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Abstract

Systemic-functional linguistics (SFL) has a long history of interaction with
computational linguistics, but no area stands still. In the 1980s and early
1990s, various computational systems for natural language generation informed
by SFL achieved state-of-the-art performance. Subsequently, however, ad-
vances in statistically driven, rather than rule-based, computational linguis-
tics eclipsed many of these earlier systems. In this contribution, we focus
on several areas of contemporary computational applications of SFL to show
how the field is now developing. We begin with a brief historical introduc-
tion to the context of this interaction, moving on with characterizations of the
current state of the art and a consideration of the relationship between SFL
and the statistical paradigm now central to computation and natural language
processing.

1 Introduction
Computational linguistics (CL), natural language processing (NLP), and language
technologies (LT) are closely intertwined fields that employ computational tech-
niques for various tasks related to treatments of language. Key tasks include both the
development of software tools (for information/document retrieval, document sum-
marization, sentiment analysis, named entity extraction, corpus analysis and ma-
chine translation) and the development and refinement of linguistic theories via algo-
rithmic models. The importance of algorithmic models became clear perhaps most
significantly with Peters & Ritchie’s (1973) formal proof that Chomsky’s emerging
transformational grammar was unlearnable in the form then under discussion. Re-
sults of this kind led to a new awareness that algorithmic properties could be deeply
revealing of properties relevant for linguistic theorizing as well. More recently, work
exploring the conditions under which language and language behavior can ‘emerge’
from situated interaction has also made considerable progress—progress that sim-
ply would not have been possible without the computational models necessary to
conduct experimentation (Steels 2005).

Since the advent of computational approaches to language in the 1950s, com-
putational models have in fact always been at the forefront of linguistic theorizing,
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serving to push the degree of explicitness of such models further and revealing both
gaps in treatments and new capabilities. Most grammatical theories have now re-
ceived computational instantiation and there is extensive experience in designing
algorithms for their processing, as well as substantial computationally accessible re-
sources such as corpora, treebanks (i.e., grammatically annotated corpora), lexicons
and more. The models employed usually attempt to ensure that their algorithmic
properties are reasonable so that they do not suffer the same fate as early trans-
formational grammar and fall foul of the unlearnability trap. It is this attention to
computational properties that has allowed broad-coverage components that can be
applied to real (large-scale) data to become the norm.

Given this, it should not then be surprising that systemic-functional linguistics
(SFL) has a long history of interaction with computational linguistics (a detailed
review of the historical engagement between the fields is given in O’Donnell & Bate-
man 2005). Bateman & O’Donnell (2015) trace the deep involvement of SFL’s
primary founder, Michael A.K. Halliday, in this process from its beginnings. Hall-
iday participated in some of the earliest attempts to achieve automatic translation
systems in the 1950s, bringing together linguistic theoretical considerations and
practicalities of computational processing. He was also instrumental in shaping the
linguistic foundations of some of the most well-known language-oriented systems
to emerge in computational linguistics and Artificial Intelligence in the 1970s and
1980s. This included both Terry Winograd’s SHRDLU (Winograd 1972), a land-
mark natural language dialogue system that demonstrated that natural dialogic
interaction with computers was an achievable goal, and William C. Mann’s Penman
system for large-scale automatic natural language generation (Mann 1983; Mann &
Matthiessen 1985).

From the 1980s and up until the mid-1990s, interaction between SFL and com-
putation was consequently well established with other significant initiatives bringing
the fields together. Robin Fawcett’s COMMUNAL, for example, also approached
automatic language generation, applying a different variant of SFL (Fawcett 1988),
while Michael O’Donnell attempted to extend the capabilities on offer by develop-
ing automatic analysis components similarly based on SFL (O’Donnell 1994); many
further systems are described in O’Donnell & Bateman (2005). There was, however,
a marked difference in the relative successes and acceptance of these efforts. SFL,
as a broadly functional theory of language focusing on language use as ‘motivated
choice’, appeared well-suited to address natural language generation: here the ab-
stract task is often characterized as precisely one of ‘making the right choices’ given
a description of a language as a resource (cf. McDonald 1980). Most approaches to
automatic text generation of that time, regardless of theoretical orientation, thus
turned to questions concerned with finding the functional conditions under which
particular (primarily) grammatical choices would be appropriate for the commu-
nicative goals being pursued. This characterization echoed directly that offered by
Halliday concerning the main descriptive apparatus used within SFL, the system
network (cf. Halliday 1996: 10).

The situation with analysis, i.e., the construction of computational components
capable of moving from provided strings of words or sounds to more abstract, gram-
matical or semantic representations, was very different. Here there was very little
success compared to the rapid growth of general purpose analysis systems in com-
putational linguistics more broadly. The reasons for this asymmetry are themselves
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of considerable theoretical note, revealing deeper issues in the formalizations of lin-
guistic resources offered by the theory. The most significant of these are discussed
in Bateman (2008b) and so will not be repeated here—essentially, however, ques-
tions of how to manage computational complexity of the kind mentioned above with
respect to transformational grammar played a substantial role.

For the purposes of this chapter, what followed from the lack of success in the
area of computational analysis using SFL specifications is more central. Whereas
other approaches and systems began to achieve considerable success in automatic
analysis, SFL’s lack of success in this critical task led to it not being considered a
viable approach for computation. This brought many consequences of its own, some
of which were particularly important for the subsequent development of theory. For
example, while SFL has always been oriented toward corpus-based work, pursuing
such large-scale empirical research necessitates the availability or development of
corresponding computational tools: one cannot examine large bodies of data by
hand. Several other linguistic approaches have been more supportive of automated
analysis of large-scale corpora and so it was natural that research—even research
based on naturally occurring examples—would come to orient more to the kinds of
theories for which analyzed corpora were, or could be made, available.

The success of these latter approaches had significant consequences for compu-
tational linguistics in general. As statistical methods, machine learning, automatic
grammar construction and the like became ever more central to computational ap-
proaches to language throughout the 1990s, it became essential to create richly
annotated datasets from which computational models could be derived. Machine
learning, for example, works by taking a set of ‘correct’ examples and automati-
cally deriving decision procedures capable of classifying previously unseen examples
in the same way. To be effective, the quantity of ‘correct’ examples required to
bootstrap the process can be quite large and SFL has simply not had resources of
this kind—again largely due to a lack of automated analysis capabilities to get the
entire process going. By the end of the 1990s, therefore, the position of SFL within
computational linguistics had become relatively marginal.

Some legacy systems relying on SFL resources, such as the general natural lan-
guage generation system KPML (Bateman 1997) descended from the Penman sys-
tem, continued to be used and extended because of the considerable linguistic in-
formation they had come to include. For example, the development of the English
grammar available with the KPML system stretches back to work by Matthiessen
and Halliday in the 1980s in the Penman project (Mann & Matthiessen 1985); since
then the grammar has come to include additions made by many further contribu-
tors giving rise to a grammar with very broad coverage—even by today’s standards.
The system as a whole thus came to occupy a particular niche among ‘high-quality,
high-effort’ computational systems. More recently, less flexible but largely automat-
ically produced generation systems relying on a variety of statistical methods have
become common; an introductory overview of the field of natural language genera-
tion, its development over time, and current methods and challenges can be found
in Bateman & Zock (2017).

Internally to SFL, the rapid developments in computational linguistics also be-
gan to have a significant, if largely indirect, impact. Corpus work, for example,
frequently demands that bodies of data be ‘marked up’, or annotated, with particu-
lar categories that can subsequently be examined for meaningful patterns. This can
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only sensibly be done using computational tools that support the annotation process
and manage the corpus. Here Michael O’Donnell’s UAM Corpus Tool (O’Donnell
2008) has been of enormous benefit to many researchers, operating both within and
outside of SFL. This freely available program allows researchers to define their own
classification systems and then supports application of those systems to bodies of
text. In contrast to many such tools, UAM adopts the system network as its basic
resource for defining classifications, thereby allowing deeply nested classifications of
a kind particularly supportive of functional linguistic work. Pre-configured networks
for commonly used areas of systemic-functional grammar are also provided.

Although the UAM Tool is intended to support manual annotation, i.e., annota-
tion where the human researcher makes the choices of classification according to the
options available, in its more recent instantiations it also provides access to some of
the now standard computational components capable of producing structural analy-
ses of unrestricted text, such as the freely available Stanford Parser (Manning et al.
2014). This now supports automatic structure analysis for several languages (includ-
ing English, Arabic, French, German and Chinese). Because the Stanford Parser
provides Phrase Structure and Universal Dependency (UD) parses, the relationship
between its analyses and the categories of SFL is often far from straightforward.
Currently, however, no comparable capabilities exist for systemic-functional gram-
mars. This critical task is still unresolved from the perspective of SFL.

The general availability and wide-scale take-up of the UAM Tool demonstrates in
addition how computational tools now form a normal part of the linguist’s world and
this is sure to increase as such tools gain even further in capabilities. Kay O’Halloran
and team have, for example, produced a series of tools extending capabilities for
corpus analysis both with respect to the depth of analysis, including semantics and
discourse organizations, and to the breadth of analysis, moving into considerations
of image, video and text-image combinations (O’Halloran 2014) as well. We return
to this line of development below.

Ultimately, the current situation involving interactions between SFL and com-
putation is complex. Whereas the lack of contact between computation and SFL by
the early 2000s had led to a hiatus in new theoretical and practical engagements of
SFL with computational techniques, the growing capabilities and sophistication of
computational approaches to language have made that work increasingly relevant
and difficult to ignore. As a consequence, there are now signs that a new revival in
interaction is in progress. The availability of a far broader range of computational
techniques, together with more accessible, robust and extensible infrastructures for
developing and combining computational components, has made the development
of new generations of computational SFL tools both possible and beneficial. This
then forms the focus of the remainder of this article. We pick out several core areas
in this newly emerging state of the art, describing current activities and identifying
some key areas for future developments.

2 Parsing
We begin with the core task of providing SFL analysis capabilities, or ‘parsing’.
As mentioned above, the lack of such capabilities was one of the main reasons why
interactions between SFL and computation faltered. Building a natural language
parser can be seen as a task of creating an artificial text reader which understands
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the meaning expressed in some text. The depth and the kind of text understanding
varies according to the tasks addressed. Different levels of abstraction are required
when enabling tasks such as summarizing documents, answering questions about
them and their content, deriving new knowledge, interacting with a human user
using natural language and so on. These and many other tasks are currently moving
out of the field of artificial intelligence research and more and more into everyday
life and practical applications.

Broad coverage natural language processing modules now exist for several levels
of linguistic abstraction, ranging from the least abstract tasks of ‘stemming’ – i.e.,
removing inflectional information to reveal the basic lexical forms employed – and
part of speech tagging, through intermediate tasks such as syntactic analyses, to
highly complex tasks such as semantic analysis or argument extraction. But there
are two caveats: in general, the higher the degree of abstraction, the less accurate
the coverage becomes; moreover, the richer the linguistic description, the slower the
parsing process. This is then particularly problematic for SFL because its grammars
and other levels of description are rich and multi-layered in ways that differ from
many other theoretical accounts.

More specifically, the descriptive power of a Systemic Functional Grammar (SFG)
lies to a considerable extent in its separation of descriptive work across ‘structure’
(i.e., syntagmatic organizations) and ‘choice’ (i.e., paradigmatic organizations). This
comes at the cost of high computational complexity, which still presents today the
biggest challenge in parsing broad coverage texts with full SFGs. O’Donnell & Bate-
man (2005) discuss how each successive attempt to construct parsing components
using SFL then necessarily led to the acceptance of limitations either in grammar
size or in language coverage in order to proceed.

A parsing process for full SFGs needs then to derive both syntagmatic (e.g.,
constituency structure) and paradigmatic (i.e. selections from the system networks)
descriptions. Providing a syntagmatic description is crucial for parsing as it is this
organizational frame that serves as an anchor for structured paradigmatic details—
that is, it is not sufficient to know that some feature has been selected; we also
need to know precisely which grammatical unit that feature constitutes. Moreover,
we need to be able to derive constraints on structure that are given by compatible
feature selections and ruled out by incompatible feature selections. This latter task
is a major source of computational complexity and, as Bateman (2008b) explains,
brings with it significant theoretical implications for the construction of SFL the-
ory as well as of computational systems. Today, it is common for parsers to rely
on simpler syntactic trees (or other non-SFL grammars) as starting points for the
parsing process. First, a syntagmatic organization, or ‘structural backbone’, would
be defined, followed by an enrichment by paradigmatic selections. This technique
was subsequently adopted as a beneficial heuristic for reducing complexity by most
attempts to parse with SFGs (Kasper 1988; O’Donnell 2005; Costetchi 2013).

The first attempt to achieve larger-scale parsing capabilities for SFG was that of
Robert Kasper (Kasper 1988). The structural backbone employed was provided by a
context-free Phrase Structure Grammar (PSG), similar to Chomsky’s use of a PSG
to generate kernel sentences that would subsequently be subject to transformations
(Chomsky 1957). In Kasper’s case, each phrase-structure rule was given additional
information for mapping the phrase structure onto a parallel systemic tree. After
all possible systemic trees had been created, they were further enriched using infor-
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mation from the Nigel Grammar (the SFG generation grammar developed within
the Penman system—see Matthiessen 1985). This process was extremely slow and
worked only on a limited size grammar because it involved ‘multiplying out’ all
of the combinatorial possibilities inherent in the grammar. O’Donnell (1993) and
Weerasinghe (1994) subsequently wrote parsers that attempted to build systemic
functional constituency trees directly, avoiding the need to construct full phrase
structure grammars. Again, however, the production of phrase structure rules for
systemic clause structure was only feasible when limited grammatical possibilities
were considered.

More recent approaches to syntactic parsing in computational linguistics more
broadly have now advanced the field and offer far more powerful capabilities than
the more experimental analysis components of the 1990s. It has therefore become
logical to consider to what extent these may now better bootstrap the systemic pars-
ing process as well. Costetchi (2013) consequently has designed and implemented a
parser that still uses a syntactic backbone, but this time employing not a context-free
phrase structure grammar but the Universal Dependency approach (UD—see Marn-
effe et al. 2014; Nivre 2015) used within the Stanford Dependency Parser (Marneffe
et al. 2006; Socher et al. 2013). The approach remains broadly familiar: a struc-
tural backbone is derived using the broad coverage of the Stanford parser and this
is then ‘converted’ into a form compatible with the systemic-functional syntagmatic
organization.

Although the partially ‘functional’ nature of dependency relations provided by
a UD parse can be used to support a more intuitive mapping to the functional
elements defined in SFG, the conversion still raises challenges. UD is a single-
layered grammar, oriented toward cross-linguistic validity and minimal redundancy,
and as a consequence collapses features which in SFG would be assigned to different
ranks (e.g., word class and roles within a clause, as in the ‘nsubj’ relation) and
metafunctions (e.g., experiential Agents and interpersonal Subjects). The limited
number of functional labels UD defines also means that UD descriptions distinguish
far fewer cases than is commonplace within SFG. The ‘nsubj’ role provided by
UD may correspond in an SFG to the Actor, Behaver, Sayer, Senser, Token, and
Existent, among others. While the less delicate UD has obvious computational
benefits (less data required for training, faster manual annotation, etc), it comes at
the expense of descriptive breadth, especially considering the delicate orientation of
many investigations carried out within SFL.

Costetchi’s system approaches these difficulties as follows. First the parser trans-
forms the dependency graph into a SFG constituency structure, specifically follow-
ing the Mood structure, and afterwards enriches this with a series of features from
Mood, Determination and Person system networks as described for SFG by Halliday
& Matthiessen (2013). Next, the parser assigns process types and participant roles
to constituents as defined in the Transitivity system network defined for Fawcett’s
(2008) variant of SFG. The assignment of these semantic features is not unique,
however: the parser assigns all possible semantic configuration as opposed to the
most probable one for the given clause, drawing on a database of process type
structures (PTDB—see Neale 2002) and an auxiliary process that detects and cre-
ates placeholders for syntactically empty elements as described in Government and
Binding theory (Haegeman 1991). Finally, for multiple clause sentences, the parser
provides possible assignments of inter-clause tactic relations as described in Halli-
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day & Matthiessen’s (2013) system network for clause combinations. Transforming
the dependency graph into a systemic Mood constituency tree and enriching it with
features is performed by an implementation of a generic graph matching framework
(Costetchi 2013). This allows descriptions of graph patterns with rich feature struc-
tures and embedded operations that are executed when their patterns matches a
target. The same mechanisms based on graph patterns allow both enrichment with
systemic features and creation of placeholders for syntactically null elements.

The work of Kasper (1988), O’Donnell (2005) and Costetchi (2013) highlight
that approaches combining aspects of different grammars as well as cross-theoretic
transformations are now practical and feasible options, especially when such com-
putationally simpler grammars yield good performance and high levels of accuracy.
This direction of research is then worth exploring further with other dependency
grammars, such as the Link Grammar (Sleator & Temperley 1995), constituency
grammars, such as HPSG (Collins 2003; Oepen et al. 2000) or XTAG (XTAG Re-
search Group 2001), or Combinatorial Categorial Grammars (CCG—see Steedman
1993). All of these accounts are currently producing high-quality results with very
broad coverage grammars. Other NLP tasks currently advancing in computational
linguistics, such as semantic role labeling, temporal annotations, spatial annota-
tions, named entity or concept identification and many others, might now also be
incorporated employing similar mapping mechanisms (Costetchi 2013).

The task of providing full paradigmatic analyses remains challenging, however.
This task can be formulated as a reasoning problem by treating existing systemic-
functional grammars (such as the Nigel grammar) as a set of logical constraints
constituting a combinatoric possibility space (of constituency structure, functions
and descriptive features). The input of parses with other grammars can then be
seen as ‘factual’ evidence to be considered when searching for solutions that resolve
all the constraints given in the problem space. Although this abstract task still
exhibits very high (computational) complexity, there is a long history in computer
science considering solutions precisely to this problem (Kotthoff 2014). Particularly
promising heuristics are offered by the problem reduction principle defined in com-
putational complexity theory (Arora & Barak 2009) and the decomposition principle
in probability theory (Grinstead & Snell 2012). Given a large high-dimensional dis-
tribution θ representing the domain knowledge, the task is to decompose it into a
set of smaller lower-dimensional distributions {θ1, θ2...θn} from which the original
distribution θ can be reconstructed with no errors. With such a decomposition one
could draw any conclusions from {θ1, θ2 . . . θn} that could be inferred from θ without
actually reconstructing it.

This procedure already has implementations in terms of probabilistic graphical
models (Airoldi 2007) using Bayesian Belief Networks and Markov Random Fields,
which form the foundation for probabilistic logics such as Bayesian (Kersting &
De Raedt 2007) and Markov Logic (Richardson & Domingos 2006; Domingos et al.
2010). They might therefore also offer good candidates for expressing system net-
works together with those networks’ constraints on syntagmatic structure, especially
given that highly efficient (polynomial and even log linear) learning and inference
algorithms already exist for them (Guo & Hsu 2002).

Another direction worth exploring is building the syntactic backbone as native
SFG constituency structures. For this task, an SFG corpus might be built either
from scratch, such as the one in Fawcett’s (1993) COMMUNAL project, or by trans-
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formation of existing corpora (Honnibal 2004; Honnibal & Curran 2007). The latter
option is more feasible and in line with the idea of cross-theoretic transformations
across distinct grammatical accounts defended above. Such resources could then
be employed in well established practice from computational linguistics as training
datasets for machine learning algorithms, which we will return to briefly below.

Automated parsing with functional categories promises a number of important
applications, both within and outside of research settings. Parsed data can help
in determining the register dimensions of a text, assisting in document classifi-
cation or analysis of diachronic change. These approaches can also help develop
linguistic theory—in the case of SFL, automated frequency counting is perhaps the
only feasible way of accomplishing the “grammarian’s dream” (Hasan 1987) whereby
grammatical distinctions and lexical alternatives become one unified resource. Such
counting would enable accounts to systematically extend characterizations from sys-
tem to instance respecting statistically-derived probabilities for given contexts.

Functional linguists approach corpora both from above (i.e., looking at collections
of texts as assemblages of registers) and from below (i.e., by building profiles of
lexicogrammatical frequencies). Teich et al. (2016), for instance, use register theory
and selected elements of SFG to analyze a large, metadata-rich corpus of scientific
writing. Automated tagging and manual annotation are used in tandem to extract
frequency counts for various lexicogrammatical features. Statistical modeling is then
used to model phylogenetic change, as well as disciplinary specialization. Findings
show that disciplines differentiate themselves not only through experiential choices
but through differing probabilities within tenor and mode as well. Teich et al. point
out that tenor and mode are often neglected in tool and method development within
NLP and SFL approaches could then help achieve more inclusive accounts.

Using similar methods, McDonald & Woodward-Kron (2016) investigate lan-
guage change over the course of membership in an on-line support group for bipolar
disorder. Over time, members’ talk increasingly comes to align with a biomed-
ical ideology: members’ Mood choices shift in order to allow advice and fore-
ground declaratives to provide hedged advice that foregrounds lay experience—
experientially, users come to construe health problems as Possessions, rather than
Identities. Zinn & McDonald (2015) apply a similar methodology in order to track
shifting lexicogrammar and semantics of risk in print news journalism over the past
30 years. Focusing on experiential and group level features, they found that risk is
increasingly nominal, negatively appraised, and construed as possible, rather than
calculated.

In each of these contemporary projects, dedicated systemic parsing would rad-
ically increase the potential features chosen for analyses, and allow more precise
division of meaning-making along metafunctional lines.

3 Dialogue systems: situated language use
Although the prospect of computational systems that converse with humans has
always been upheld as one of the primary goals of artificial intelligence, progress has
been relatively slow. The early system mentioned above, SHRDLU from Winograd
(1972), was a landmark system that in fact proved a difficult act to follow. Over
the past decade, an increasing number of computational systems with impressive
dialogic capabilities have been produced, however, and the area is now coming back
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into the mainstream: consumer electronics increasingly ship with computational
‘assistants’ of one kind or another, with each supporting at least spoken interaction
between information systems and their human users.

When dialogue systems are constructed incorporating insights from linguistic
theory, the interactional behavior that results offers a powerful source of additional
knowledge and evaluation of the adequacy of the theories employed. It is generally
immediately apparent when interaction does not run smoothly and so this can be
considered in terms of whether the theories employed were adequate or not in the
guidance they offered. This applies to all levels of abstraction within dialogue sys-
tems: for example, even when the speech recognition component is of insufficient
quality to reliably resolve what was said acoustically, one might still expect the
dialogue management component to respond more or less gracefully by politely in-
quiring again as to what was said, rather than simply failing with an internal system
error.

The usual components of a computational dialogue system therefore span a con-
siderable breadth of linguistic knowledge as well: ranging from spoken language
recognition, parsing, semantic analysis, contextualization, recognition of speech acts,
designing responses appropriate both to the context and to the addressee, producing
grammatical forms for those responses and converting them into intelligible spoken
output. Working on computational dialogue systems is then of considerable value
for refining our linguistic theories in each of these areas and in combination. This
applies equally to systemic-functional linguistics, and particularly to all of the varied
components of the theory spread over levels of linguistic abstraction from phonetics
to context of situation.

In general, developing a dialogue system can be seen as the task of creating
an artificial ‘persona’, a non-organic being who will speak to humans. There are
many reasons for developing such beings: some developers aim at alleviating hu-
man loneliness by building great listeners and companions while others focus on
automating labour, work, and entertainment by implementing virtual call-center
attendants, autonomous vehicles, vending machines, intelligent speakers, intelligent
TVs, and intelligent home devices. To a greater or lesser extent, dialogues in all
these contexts exhibit fundamental properties of ‘situatedness’. Here, a host of well-
known linguistic phenomena, such as deixis, i.e., referring to the speech situation,
and recipient design, i.e., making sure that what is said is appropriate both to the
context and to the state of knowledge of the addressee (cf. Fischer 2016), come to
play central roles. Ensuring that aspects of the linguistic account are able both to
access and to influence situation models appropriately to control these phenomena
is then an important requirement.

These properties raise some particular theoretical challenges for systemic-functional
theory that are currently unresolved: this concerns the entire area of establishing re-
lations between the linguistic system and context. Although SFL has always placed
considerable weight on the notion that language use, on the one hand, depends cru-
cially on context and, on the other, plays a constitutive role in constructing such
contexts, the mechanisms available within SFL for modeling this are still schematic.
When building computational dialogue systems, however, precisely this property
must be specified and implemented in detail. A major difficulty here is the highly
‘dynamic’ nature of the linkage between language and context. Each utterance is
dependent on the context, while also changing that context for subsequent utter-
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ances.
Approaches to dialogue systems outside of SFL most usually deal with this flex-

ibility by combining the so-called ‘information state’ approach Traum & Larsson
(2003), whereby semantic representations of the current ‘question under discussion’
and the states of knowledge of the respective interactional participants are used to
trigger actions, and statistically derived probabilities concerned with which speech
acts have occurred and which are most likely to follow. Within SFL-based systems,
an early model of this interaction was set out by O’Donnell (1990), while Fawcett
(1989) adopted more directly a procedural account based on flowcharts. More re-
cent models interacting with systemic-functional descriptions also include levels of
description concerned with transitions between dialogue states, modeled in a vari-
ety of ways (Teich et al. 1997; Shi et al. 2011), but these approaches still exhibit
drawbacks in comparison to the non-SFL-based dialogue systems available. Non-
SFL-based dialogue systems typically include far stronger formalizations of processes
of reasoning with presuppositions, of the influence of the knowledge of addressees, of
the communicative goals of the interactants, of the discourse history, of implications
following from the semantics, and more besides. They can, therefore, by no means
still be seen as impoverished or simplistic with respect to their purely linguistic
competitors.

Even at the level of fine-grained lexicogrammatical choices, context-sensitivity
of many linguistic phenomena must be catered for and theoretically characterized.
Consider the case of a single proper name. Depending on the states of knowledge
of the participants, uttering that name may be a simple mention, an invitation to
participate, a direct address or call for action, and so on. The same participant may
also be picked out by participant ‘status’—i.e., according to whether the participant
is a speaker (at some specific time), an addressee, or a third person participant or
overhearer. Thus choices in the grammar need direct access to various organizational
features of the situation and, moreover, those features change with each utterance
and with time. Furthermore, depending on what precisely is being done with an
utterance in a dialogue, the interpretation required may be quite different.

As a concrete example, consider the case of an autonomous wheelchair capable
of spoken language interaction. Here, even uttered terms for objects, such as ‘sofa’
or ‘TV’, may function as the referenced object of a relative location playing the
appropriate role in a command to move somewhere. In contrast, other uttered
terms for objects, such as ‘wheelchair’, may serve as a way to direct a command
at the intended addressee, as in ‘Wheelchair, go to the kitchen’. Such variation
demonstrates that anchoring linguistic analysis in the agency and affordances of
things present in the situation is essential to determine the speech function of an
utterance.

Situated dialogues therefore differ from monologues and from non-situated dia-
logues in substantial ways. On the one hand, a monologue such as an argumentative
essay consists of a series of uncontested statements. As a result, each statement cor-
responds to a process that the author assumes took, is taking, or will take place.
On the other hand, in a dialogue each statement must be acknowledged by the
addressee(s) before interactants agree that something took, is taking, or will take
place. Computational dialogue systems must then also incorporate explicit mod-
els of such ‘grounding’ as well in order to support natural interaction. Of course,
interactants may also disagree about what can be accepted as having taken place,
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which can lead to interruptions and further subdialogues at any point. In other
words, while truth is proposed in monologues, in dialogues it is negotiated. In addi-
tion, information is not only offered by interactants, it is also demanded in the form
of questions: in short, interactants exchange goods-and-services, and this must be
explicitly modeled.

A computational model addressing the forms of flexibility described above at
various levels has been developed by Couto-Vale (2017), building on SFL principles.
The application domain for this system is that of the above mentioned ‘intelli-
gent wheelchair’. Such wheelchairs primarily play a role in interactive exchanges of
goods-and-services. In particular, they offer a set of services, including going or tak-
ing someone to specified destinations and recharging themselves at an appropriate
docking station. When interacting with such a wheelchair, a human normally gives
the wheelchair a sequence of tasks for it to perform. These tasks are executions of
the wheelchair’s services. The context of a wheelchair offering services consequently
motivates particular interpretations and descriptions of the utterances occurring.
When humans and wheelchairs exchange services linguistically, the human takes
the role of a service client and the wheelchair takes the role of a service provider.
The human tells the wheelchair what to do and so is the source of the request; the
wheelchair is the request’s ‘destination’.

This can then be captured in terms of functional configurations in the linguistic
analyses that a dialogue system needs to perform when participating in natural dia-
logue in this scenario. Functional linguistic analyses appropriate for the context and
constructed automatically on the basis of situation-specific resources are illustrated
in Tables 1 and 2; in this scenario, the wheelchair goes by the name ‘Rolland’. In
Table 1, what is transferred from the service client (Agent) to the service provider
(Medium) is a request, whereas in Table 2 what is described is a service of the
service provider. Selecting the appropriate analysis for these grammatically very
similar cases demands that a language analyzer knows of the respective capabilities
of the represented participants: only the wheelchair is capable of moving the client,
whereas only the client is capable of calling for services.

I called Rolland to my bed
I brought Rolland to my bed

Client Process Provider Route
Agent – Medium Update

Table 1: Description of request
(by human)

Rolland took me to my bed
Rolland brought me to my bed
Provider Process Client Route
Agent – Medium Update

Table 2: Description of service
(by human)

Following this line of discussion further: not every process represented in human-
wheelchair interaction is a service, and so the system, and the underlying theoretical
description, must be able to tease these distinct interpretations apart. For example,
humans also use descriptions of their own future actions in order to communicate
to the wheelchair that services need to be performed that enable users’ actions to
take place. For instance, let us assume a gait-impaired woman is interacting with
an intelligent wheelchair and wishes to wash her hands. In this situation, only the
woman can wash her hands; the wheelchair cannot. However, the woman can only
wash her hands if she is at a given position in relation to a sink. Resolving the
intention of an utterance such as ‘I must wash my hands’ is therefore complex and
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again demands that the system can access just who can perform what actions in
order to assign functional roles in the grammatical analysis appropriately.

Specifically, because the wheelchair offers services it needs to construct interpre-
tations even of representations of human actions (such as ‘I must wash my hands’)
in terms of possible actions that would support those actions. It is this that makes it
possible for the wheelchair to respond in the present case: “ok, then I’ll take you to
the sink”. In other words, it is the fact that interactants can perform some actions
and cannot perform other actions, and that interactants offer services that enable
each other’s actions, that enables such clauses to be construed as commands for the
wheelchair to do something. Such knowledge must then be accessible if situationally
appropriate interpretation of utterances is going to be possible (Couto-Vale 2017).

Several practical approaches to implementing computational dialogue systems
of this kind make simplifying assumptions that provide basic functionality but with
little scope for extension to cover more natural or complex interactions of the kind il-
lustrated here. For example, spotting keywords is a straightforward way of ‘guessing’
what an utterance might have meant. When the word ‘kitchen’ is spotted some-
where in an utterance, the wheelchair or other assistant may just assume that the
intended service is to take the user to the kitchen. This strategy becomes increas-
ingly unwieldy when extended to interpret recognition of a keyword such as ‘wash’
as an instruction to go somewhere. What happens in practice with such straight-
forward approaches is that multiple keywords such as ‘wash’ + ‘hands’, ‘wash’ +
‘hair’, ‘wash’ + ‘dishes’, and ‘wash’ + ‘clothes’ are necessary for guessing the com-
mand. These sets of keywords become the conditions of interpretation rules, which
get progressively more complex as the number of potential clauses increase. For
this reason, although such an implementation strategy works for simple scenarios,
it does not result in reusable linguistic resources nor in resources that are easy to
maintain as the domain of application expands.

Being able to describe features of utterances as systemic options with reference
to the situation as suggested here and following SFL principles then promises an
economical way of automating understanding and generation in general. It is by rec-
ognizing the features of the situation that enable and disable people to mean some-
thing in particular that we can produce resources for one situation and reuse them
in another. Developing more complex dialogue systems building on fine-grained and
dynamic linkages between language and situation is in fact not only of interest for
applications; it is also a highly effective strategy for pushing theory development.
When a computational system is brought to the level of explicitness and complete-
ness that it can actually produce behavior (at any levels of linguistic abstraction),
weaknesses or gaps in the theories implemented can become glaringly evident in a
way that is simply not accessible when considering the theories ‘on paper’. When
the produced behavior does not meet expectations, this is a good indicator of places
where theoretical frameworks may need refinement.

4 Multimodality
Another development gaining momentum in several areas of computational linguis-
tics is the focus beyond language to include other modalities or forms of expression.
With this move, the range of computational work relevant for non-computational
theory building is also extended considerably—particularly for the area of multi-
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modality. Multimodality is the study of how multiple modes of expression interact
with each other in diverse communicative situations (Bateman et al. 2017). To
draw an example: a multimodal approach to the dialogue systems discussed above
might pay attention to gestures alongside spoken language, thus extending the scope
of relevant work from natural language processing to gesture recognition, a sub-
field of human–computer interaction (Rautaray & Agrawal 2015). Alternatively, a
multimodal perspective on page-based documents might in turn involve document
analysis, a subfield of computer vision, to automatically infer the structure of the
document and identify its contents, and apply appropriate processing depending on
whether they consist of photographs, diagrams, other graphic elements or written
language (Doermann & Tombre 2014) and to derive text-image relations (Bateman
2014).

While this illustrates how issues of multimodality and computation can often be
intertwined, a discussion capturing their breadth is well outside of the scope of this
chapter. Therefore, to limit and structure the discussion on computational methods
in SFL-inspired work on multimodality, we begin with a body of work strongly
rooted in SFL, namely that directed by Kay O’Halloran, before considering how
recent advances in computational methods may benefit and inform future research
on multimodality.

In work undertaken at the Multimodal Analysis Lab at the National University
of Singapore between 2008 and 2013, O’Halloran and her team aimed to:

“... develop and use interactive digital technologies for multimodal anal-
ysis of different media and to develop computational, mathematical, and
visualization techniques for interpreting semantic patterns in the result-
ing multimodal data. The research program also aimed to develop auto-
mated computational techniques for analysis of large cultural data sets,
and to develop digital technologies that promote a systematic approach
to teaching and learning multimodal literacy and communication skills
for the twenty-first century.” (O’Halloran 2015: 390)

Much has been written elsewhere about the tools for supporting multimodal anal-
ysis (see e.g. O’Halloran et al. 2014b); in the following, therefore, we focus on the
application of computational techniques to analyzing multimodal data.

Despite the computational emphasis, the underlying theoretical framework of
O’Halloran’s projects draws heavily on what O’Halloran (2008) conceptualizes as
Systemic-Functional Multimodal Discourse Analysis (SF-MDA). Following the so-
cial semiotic and systemic-functional approaches to multimodality (e.g. Kress &
van Leeuwen 2006; O’Toole 2011), SF-MDA considers language and image as re-
sources for making-meaning, building on the rich theoretical framework provided
by systemic-functional theory. This involves, for instance, applying the concepts
of metafunctions and rank to visual images, so as to provide an integrative frame-
work for describing multimodal data. With this kind of framework at hand, another
question quickly emerges from the computational perspective: namely, how to move
beyond hand-picked examples and bring the powerful theoretical apparatus of SFL
to bear on large volumes of multimodal data. Indeed, this question is well-known
and long-discussed in non-SFL computational corpus analysis.

Similar questions are posed in the emerging field of digital humanities, which
studies how computational methods and techniques can help to answer research
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questions raised in the humanities (see e.g. Berry 2012; Schreibman et al. 2016).
Multimodality, however, has not been theorized extensively in the digital humani-
ties, except in discussions of developing new ways of representing and disseminating
research results (Svensson 2010). O’Halloran et al. (2014a: 565) consequently char-
acterize their work as a further extension into what they define as “multimodal digital
humanities”, which involves collecting large volumes of linguistic and visual data,
which are then aggregated for analysis and converted into interactive visualizations
for exploration.

O’Halloran et al. (2014a) provide a good example of this approach at work, ex-
ploring the dynamics of urban life in Singapore. To study large volumes of data
collected from various social media services, O’Halloran et al. (2014a) examined
interpersonal meanings across two different semiotic resources by using computa-
tional techniques. For written language, O’Halloran et al. (2014a: 572) evaluated
the sentiment of 98,733 Twitter messages sent from specific locations by calculating a
lexicon-based emotion vector for each message, which captured the basic emotions of
happiness, sadness, fear, anger, disgust and surprise. For photographs, they applied
automatic face detection to 301,865 images retrieved from Instagram (O’Halloran
et al. 2014a: 573). By aggregating this information into a grid defined over the map
of Singapore, in which the locations are enriched with venue information combined
from FourSquare and Wikipedia, O’Halloran et al. (2014a) investigated differences
between residential and tourist areas.

In another study, Cao & O’Halloran (2015) explored differences in photo-shooting
patterns between different groups of users on Flickr, focusing on differences in shot
scale (close-up vs. long distance). Trained using texture patterns extracted by
computer vision algorithms from the photographs, a machine learning algorithm—a
Support Vector Machine (SVM)—learned to distinguish between shot scales with
91.3% accuracy. Cao & O’Halloran (2015) then applied this classifier to examine
photographs taken by different groups. This revealed a strong correlation between
the user’s geographic location and shot scale: the users were more likely to take close-
up shots while in their home country, while taking more distant shots abroad. Cao
& O’Halloran (2015) suggest that this may result from individuals taking pictures
of more mundane objects at home, while capturing sights and sceneries abroad,
reflecting photographic practices associated with tourism.

Although the results discussed above show the potential of computational meth-
ods, their level of detail remains far from those commonly found in manual analyses
of multimodality within SF-MDA and other approaches. O’Halloran et al. set out
to bridge this gap in subsequent work, identifying the following challenges:

“First, it is not possible to model and predict discourse patterns extrapo-
lating from a limited number of detailed analyses. Second, the modeling
of multimodal data using dimensionality reduction and clustering tech-
niques results in visual patterns that require a human analyst to make
sense of them, rather than delivering explicit, computable accounts of the
semantic patterns which have been derived.” (O’Halloran et al. 2016a:
10)

To this end, they propose a “multimodal mixed methods research framework” that
uses qualitative methods to identify key semiotic resources in the collected data set,
which are then targeted using quantitative methods, such as mining the data with

15



the help of machine learning algorithms. Finally, these analyses are synthesized into
visualizations for exploring the results.

As the work of O’Halloran and her colleagues shows, rapidly developing fields of
study such as computer vision, natural language processing and machine learning
will undoubtedly make a significant contribution to the study of multimodality in
the coming years. The work of Bateman et al. (2016) exemplifies emerging work in
this area, combining manually and automatically generated annotation layers in a
corpus describing the multimodality of film. Whereas various visual and aural events
in film, such as shot boundaries and background music, are captured automatically
by algorithms, filmic cohesion is described manually using the framework set out in
(Tseng 2013).

Bateman et al. (2016) show that automatically generated annotation not only
reduces the time and resources spent on compiling multimodal corpora, but also
extends their scope by introducing layers of description which could be otherwise
considered too demanding for manual annotation. Moreover, these benefits are not
limited to the description of complex dynamic multimodal phenomena in film, but
apply to page-based artifacts as well, whose annotation has proven equally time- and
resource-intensive. To draw on an example, Hiippala (2016) presents a tool which
uses open source computer vision, natural language processing and optical character
recognition libraries to generate XML annotation from document images, which is
designed to support the manual application of the annotation framework presented
in Bateman (2008a).

Developments of this kind are now being driven forward by advances in several
interrelated areas of computer science, including machine learning, computer vision
and NLP. In particular, results in a specific subfield of machine learning known
as ‘deep learning’ are now bringing about significant developments in all of the
aforementioned fields. This subfield focuses on the design and use of artificial neural
networks for a broad variety of tasks (LeCun et al. 2015). Artificial neural networks
follow principles of operation inspired by the structure and activation of neurons
in the human brain and have become increasingly popular in recent years due to
increases in computing power and the volume of data available for training the
networks.

In contrast to many ‘traditional’ machine learning algorithms, in which the fea-
tures necessary for the task at hand—such as classifying an image based on its
contents or finding an object in the image—are crafted manually by humans, neural
networks learn these representations automatically by adjusting their parameters
during training. The epithet ‘deep’, in turn, refers to how these parameters are
organized into successive layers, which learn increasingly abstract representations of
the data. Whereas the first layers may contain representations of changes in illumi-
nation or texture, the subsequent ones may construe combinations of these features
into representations of particular objects. These developments are highly relevant to
multimodal research, as exemplified by now common computer vision tasks such as
image captioning and object detection, recognition and classification (see Bateman
et al. 2017: 162–166).

As a concrete example, the work of Kembhavi et al. (2016) focuses on under-
standing the content and structure of diagrams and shows how far deep learning
has pushed the joint processing of language and images. Kembhavi et al. (2016)
train multiple neural networks to parse the diagrams for constituents and their rela-
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tionships. This representation of the diagram is then fed to another neural network
for ‘diagram question answering’, which involves predicting the correct answer to
a multiple choice question. How diagrams make meanings has also been explored
from an SFL-inspired, multimodal perspective by Guo (2004), but as in many other
cases, these analyses have been limited to very few examples. In contrast, the parser
presented in Kembhavi et al. (2016) could be used to radically increase the size of
multimodal corpora for diagram description. In fact, their dataset, which includes
5,000 human-annotated diagrams, warrants a multimodal investigation in its own
right.

Finally, it is useful to consider the potential contribution of SFL and multimodal
research to what may be broadly described as the field of artificial intelligence.
Although O’Halloran et al. (2016b) envisage that multimodal analyses conducted
by experts could be re-used as training data for machine learning algorithms, state-
of-the-art techniques such as deep learning are notoriously hungry for data. This
data is needed both for training models for various tasks and to measure their
performance. Typically, this data is crowd-sourced through services such as Amazon
Mechanical Turk, which allows individuals to bid on and undertake small tasks,
such as labeling objects or drawing their outlines in images. At this stage, given
their experience in developing rich and systematic annotation schemes, researchers
working on multimodality could develop annotation frameworks for multimodal data
and investigate how best to instruct the non-expert annotators in their task, thus
improving the quality of data.

5 Toward further integration
Better engagement with CL and NLP has a number of benefits for SFL. First,
computational methods can facilitate automatable and reproducible work. The large
amounts of time taken for manual annotation of data mean that many SFL projects
face time and cost constraints. Heavily automated workflows, on the other hand,
can be deployed on new data at little to no cost. This seems to be a practical path to
Matthiessen’s notion of language as “an assemblage of registers” (Matthiessen 2015b:
44): the same set of routines, automatically applied to corpora of different domains,
could provide an insightful account of how Field, Tenor and Mode influence the
probabilities for content-stratum phenomena.

At the same time, computational approaches make it possible to empirically test
key components of an SFG. Automated text processing, for example, may be able to
shed light on the oft-noted difficulty of process-type identification: if a model trained
on large, well-annotated collections of process types cannot accurately predict pro-
cess type labels in unseen data from a similar text-type, we may have an indication
that our current understanding of experiential semantics is incomplete. Moreover,
as Halliday discovered, the number of words needed to collect a quantitatively useful
sample grows exponentially with the delicacy of the phenomenon of interest. While
only 2000 main clauses are needed to create a profile of Mood or Process Type, hun-
dreds of thousands of words (or a smaller, highly specific sample) may be needed in
order to develop frequency profiles for lexical alternatives (Matthiessen 2015a). Re-
alizing the statistical component of SFG at the grammatical pole of lexicogrammar
is therefore dependent on computational methods.

Another important benefit of combining SFL and NLP is that the high-quality
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data produced by human annotators with detailed training in SFG could be effec-
tively repurposed as training data for machine learning algorithms. As noted above,
a consistent, well-annotated dataset is the main prerequisite for the development of
a high-quality statistical parser.

Finally, for NLP practitioners, SFL provides several well articulated hypotheses
concerning the relationship between critical linguistic questions, such as the rela-
tionship between text and context, lexis and grammar, and words and meaning. In
clearly differentiating between form, function, words and meaning, SFG may be able
to avoid pitfalls that limit the utility of more popular computational grammars for
functional-semantic tasks. It is certainly possible that current limitations in NLP
are not the result of limitations in statistical methods, but in the grammars ac-
cepted by algorithms as input and output. Put another way, even perfectly accurate
automatic annotation may have limited usefulness if what is being annotated does
not correspond to meaningful distinctions within the grammar of a language. Goals
that are still distant in NLP, such as semantic parsing and discourse-level annota-
tion, could foreseeably stand to benefit from the relatively holistic account provided
by SFL.

6 Conclusion
SFL is a complex and rich theoretical account in which several distinct represen-
tational resources are regularly used. Many of these are currently at the limit or
beyond what can be modeled computationally. Computation has, however, made
enormous strides over the past 10 years and many of the phenomena at the core
of SFL theorizing at the outset—particularly, for example, reliance on data and
corpora—are now coming within reach. In fact, such approaches to language are
only achievable with computational methods and so it is both necessary and log-
ical that interaction between SFL and computation should continue and, in some
areas, intensify. In previous rounds of interaction the efforts of particular individ-
uals have been central. For example, beginning with work on machine translation
and then, later, natural language generation, the willingness of Michael Halliday to
engage with emerging technologies played a crucial role (cf. Bateman & O’Donnell
2015). There is now considerably more need for researchers who are trained both in
computation and SFL as both of these disciplines continue to evolve and grow.
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