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Abstract
This paper describes ongoing work on a multimodal resource based on the Allen Institute AI2 Diagrams (AI2D) dataset, which contains
nearly 5000 grade-school level science diagrams that have been annotated for their elements and the semantic relations that hold between
them. This emerging resource, named AI2D-RST, aims to provide a drop-in replacement for the annotation of semantic relations
between diagram elements, whose description is informed by recent theories of multimodality and text-image relations. As the name of
the resource suggests, the revised annotation schema is based on Rhetorical Structure Theory (RST), which has been previously used to
describe the multimodal structure of diagrams and entire documents. The paper documents the proposed annotation schema, describes
challenges in applying RST to diagrams, and reports on inter-annotator agreement for this task. Finally, the paper discusses the use of
AI2D-RST for research on multimodality and artificial intelligence.
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1. Introduction
The Allen Institute AI2 Diagrams dataset (hereafter AI2D)1

contains nearly 5 000 grade-school level science diagrams,
which have been annotated for their elements and the se-
mantic relations that hold between them (Kembhavi et al.,
2016). The AI2D dataset was initially developed with two
emerging computer vision tasks in mind: diagram under-
standing and visual question answering. Both tasks are
challenging, as diagrams are inherently multimodal: they
frequently combine various diagrammatic elements, such
as arrows and lines with natural language, two-dimensional
graphic elements, illustrations and photographs, and draw
a multitude of semantic relations between them.
AI2D describes the semantic relations between diagram el-
ements using a set of relations drawn from the framework
for describing diagrams proposed in Engelhardt (2002).
This paper proposes an alternative scheme for describing
the semantic relations that hold between diagram elements,
building on Rhetorical Structure Theory, or RST for short
(Mann and Thompson, 1988; Taboada and Mann, 2006).
To distinguish the original AI2D dataset from the emerging
language resource described in this paper, we will adopt
the name AI2D-RST to refer to the RST-enhanced dataset
in the following discussion.
Although RST was originally developed for describing the
organization of entire texts, the framework has also been
applied to the generation of diagrammatic representations
(André and Rist, 1995; Bateman et al., 2001). More re-
cently, RST has been used to describe discourse struc-
tures in various multimodal artefacts ranging from newspa-
pers and journals (Kong, 2013; Taboada and Habel, 2013)
and product packaging (Thomas, 2014) to tourist brochures
(Hiippala, 2015) and health care posters (Zhang, 2018).
When combined with additional layers of description to
capture the logical structure of content, its visual appear-
ance and layout, even relatively small RST-annotated cor-

1Available at http://allenai.org/plato/diagram-understanding/
(accessed 13 February 2018).

pora have been able to reveal patterns characteristic to the
structure of the aforementioned multimodal artefacts.
This suggests that RST can provide descriptions that are
sufficiently fine-grained to bring out distinctions in the
structure of various multimodal artefacts. As AI2D already
contains annotations for the diagram elements and their lay-
out, we assume that the application of RST to the dataset
will provide multimodality researchers with a valuable re-
source for studying the structure of diagrammatic repre-
sentations. Researchers working in the domain of artifi-
cial intelligence, in turn, may evaluate whether diagram un-
derstanding and visual question answering algorithms can
learn better from RST annotation than the schema origi-
nally used for AI2D.
The paper itself is structured as follows: after introducing
the AI2D dataset, we evaluate its original annotation from
the viewpoint of multimodality research. Next, we proceed
to describe the changes introduced in AI2D-RST and the
challenges in applying RST to diagrams, and report on an
experiment measuring inter-annotator agreement. Finally,
we consider how the emerging resource may be used in re-
search on multimodality and artificial intelligence.

2. The Original AI2D Dataset
Explicating the motivation for developing AI2D, Kembhavi
et al. (2016, 235) note that research on computer vision has
mainly focused on photographic images, while “rich visual
illustrations”, such as diagrams and information graphics,
have received relatively little attention. In diagrams, this
richness emerges from the combination of multiple modes
of communication: diagrammatic elements, such as arrows
and lines, are typically used alongside natural language and
various types of images ranging from photographs to illus-
trations, and combined into meaningful ensembles by tak-
ing advantage of the layout space (Bateman et al., 2017,
281). As Kembhavi et al. (2016) observe, this makes di-
agrams radically different from photographic images, and
for this reason, their computational processing involves an
entirely different set of problems.



Relationship Definition Count
ARROWHEAD ASSIGNMENT An arrow head associated to an arrow tail 18541
INTRA-OBJECT LABEL A text box naming the entire object 16281
INTER-OBJECT LINKAGE Two objects related to one another via an arrow 15802
INTRA-OBJECT LINKAGE A text box referring to a region within an object via an arrow 15664
INTRA-OBJECT REGION LABEL A text box referring to a region within an object 2002
IMAGE TITLE The title of the entire image 1458
IMAGE MISC Decorative elements in the diagram 1148
IMAGE SECTION TITLE Text box that serves as a title for a section of the image 807
IMAGE CAPTION A text box that adds information about the entire image, but does not serve

as the image title
690

ARROW DESCRIPTOR A text box describing a process that an arrow refers to 681

Table 1: Semantic relations defined between diagram elements in the AI2D annotation by Kembhavi et al. (2016, 239).
The column on the right-hand side gives their number of occurrences in the AI2D dataset.

To drive forward research on computational processing of
diagrams, Kembhavi et al. (2016, 242–243) present a
dataset containing 4 907 grade-school level science dia-
grams, which are described using 150 000 annotations that
capture their elements, semantic interrelations and position
in the layout. In addition, the dataset contains 15 000 mul-
tiple choice questions about the content of the diagrams
for experiments involving diagram understanding and vi-
sual question answering.
The diagrams, which AI2D provides as PNG images ac-
companied by their annotations in JSON, were scraped
from Google Images using the chapter headings of pri-
mary school science textbooks for grades one to six as
seed terms. The result is a diverse dataset containing dia-
grams from various sources, ranging from professionally-
produced diagrams in school textbooks to diagrams pro-
duced for learning materials by the teachers or by the
students themselves. Figure 1 illustrates one diagram in
the dataset, which clearly belongs to the first category of
professionally-produced diagrams.
The diagrams were annotated by workers on Amazon Me-
chanical Turk2, a crowdsourcing platform frequently used
to create datasets for AI research (Kovashka et al., 2016).
Due to their complex structure, the diagram annotation pro-
cess was broken down into separate stages to ensure agree-
ment between annotators. These stages involved, for in-
stance, identifying diagram elements, categorising them,
labelling their interrelations and answering multiple choice
questions about the content of the diagram (Kembhavi et
al., 2016, 243).
Building on the annotated corpus, Kembhavi et al. (2016,
239) propose to represent diagrams using graphs, which
they refer to as Diagram Parse Graphs (hereafter DPG).
DPG uses nodes to represent diagram elements, such as
blobs (illustrations), text boxes, arrows and arrowheads,
while the edges between nodes represent relationships be-
tween the elements. These relationships, which are listed in
Table 1, are drawn from the framework developed by En-
gelhardt (2002) for analysing the syntax and semantics of
maps, charts and diagrams.
That being said, Kembhavi et al. (2016) use the AI2D

2https://www.mturk.com/

Figure 1: Diagram number 2240 in the AI2D dataset

dataset to train deep neural networks for two distinct tasks,
which also reflect the original distinction defined by En-
gelhardt (2002): syntactic parsing and semantic interpreta-
tion. Whereas syntactic parsing refers to the task of learn-
ing to infer a DPG that captures the diagram structure, se-
mantic interpretation is concerned with interpreting a DPG
to answer questions about diagram content. The goal of
AI2D is to enable and support the development and evalu-
ation of algorithms for both tasks.

3. Evaluating AI2D from the Perspective of
Multimodality Research

The work of Kembhavi et al. (2016) assumes that resolving
the relations that hold between the elements of a diagram is
crucial for their computational understanding. In research
on multimodality, these relations are often discussed under
the heading of text-image relations, or more broadly, rela-
tions that hold between contributions from different modes
of expression. Bateman (2014a) provides an extensive re-

https://www.mturk.com/
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Figure 2: A partial RST analysis attempting to capture the “phase-and-process” structure of the diagram in Figure 1, repre-
sented using a schema for visualising RST relations. The straight lines indicate multinuclear relations between nuclei (such
as RESTATEMENT and SEQUENCE), whereas the curved lines indicate mononuclear relations between nuclei and satellites
(such as IDENTIFICATION). These relations are grouped together under spans, which are indicated by the horizontal lines.
The information carried by spans, which reflects how diagram elements are chunked together, is carried over to the graph
in the form of nodes that join related nuclei and satellites together. These nodes are coloured white, whereas nuclei are red
and satellites are black.

view of research in this area, which may also be used to
evaluate the semantic relations defined within AI2D from a
multimodal perspective.
To begin with, several of the relations defined in AI2D ap-
pear to share roughly the same semantic function: Kemb-
havi et al. (2016, 245) acknowledge this explicitly by stat-
ing that relations 1–6 in Table 1 serve the purpose of relat-
ing one or more elements to one another. There seems to be,
however, significant overlap among these relations, particu-
larly between INTRA-OBJECT LABEL, INTRA-OBJECT RE-
GION LABEL, INTRA-OBJECT LINKAGE and ARROW DE-
SCRIPTOR, as they all appear to serve the general purpose
of identifying some object.
It should be noted that such a semantic relation – identifi-
cation – may be realised in different ways, either using an
explicit diagrammatic element such as an arrow or a line, or
spatially using layout, by placing the identifier and the iden-
tified close to each other. Both alternatives may be found
on both inner and outer circle of the diagram shown in Fig-
ure 1 (cf. e.g. Blastula and Gastrula (section)). From a
multimodal perspective, the question is whether these rela-
tions could be reduced into fewer, more generic categories,
which would also unify the description.
Furthermore, the relation of ARROWHEAD ASSIGNMENT
does not indicate a semantic, but rather a logical relation
between diagram elements, indicating which elements be-
long together. Although defining such relations explicitly
may be necessary for the current algorithms developed for
diagram understanding, corpus-driven frameworks devel-
oped for describing complex multimodal artefacts such as
the one presented in Bateman (2008) and its extension in
Hiippala (2015) argue against conflating different descrip-
tions of multimodal structure. This demarcation is intended
to enable pulling apart different types of structure, in order
to provide a clearer view of their distinct contribution to the
meaning of the diagram.
In the case of AI2D, having multiple layers of annotation
at hand – one for the logical structure, and one for the se-
mantic relations – would also remove the need for relations

such as IMAGE MISC, which is used to indicate decora-
tive elements in the diagrams (see the last item in Table
1). If these descriptions were represented using multiple
graphs, this would simply mean that some nodes present
in the graph representing logical structure would be absent
from the graph representing semantic relations. Because
AI2D already contains rich annotations covering aspects of
both logical and semantic structure, the existing annotation
may be used as a basis for generating separate descriptions
as a part of AI2D-RST.

4. Towards AI2D-RST
To clearly separate and describe different kinds of multi-
modal structures typically found in diagrams, AI2D-RST
leverages the rich annotation provided by the original AI2D
dataset to produce two distinct types of Diagram Parse
Graphs (DPG). These DPGs, whose descriptions are also
connected using cross-referenced identifiers, account for
two kinds of multimodal structures in diagrams: DPG-L for
the logical structure, and DPG-R for the rhetorical struc-
ture. The motivation for representing these structures using
two different graphs is to make them more focused, that is,
avoiding the problems associated with conflated descrip-
tions of multimodal structure discussed in Section 3.
To begin with DPG-L, the purpose of this graph is to indi-
cate which elements are generally presented as belonging
together in the logical structure, without making assump-
tions about any semantic relations that may hold between
them. As pointed out above, DPG-L covers all elements
identified in the original AI2D annotation, such as those
that do not necessarily contribute to the rhetorical struc-
ture, such as decorative elements or authorship attributions
identified using the IMAGE MISC relation. This representa-
tion bears close resemblance to the original DPG defined in
AI2D, as the analytical decomposition of diagrams remains
the same in AI2D-RST.
DPG-R, in turn, contains only the nodes that participate in
the rhetorical structure, whose relations are described using
Rhetorical Structure Theory (Taboada and Mann, 2006),



the multimodal extension of RST proposed in Bateman
(2008). Essentially, this extension contains the original re-
lations defined within ‘classical’ RST and a set of ‘sub-
nuclear’ relations necessary for decomposing fragments of
discourse, which classical RST would treat as a single ana-
lytical unit (Bateman, 2008, 162). Finally, certain diagram-
specific additions to DPG-R are presented shortly below in
Section 5.
Another feature that DPG-R introduces to the description
is what RST terms nuclearity. This assumption states that
some parts of a text or a multimodal ensemble act as nuclei,
which carry the most relevant meanings for the commu-
nicative task at hand, whereas optional parts – satellites –
enhance them by providing additional information. Figure
2 illustrates this by defining RST relations between the ele-
ments and representing these relations using a graph. Here
the assumption is that algorithms developed for semantic
interpretation of diagrams could learn to attend to the el-
ements that carry information relevant to the task at hand,
for instance, by searching for sequences among nuclei and
additional information among satellites.
The application of RST also requires information on the
chunking of elements, that is, how they are grouped to-
gether in the diagram. As Taboada and Mann (2006, 427)
point out, RST relations are applied recursively to the arte-
fact under analysis in order to capture the intended com-
municative effect, which may be achieved using a combi-
nation of rhetorical relations. This phenomenon is well-
known from the analysis of entire multimodal documents,
in which the chunks often constrain the process of interpre-
tation by limiting the possible RST relations to elements
belonging to the same chunk (Hiippala, 2015, 168). How-
ever, diagrams present certain requirements for RST analy-
sis, which are discussed below.

5. Applying RST to AI2D
5.1. Feasibility
To assess the feasibility of using RST to describe semantic
relations in AI2D, we sampled the data without replace-
ment for 545 semantic relations and annotated them for
both rhetorical relations and their nuclearity using RST.
This number amounted to roughly 1% of semantic relations
reported in Table 1, excluding the relationship of ARROW-
HEAD ASSIGNMENT, which we considered to belong to the
logical structure, as set out in Section 3.
In order to measure the level of agreement between our an-
notations, we used the common metrics surveyed in Art-
stein and Poesio (2008), such as Scott’s π and Krippen-
dorff’s α, as implemented in Natural Language Toolkit
(NLTK) (Bird et al., 2009). Table 2 shows the scores for
average observed agreement and the aforementioned met-
rics for RST relations and nuclearity. In the case of nucle-
arity, we assigned the role of nucleus, satellite or none (for
elements with no RST relation) to the elements acting as
the origin or destination of a semantic relation, as defined
in the original AI2D annotation.
For annotating the sample, we used a total of 10 out
of 35 available RST relations to describe how the ele-
ments relate to each other: CONTRAST, EFFECT, ELAB-
ORATION, IDENTIFICATION, INTERPRETATION, PREPA-

Metric Relation Origin Destination
Average agreement 0.7835 0.8128 0.9083
Krippendorff’s α 0.7245 0.5490 0.4520
Scott’s π 0.7242 0.5486 0.4515

Table 2: Inter-annotator agreement between annotators

RATION, PROPERTY-ASCRIPTION, RESTATEMENT, SE-
QUENCE and TITLE. We also used an additional relation,
NONE, to mark cases in which no relation was deemed
to hold between the diagram elements, providing a final
number of 11 categories. The chance-corrected scores for
measuring agreement between our annotation for RST re-
lations, namely Krippendorff’s α (0.7245) and Scott’s π
(0.7242) suggest that we may draw only tentative conclu-
sions about semantic relations in diagrams on the basis of
our initial annotation.
The results are nevertheless promising, as it should be noted
that there was a considerable difference in our level of expe-
rience in applying RST, as the second author received only
minimal training before the experiment, which may have
affected the α and π scores for relations. The low scores
for nuclearity (origin/destination), in turn, reflect the pres-
ence of just three categories, which obviously increases the
possibility of chance agreement.
In order to provide a measure of agreement that would take
into account the differences in our expertise in applying
RST, we follow Das et al. (2017) and report precision, re-
call and F1-scores for expert (first author) vs. novice (sec-
ond author) annotation in Table 3, as implemented in scikit-
learn (Pedregosa et al., 2011).

Precision Recall F1-score
RST relation 0.78 0.78 0.78
Origin role 0.81 0.81 0.81
Destination role 0.93 0.91 0.92

Table 3: Prevalence-weighted macro-average scores for
precision, recall and F1 for expert vs. novice annotator

The precision, recall and F1-scores appear promising de-
spite the limited training, and are likely to be improved by
revising the annotation manual for AI2D-RST as the work
proceeds. This involves extending RST to diagrammatic
representations by redefining some of the relations and their
definitions, as we will describe below.

5.2. Extending RST
Evaluating inter-annotator agreement, in connection with
close analyses of selected examples, helped to identify a
core set of RST relations applicable to the description of
semantic relations between diagram elements, which are
given in Table 4. At this point, however, it is also useful
to highlight some challenges in applying RST to diagrams.
To begin with, classical RST was designed to capture re-
lations that hold between sequential units of discourse in
written language, mainly at the level of clause and beyond.
The assumption of sequentiality, however, which is at the



Relationship Description Source
EFFECT A generic mononuclear relation for describing processes that take place between

entities, which are often reinforced using lines or arrows (see Figure 3). The af-
fected entity acts as the nucleus, while the origin of the effect acts as the satellite.

AI2D RST

ELABORATION A more extensive verbal description, such as a phrase or a clause, which provides
more specific information about some entity or its part(s).

Classical RST

IDENTIFICATION A short text segment, such as a single noun or a noun group, which identifies an
entity or its part(s). A typical example would be a label for a part of an entity
(see Figure 2).

GeM RST

PROPERTY-
ASCRIPTION

A mononuclear relation between an entity (nucleus) and something predicated of
that entity (satellite).

GeM RST

RESTATEMENT A multinuclear relation holding between two entities that could act as a substitute
for each other, such as the name of an entity and its visualisation (see Figure 2).

Classical RST

SEQUENCE A multinuclear relation indicating a temporal or spatial sequence holding be-
tween two or more entities.

Classical RST

TITLE A text segment acting as the title for the entire diagram or its parts. GeM RST

Table 4: Common RST relations encountered in preliminary studies of applying RST to the AI2D dataset. The column on
the right gives the work in which the relation was originally defined. Classic RST refers to the foundational work in Mann
and Thompson (1988) and Taboada and Mann (2006), whereas GeM RST refers to the multimodal extension presented in
Bateman (2008). AI2D RST, in turn, refers to the work presented here.

heart of classical RST, rarely holds for entire multimodal
artefacts or their parts (Hiippala, 2015, 50–51).
For the analysis of written texts, this assumption enabled
classical RST to control the number of potential relations
drawn between different units of discourse, as this pre-
vented drawing relations between non-adjacent units of dis-
course in written text. In a complete and well-formed de-
scription of rhetorical structure, each discourse unit would
participate in a single relation, and textual progression
would naturally structure the discourse units into a recur-
sive organisation (Mann et al., 1992).

Figure 3: Diagram number 1807 in the AI2D dataset

In multimodal extensions of RST, the sequentiality assump-
tion has been discarded in favour of alternative criteria such

as spatial proximity (Bateman, 2008, 158). Applying RST
to diagrams is likely to require additional criteria to com-
plement spatiality. Connectedness emerges as one criterion
for addressing graph-like diagrams, in which diagram ele-
ments participate in multiple relations, which do not neces-
sarily respect the criterion of spatiality.
This may be exemplified using Figure 2, which shows how
several diagram elements, namely the combinations of an
illustration and its caption, relate to multiple elements of
the same kind, which are not positioned close to each other
in the diagram layout (see e.g. the arrow drawn from Mule
deer to Coyote).
To capture the relations that build on the property of con-
nectedness, we introduce a generic relation termed EFFECT,
which describes any relation between two interconnected
elements that affect each other in some way (see Table 4).
The target of this effect is marked as the nucleus, whereas
the origin acts as the satellite. Introducing this relation al-
lows taking on graph-like diagrams, whose elements par-
ticipate in multiple rhetorical relations. This, however, re-
quires an alternative, graph-like means of visualising RST
structures, as these interconnections are difficult to visu-
alise using hierarchical trees. Finally, it should be noted
that we do not incorporate the diagram elements responsi-
ble for signalling EFFECT, such as arrows and lines, into
the description of rhetorical relations, but consider them as
a part of the logical structure (see Section 4).

6. AI2D-RST as a Multimodal Resource
AI2D-RST is intended as a resource for researchers work-
ing on multimodality and artificial intelligence. The re-
search community focusing on multimodality has long
called for larger datasets, which would enable empirical re-
search in the manner of corpus linguistics (Kaltenbacher,
2004; Bateman, 2014b; O’Halloran et al., 2018). AI2D-
RST takes the first step towards this long-term goal, en-
abling the empirical study of diagrammatic representations



and testing hypotheses about their multimodal characteris-
tics against a sufficiently large dataset. If such a resource is
found useful, this may also lead to the adoption of crowd-
sourcing techniques for generating low-level annotations
for multimodal corpora in the future.
For the AI community, AI2D-RST offers a dataset con-
taining mixed annotations, sourced from non-experts in the
form of original, crowd-sourced annotations describing the
diagram elements, and from experts in the form of the RST
annotation capturing the relations between these elements.
Moreover, the RST-based description in AI2D-RST pro-
vides the AI research community with the first annotation
schema informed by theories of multimodality. This novel
resource may be used to evaluate whether expert annota-
tions improve the performance of algorithms for the tasks
defined by Kembhavi et al. (2016).
To support further research on diagrams and potential ap-
plications of the dataset, we also provide tools for visualis-
ing the annotation in both AI2D and AI2D-RST, and their
respective Diagram Parse Graphs, in addition to the anno-
tation tool used for creating the AI2D-RST corpus. These
tools, written in Python 3.6, and the AI2D-RST corpus will
be available online.3

7. Conclusion
This paper has presented an emerging multimodal language
resource based on the AI2 Diagrams dataset (Kembhavi et
al., 2016), which contains nearly 5000 grade-school level
diagrams for developing algorithms that can process the
structure and contents of diagrams. The emerging resource
described in this paper, named AI2D-RST, enriches the an-
notation contained in the original AI2D dataset by using
Rhetorical Structure Theory (RST) to describe the relations
holding between elements participating in the diagram. The
motivation for developing AI2D-RST is to provide an al-
terative annotation informed by recent research on multi-
modality, which has shown RST to be a powerful analyti-
cal tool for describing semantic relations, particularly when
combined with descriptions of multimodal structure, which
are already in place in AI2D. In the long run, AI2D-RST
is expected to contribute to research on multimodality and
artificial intelligence, improving the understanding of dia-
grams for both humans and computers.
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