami Nurmi, Stanislav Rusak, and David Weir. Lattice Calculation of the Decay of Primordial Higgs Condensate. JCAP, 1602(02):057, 2016. (doi:10.1088/1475-7516/2016/02/057)
[7]
Mark Hindmarsh, Stephan J. Huber, Kari Rummukainen, and David J. Weir. Numerical simulations of acoustically generated gravitational waves at a first order phase transition. Phys. Rev., D92(12):123009, 2015. (doi:10.1103/PhysRevD.92.123009)
[8]
Mark Hindmarsh, Kari Rummukainen, Tuomas V. I. Tenkanen, and David J. Weir. Improving cosmic string network simulations. Phys.Rev., D90:043539, 2014. (doi:10.1103/PhysRevD.90.043539)
[9]
Anders Tranberg and David J. Weir. On the quantum stability of Q-balls. JHEP, 04:184, 2014. (doi:10.1007/JHEP04(2014)184)
[10]
Mark Hindmarsh, Stephan J. Huber, Kari Rummukainen, and David J. Weir. Gravitational waves from the sound of a first order phase transition. Phys.Rev.Lett., 112:041301, 2014. (doi:10.1103/PhysRevLett.112.041301)
[11]
David J. Weir, Roberto Monaco, Valery P. Koshelets, Jespre Mygind, and Ray J. Rivers. Gaussianity revisited: Exploring the Kibble-Zurek mechanism with superconducting rings. J.Phys.: Condens. Matter, 25:404207, 2013. (doi:10.1088/0953-8984/25/40/404207)
[12]
Arttu Rajantie, Kari Rummukainen, and David J. Weir. Form factor and width of a quantum string. Phys.Rev., D86:125040, 2012. (doi:10.1103/PhysRevD.86.125040)
[13]
Carl M. Bender and David J. Weir. PT phase transition in multidimensional quantum systems. J.Phys., A45:425303, 2012. (doi:10.1088/1751-8113/45/42/425303)
[14]
David J. Weir, Roberto Monaco, and Ray J. Rivers. Defect Formation in Superconducting Rings: External Fields and Finite-Size Effects. J. Low Temp. Phys., 2012. (doi:10.1007/s10909-012-0681-9)
[15]
Jutho Haegeman, Bogdan Pirvu, David J. Weir, J. Ignacio Cirac, Tobias J. Osborne, Henri Verschelde, and Frank Verstraete. Variational matrix product ansatz for dispersion relations. Phys.Rev., B85:100408, 2012. (doi:10.1103/PhysRevB.85.100408)
[16]
Arttu Rajantie and David J. Weir. Nonperturbative study of the 't Hooft-Polyakov monopole form factors. Phys.Rev., D85:025003, 2012. (doi:10.1103/PhysRevD.85.025003)
[17]
Arttu Rajantie and David J. Weir. Soliton form factors from lattice simulations. Phys.Rev., D82:111502, 2010. (doi:10.1103/PhysRevD.82.111502)
[18]
David J. Weir. Studying a relativistic field theory at finite chemical potential with the density matrix renormalization group. Phys.Rev., D82:025003, 2010. (doi:10.1103/PhysRevD.82.025003)
[19]
Arttu Rajantie and David J. Weir. Quantum kink and its excitations. JHEP, 0904:068, 2009. (doi:10.1088/1126-6708/2009/04/068)

Proceedings

[1]
Joni M. Suorsa, Viljami Leino, Jarno Rantaharju, Teemu Rantalaiho, Kari Rummukainen, Kimmo Tuominen, and David J. Weir. Mass anomalous dimension of SU(2) with Nf=8 using the spectral density method. In Proceedings, 33rd International Symposium on Lattice Field Theory (Lattice 2015), 2015.
[2]
David J. Weir, Simon Catterall, and Dhagash Mehta. Eigenvalue spectrum of lattice N = 4 super Yang-Mills. PoS, LATTICE2013:093, 2014.
[3]
Joni M. Suorsa, T. Rantalaiho, K. Rummukainen, K. Splittorff, and David J. Weir. Investigating the Sharpe-Singleton scenario on the lattice by direct eigenvalue computation. PoS, LATTICE2013:118, 2014.
[4]
David J. Weir and Ray J. Rivers. Fluxoid formation: size effects and non-equilibrium universality. Journal of Physics Conference Series, 286(1):012056, 2011. (doi:10.1088/1742-6596/286/1/012056)
[5]
Carlos Aguado Sanchez, Jakob Blomer, Predrag Buncic, Gang Chen, John Ellis, and others. Volunteer Clouds and citizen cyberscience for LHC physics. J.Phys.Conf.Ser., 331:062022, 2011. (doi:10.1088/1742-6596/331/6/062022)
[6]
David J. Weir and Arttu Rajantie. Form factors and excitations of topological solitons. AIP Conf.Proc., 1343:200–202, 2011. (doi:10.1063/1.3574976)
[7]
Ben Segal, Predrag Buncic, David Garcia Quintas, Carlos Aguado Sanchez, Jakob Blomer, and others. LHC cloud computing with CernVM. PoS, ACAT2010:004, 2010.
[8]
Carl M. Bender, Joshua Feinberg, Daniel W. Hook, and David J. Weir. Chaotic systems in complex phase space. Pramana, 73:453–470, 2009. (doi:10.1007/s12043-009-0099-3)