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Abstract—This paper presents a system that uses machine
learning to recognize military vehicles in social media images.
To do so, the system draws on recent advances in applying deep
neural networks to computer vision tasks, while also making
extensive use of openly available libraries, models and data.
Training a vehicle recognition system over three classes, the paper
reports on two experiments that use different architectures and
strategies to overcome the challenges of working with limited
training data: data augmentation and transfer learning. The re-
sults show that transfer learning outperforms data augmentation,
achieving an average accuracy of 95.18% using 10-fold cross-
validation, while also generalizing well on a separate testing set
consisting of social media content.

I. INTRODUCTION

Just like common moments in everyday life, extraordinary
events such as conflicts, crises or periods of increased military
tension are likely to be reflected in user-generated content on
social media. This content is generated and shared by various
parties ranging from media outlets to groups and individuals.
Without sufficient operational security in place, user-generated
content holds considerable potential for gathering open-source
intelligence for governmental, non-governmental and intergov-
ernmental organizations [1].

A prime example of a non-governmental organization is
Bellingcat1, which conducts investigative journalism using
open sources and social media, publishing meticulous reports
on the ongoing conflicts in eastern Ukraine and Syria [2]. Inter-
governmental organizations, in turn, may be exemplified by the
Organization for Security and Co-operation in Europe (OSCE),
which is currently tasked with monitoring the situation in the
Donbass region in eastern Ukraine.

Apart from the general goals of organizations mining social
media data for open-source intelligence, a crucial difference
emerges in their resources for doing such work. Monitoring
and analyzing social media content demands extensive manual
labour, which may not be available for non- and intergov-
ernmental organizations with limited resources. This is pre-
cisely the issue to which this paper contributes by presenting
a system for recognizing military vehicles in social media
photographs using computer vision and machine learning.2

The paper builds on recent advances in the subfield of
deep learning, which has brought about significant advances in

1https://www.bellingcat.com
2Available at https://github.com/DigitalGeographyLab/MilVehicles/

various computer vision tasks, such as object detection, classi-
fication and localisation [3]. Keeping the limited resources of
non- and intergovernmental organizations in mind, the work
leverages the Python machine learning ecosystem for openly
available libraries, architectures and pre-trained models.

The paper shows that openly available resources can be used
to design an object recognition system that achieves a high
accuracy with relatively little training data. Such systems can
be used to examine collections of photographs scraped from
online sources or plugged into a social media monitoring tools
for real-time surveillance. The paper itself is structured as
follows: after a brief review of related work, the discussion
moves to describe data sources and system design, before
evaluating its performance in two experiments. The paper
concludes with a discussion and outlines avenues of future
research.

II. RELATED WORK

Omand et al. [4] propose the term SOCMINT to describe
the collection, verification and analysis of intelligence gathered
from social media. Identifying the volume of data as a major
obstacle to drawing meaningful conclusions from SOCMINT,
Omand et al. suggest that machine learning could be used to
automate aspects of SOCMINT work to assist human analysts.
They point towards several areas of research, which they con-
sider applicable to automating the processing of SOCMINT
data, such as sentiment and network analysis.

However, one area of research that Omand et al. do not men-
tion is computer vision, which has progressed rapidly since
2012, largely due to a renewed interest in neural networks,
which play a central role in deep learning. A seminal paper
by Krizhevsky et al. [5] showed that deep neural networks,
which learn the necessary features automatically, outperform
manually-created, human-engineered features, which were pre-
viously commonly used for describing the content of images.
For SOCMINT, deep learning opens up new opportunities for
extracting information from visual big data [6], [7].

Deep convolutional neural networks (CNNs) have been
used for a wide range of computer vision tasks, including
object recognition, which aptly characterizes the current task
of recognizing military vehicles [8]. To draw on an example
from a similar domain, CNNs have been found effective
for automatic recognition of different vehicle types. Dong



et al. [9] show that CNNs can automatically learn features
necessary for distinguishing between different vehicle types
under different lighting and weather conditions. Their network,
which achieves a 92.89% accuracy for a five-way classification
task, features a skip architecture that provides both low-
(e.g. textures, edges, etc.) and high-level features (e.g. vehicle
shapes) learned by the model to the final classifier.

Simpler architectures for CNNs have been shown to perform
equally well. In a recent study, Huttunen et al. [10] report an
accuracy of over 97% for distinguishing between four classes
(bus, truck, van and small car) by training a network with two
convolutional layers with 32 feature maps each, followed by
two dense layers with 100 nodes each, over a data set of 6555
images. The images were collected from two static cameras
over a long period of time under differing weather conditions.

In contrast to cars, vans, trucks and buses, however, military
vehicles are a relatively rare sight. Consequently, openly
available training data is rather scarce, which poses a ma-
jor challenge, because deep neural networks are notoriously
greedy for data, typically requiring thousands of images per
class to learn the necessary features. At the same time, military
vehicles typically exhibit low intra-class variation, that is,
different vehicle types tend to look alike, in contrast to civilian
vehicles that come in various forms and sizes. Additionally,
neural networks do not have to be trained from scratch, as
features learned from other data sets can be transferred across
domains using a technique known as transfer learning [11].
This reduces the need for data, whose volume may also be
increased using data augmentation. Both transfer learning and
data augmentation are explored in the following sections.

III. DATA

A. Data Collection

To develop and test the system, training data were collected
for three classes with the eastern Ukraine conflict in mind: (1)
T-72 main battle tanks, (2) BMP armoured personnel carriers
and (3) other images featuring various civilian vehicles, street
scenes and everyday images from the conflict zone. Whereas
the first two classes, T-72 and BMP, represent tracked vehicles
widely used by both sides of the conflict, the third class
is essentially a negative class included in the training data
to enable the networks to learn about other kinds of photo-
graphic material posted from the conflict zone. The images
were collected from three sources: (1) photos posted on the
social photo-sharing service Flickr, (2) frames extracted from
YouTube videos taken in the conflict zone and (3) photos
collected from the web. The data sources and volumes are
given in Table I.

TABLE I
DATA SOURCES AND NUMBER OF IMAGES COLLECTED

Flickr YouTube Web Total
T-72 773 513 171 1457
BMP 182 844 62 1088
Other 819 550 108 1477
Total 1774 1907 341 4022

As Table I shows, using different sources enabled to roughly
balance the amount of data for each class. For instance,
although images of BMPs were relatively rare on Flickr, this
shortcoming could be remedied by collecting more data from
YouTube videos. The videos were sampled at a rate of one
frame per second.

Collecting data from the aforementioned sources made man-
ual preprocessing necessary. The Flickr data, for instance, had
to be filtered for photographic content, as the users also upload
hand-drawn illustrations and photographs of scale models to
the service. The YouTube videos posted in the conflict zone
were also manually sampled for frames featuring T-72s, BMPs
or images of the surrounding landscape. Extracting frames
from YouTube videos nearly doubled the volume of data, while
also providing images of the vehicles under diverse lighting
and weather conditions, and from various angles and distances.

It must be noted, however, that retrieving multiple frames
from the same video may populate the data set with images
that share many other features besides the vehicles shown
in them. Training a neural network over this data runs the
risk of overfitting, that is, learning features irrelevant to the
recognition task, which needs to be accounted for during
training [12].

B. Data Augmentation

Despite the increase provided by sampling video data, the
number of images collected was not likely to be sufficient
for training a deep neural network from scratch without
overfitting the training data. For this reason, more data needed
to be synthesized from the available images. This process,
which is commonly referred to as data augmentation, involves
creating additional copies of the training data by applying
random transformations to the images. As Goodwin et al.
[13, 445] note, data augmentation is particularly suitable for
object recognition, as the classes are largely invariant to
transformations and may therefore be easily transformed using
simple geometric operations.

The Keras deep learning library [14] provides an effective
solution for online data augmentation, generating batches of
augmented data from the source images in real-time during
training. The augmentation strategy adopted for this study
involved applying random transformations, such as rotations,
flips, zooms, shears and shifts, to the source images using the
following parameters:

• The images may be flipped horizontally, resulting in a
mirrored copy of the original image

• Random rotations up to 10 degrees to either direction, as
vehicles are unlikely to appear in more extreme angles

• Random shifts up to 5% of the image height on the
vertical axis; 20% of width on the horizontal axis

• Random zooms into the image, up to 120% of the original
size, essentially cropping the original image

• Random shears across the image at a maximum angle of
20 degrees



CONV MAXPOOL CONV FC FC

BMP (0.01)
Other (0.00)
T-72 (0.99)

Input Softmax2 x 32 filters 2 x 64 filters 256 nodes 3 nodes

Dropout 50%

(1) Training a convolutional neural network from scratch

(2) Transfer learning using a residual neural network (ResNet50)

BMP (0.99)
Other (0.00)
T-72 (0.01)

Softmax512 nodes 3 nodesInput 2048-d
vector

Dropout 50%

Dropout 50%
Dropout 50%

48 residual modules

MAXPOOL

FC FCAVGPOOLCONV BN ReLU CONV BN

INPUT ADD ReLU

Fig. 1. Network architectures

IV. NETWORK ARCHITECTURES AND OPTIMIZATION

A. Network Architectures

Two different options were explored for selecting and
training a neural network for the recognition task: (1) training
a network from scratch using data augmentation to increase
the volume of data and (2) training a network without data
augmentation, but opting to use transfer learning instead. In
this case, transfer learning involved using a neural network
pre-trained on data from a different domain to extract features
from the data set described in Section III-A, and feeding these
features a small, fully-connected neural network [15].

The first option, training a neural network from scratch,
involved using a convolutional neural network similar to the
one designed for vehicle recognition by Huttunen et al. [10],
except with additional convolutional layers. This architecture,
hereafter referred to as ConvNet, features two convolutional
blocks, each consisting of two layers with 32 and 64 feature
maps, respectively, followed by a maxpooling operation.

The feature maps are then flattened before a fully-connected
layer with 256 nodes, which is followed by a Softmax acti-
vation that outputs a probability distribution over the three
classes, as shown in Figure 1. To combat overfitting, Dropout
[16] is used to randomly disconnect neurons in the fully-
connected layer to prevent the network from seeing the same

input twice. In addition, the weights for both convolutional and
fully-connected layers are penalized using L2 regularisation.

The second option, transfer learning, used a deep resid-
ual network (ResNet), a novel architecture which won the
2015 ImageNet Large Scale Visual Recognition Competition
(ILSVRC) for classification, detection and localisation tasks
[17]. The crucial difference between the convolutional and
residual neural networks is that residual networks use a skip
connection to add the original layer input to the layer output.
He et al. show that this kind of architecture facilitates the
optimisation of deep neural networks, enabling a considerable
increase in network depth. The work on deep residual networks
continues, and has yielded even deeper architectures that have
been shown to improve performance [18].

Figure 1 illustrates the core element of a residual network,
the residual block, which takes the activation from the previous
layer as an input. This input is then fed to a convolutional
layer, followed by batch normalisation (BN) [19] and a recti-
fied linear unit (ReLU) activation [20]. The number of feature
maps learned in each convolutional layer increases with the
network depth. Finally, the original activation is then added
to the output ahead of another ReLU activation, whose output
acts as the input for the next residual block.

ResNets stack multiple residual blocks before performing
average pooling, which outputs a 2048-dimensional feature
vector that is then fed to a fully-connected layer. Keras [14]



provides 50-layer residual net (ResNet50) out-of-the-box with
weights pre-trained on ImageNet [21]. As ImageNet features
many different types of vehicles, including main battle tanks
and armoured personnel carriers, it may be assumed that the
network has learned many of the features relevant for the
current recognition task as well. This allows using ResNet50 as
a feature extractor, taking the output from the average pooling
layer and feeding these features to a fully-connected block to
obtain a Softmax probability distribution over the three classes.

B. Hyperparameter Optimization

As said, the experiments consisted of two different sce-
narios: (1) training a small ConvNet from scratch by taking
advantage of online data augmentation, and (2) using the
pre-trained ResNet50 to extract features from the original
data, before fine-tuning a fully-connected block over the three
classes on top.

A random search was used to find optimal hyperparameters
for the networks in both experiments, following the approach
proposed by Bergstra et al. [22] as implemented in the scikit-
learn library [23]. The random search was run on Keras
using Theano backend [24] to overcome memory management
problems with TensorFlow. Data augmentation was not used
during random search.

For the more computationally expensive experiment (1) with
19M trainable model parameters, 50 random hyperparameter
settings were evaluated, training for 50 epochs with 3-fold
cross-validation for each setting. For the less expensive exper-
iment (2) with 1M trainable model parameters, 50 random hy-
perparameter settings were evaluated, training for 100 epochs
with 10-fold cross-validation for each setting. Table II shows
the randomly searched hyperparameter ranges, which both
featured a total of 576 possible settings, while the rightmost
column shows the best values found during the random search.

TABLE II
RANDOMLY SEARCHED HYPERPARAMETER RANGES

Architecture Hyperparameter Range Best
(1) ConvNet Batch size {32, 64, 128, 256} 256

Learning rate {0.1, 0.01, 0.001, 0.0001} 0.0001
L2 λ {0.01, 0.001, 0.0001} 0.001
Dropout rate {0.25, 0.5, 0.75} 0.5
Nodes in FC layer {64, 128, 256, 512} 256

(2) ResNet Batch size {32, 64, 128, 256} 32
Learning rate {0.1, 0.01, 0.001, 0.0001} 0.01
L2 λ {0.01, 0.001, 0.0001} 0.001
Dropout rate {0.25, 0.5, 0.75} 0.5
Nodes in FC layer {64, 128, 256, 512} 512

V. EXPERIMENTS AND EVALUATION

This section describes the training and evaluation of the two
network architectures presented above. Both networks were
implemented using Keras [14] running on TensorFlow backend
[25]. The weight parameters for both networks were optimized
using stochastic gradient descent (SGD) with mini-batch sizes
given in Table II, a Nesterov momentum of 0.9 and a decay
of 10−5 to minimize the loss for categorical cross-entropy

between the true and predicted labels. The performance of
both networks was evaluated using categorical accuracy.

Both experiments used 10-fold cross-validation, splitting
the data presented in Section III-A into training (90%) and
validation (10%) sets. For experiment (1), the data was aug-
mented online using the configuration described in Section
III-B. The network was trained for 1000 epochs. For each
epoch, 2048 samples were generated for training and 256 for
validation. The hyperparameters were selected based on the
random search reported in Table II. The ConvNet evaluated in
experiment (1) achieved a mean validation accuracy of 0.7914
(SD = 0.0287) over 10 folds. Figure 2 shows the learning curve
for the best fold (accuracy: 0.8398).
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Fig. 2. Learning curve for the best fold of experiment (1): training a con-
volutional neural network (ConvNet) from scratch using data augmentation.
Training on an NVIDIA Tesla K40 GPU, the duration of each epoch is
approximately 12 seconds.
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Fig. 3. Learning curve for the best fold of experiment (2): transfer learning
using a residual neural network (ResNet50). Training on an NVIDIA Tesla
K40 GPU, the duration of each epoch is less than a second.
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Fig. 4. Examples from the hard testing set and their associated predictions using best folds for both networks. Note that the images have been resized into
square format to illustrate the input to the neural networks. False predictions are marked in red.

For experiment (2), the entire data set described in Section
III-A was fed to ResNet50 pre-trained on ImageNet for
feature extraction, recording the output of the final average
pooling layer to obtain a 2048-dimensional feature vector for
each image. These features were then split into training and
validation sets and fed to a fully-connected neural network
with 512 nodes, training for 75 epochs. The hyperparameters
used corresponded to those found during random search, as
set out in Table II. The mean accuracy achieved over 10 folds
was 0.9518 (SD = 0.0094). Figure 3 shows the learning curve
for the best fold in experiment 2 (accuracy: 0.9701).

Figures 2 and 3 show that while both networks are able
to learn to distinguish between the different classes, ConvNet
reaches a plateau after 750 epochs. Despite data augmentation,
the source data does not appear to be varied enough to
improve ConvNet performance any further. Transfer learning
using ResNet, in turn, shows that the model pre-trained on
ImageNet has learned many of the features necessary for
distinguishing between the different vehicle types. This results
in high accuracy after only a few epochs, which may be
improved by training further.

To assess the capability of the networks to generalize
on data not included in the set described in Section III-A,
both networks were also evaluated against a hard testing set
containing 30 images from the conflict zone gathered from
various sources. These images were intended to reflect the
possible sources of content circulating in social media, ranging

from high-quality professional press photographs to screen
captures from news videos, and from user-generated videos
to screenshots of social media postings and content.

Table III reports accuracy at various levels on the hard
testing set for both the best fold and the mean over 10 folds.
The 0.5 and 0.25 levels are included to reflect the possibility of
using the tool to flag images for which the Softmax probability
exceeds the given threshold. This allows, for instance, ac-
counting for misclassifications between different vehicle types
and images that contain multiple vehicle types. As Table III
shows, ResNet significantly outperforms ConvNet at all levels
of accuracy.

TABLE III
PERFORMANCE ON THE HARD TESTING SET

Architecture Accuracy Accuracy at 0.5 Accuracy at 0.25
(1) ConvNet

Best 0.533 0.433 0.667
Mean 0.440 0.353 0.663

(2) ResNet
Best 0.900 0.900 0.933
Mean 0.877 0.853 0.940

VI. CONCLUSIONS

This paper presented a system developed for recognizing
military vehicles in social media images using deep learning.
Built entirely using openly available deep learning libraries,
architectures and pre-trained models, the paper investigated



two different solutions for training a vehicle recognition sys-
tem with limited training data. The paper experimented with
different neural network architectures: convolutional neural
networks and residual neural networks.

The results showed that while both networks achieve a
reasonable validation accuracy, residual neural networks are
able to generalize much better when using transfer learning,
that is, leveraging the features learned from some other
distribution to describe the images in the current data set.
Training a convolutional neural network from scratch using
data augmentation to synthesize additional data could not
match the level of performance achieved with transfer learning.

In addition to introducing additional vehicles to the system,
future work could involve evaluating its performance using
geographically-located, historical social media data pertaining
to the Ukraine crisis, in order to assess how well the obser-
vations made by the tool correlate with the events as they
unfolded. Moreover, as social media data is often multimodal,
that is, the contents are presented using multiple modes of
expression, such as photographs and written language, another
possibility would be to process the image captions as well.
Natural language processing techniques such as named-entity
recognition could help to retrieve place names and other
crucial metadata to contextualize the images.
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