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4 Gravitation

4.1 The Einstein equation

4.1.1 Geometrisation of Newtonian gravity

In the previous chapters, we set up the machinery to describe the curvature of man-
ifolds and established how it determines the motion of matter. We are missing one
piece: how is the curvature determined? We take the metric to be the fundamental
variable that describes spacetime geometry, so we need an equation of motion for
the metric, sourced by matter.

We want the equation of motion to be written in terms of tensors (i.e. defined
on the manifold), and we want it to be second order. Equations higher than second
order generally have violent instabilities, as the Hamiltonian will be linear instead
of quadratic in one or more of the canonical momenta. There do exist stable higher
derivative theories that extend GR, and they have been extensively studied. We
will only consider GR, where the equations of motion are second order and linear
in the second derivatives. They are then linear in the Riemann tensor and have
the form (part of the Riemann tensor) = (matter source). The word “part” is
key here. The entire Riemann tensor cannot be locally sourced by matter. One
reason is phenomenological: for such an equation of motion, the curvature would
vanish outside matter, and there would be no gravity in vacuum, so the theory does
not describe our world. Another, more fundamental reason is mathematical: the
Riemann tensor has 20 independent components while the metric has 10. So only
a subset of 10 components of the Riemann tensor can enter into the equations of
motion of the metric, otherwise they will be overdetermined. (We also have to factor
in the feature that we have four coordinate degrees of freedom.)

To get an idea of which part of the Riemann tensor to pick and why, it is
instructive to look at Newtonian gravity in terms of a manifold, in other words to
geometrise Newtonian gravity. The Newtonian equation of motion for a particle
under the influence of gravity alone is

0 =
d2xi

dt2
+ δij∂jφ , (4.1)
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where φ is the gravitational potential. In chapter 3 we used the Euler–Lagrange
equations to obtain the connection coefficients by identifying the equation of motion
of a free particle with the geodesic equation. We will do the same here in the
Newtonian case, but now this is not just a calculational device, but a definition: we
demand that (4.1) agrees with the geodesic equation

0 =
d2xγ

dτ2
+ Γγαβ

dxα

dτ

dxβ

dτ
. (4.2)

Equation (4.1) does not have a zero component. However, if Γ0
αβ = 0, then (4.2)

is just d2t
dτ2

= 0, which gives t = Aτ +B. This is just the statement that Newtonian
proper time equals (up to a change of units and origin of time) coordinate time, i.e.
time is absolute. The spatial components give Γijα = 0 and

Γi00 = δijφ,j . (4.3)

From the definition of the Riemann tensor we find that its only non-zero component
is

Ri0j0 = δikφ,kj . (4.4)

Contracting the first and the third index, we see that the only non-zero component
of the Ricci tensor is

R00 = ∇2φ . (4.5)

As we noted in chapter 3, the Riemann tensor is defined in terms of the connection
alone, the metric does not make an appearance. This is also true for the Ricci tensor.
However, without a metric, we cannot raise or lower indices nor take traces, so the
Ricci scalar and the Weyl tensor are not defined. Newtonian spacetime is an example
of a manifold that has a connection but no metric. It is possible to introduce metric
structure, but we need one metric with down indices and another with up indices,
both being degenerate (i.e. the matrix formed by the components of the metric has
zero determinant) and not the inverse of each other. Such a construction actually
provides an elegant way to understand Newtonian gravity as the limit of GR where
the metric becomes degenerate. But let us not continue in that direction, recalling
that we are in the process of finding the equation of motion of GR.

In table 1 we compare various quantities in GR and Newtonian gravity. In
Newtonian gravity, the gravitational field is described by the potential φ, which
enters the particle equation of motion via the gradient ∂iφ. The equations of motion
are second order in derivatives, so they involve ∂i∂jφ. This is a symmetric 3 × 3
tensor, and thus has 6 independent components. Since the gravitational potential
involves only one field, its equation of motion can have only one component (or
rather, the number of components minus constraints must be 1). In other words,
an equation of the form ∂i∂jφ = Aij does not have a solution for general symmetric
tensor Aij = A(ij) that describes a matter source. It is the trace of the second
derivative, ∇2φ, that is proportional to the matter source. The procedure is that we
first solve φ from the Poisson equation ∇2φ = 4πGNρm, then calculate ∂iφ which
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GR Newtonian gravity

field gαβ φ
appears in particle EOM Γγαβ ∂iφ

curvature Rαβγδ ∂i∂jφ
trace of the curvature Rαβ ∇2φ

tidal field Cαβγδ ∂i∂jφ− 1
3δij∇

2φ
particle EOM ẍα + Γαβγ ẋ

βẋγ = 0 ẍi + δij∂jφ = 0

field equation Gαβ = 8πGNTαβ ∇2φ = 4πGNρm

Table 1: Comparison of GR in arbitrary coordinates and Newtonian gravity in
Cartesian coordinates. EOM stands for equation of motion.

determines particle trajectories, and from that we get the traceless combination
∂i∂jφ− 1

3δij∇
2φ, which gives tidal effects.

We will want to use Newtonian gravity as a guide to finding the equation of mo-
tion of GR. We will later derive the equation of motion from an action principle à la
Hilbert, bypassing the assumptions we make here, but it is useful to also understand
this Einsteinian route to the equations of motion.

In GR, the gravitational field is described by the metric gαβ, which has 10 inde-
pendent components. We want an equation of motion that is linear in the Riemann
tensor. It cannot involve all of the components of the Riemann tensor, i.e. it cannot
be of the form Rαβγδ = Aαβγδ, where Aαβγδ is some tensor that describes matter.
Instead, we need an equation with 10 components.

In the Newtonian case, the Poisson equation written in terms of the Ricci tensor
reads R00 = 4πGNρm. As a first try, we could guess that the GR equation of motion
would be Rαβ = κTαβ, where κ is a constant and Tαβ is the energy-momentum
tensor that describes matter. We would then solve for the metric, and take deriva-
tives of it to find the Weyl tensor, which gives tidal effects, in analogy with the
Newtonian case. This was Einstein’s first attempt. It’s wrong, for reasons that will
soon become clear. However, the more general ansatz

κTαβ = Rαβ +AgαβR , (4.6)

where A is a constant, works. To determine the value of A, we consider properties
of the energy-momentum tensor.

4.1.2 The energy-momentum tensor

Given an arbitrary timelike unit vector field uα, we can without loss of generality
decompose the energy-momentum tensor as

Tαβ = ρuαuβ + Phαβ + 2q(αuβ) + Παβ , (4.7)

where hαβ = gαβ + uαuβ projects orthogonally to the time direction given by uα, ρ
is the energy density, P is the pressure, qα is the energy flux or momentum
density, and Παβ is the anisotropic stress or anisotropic pressure. Both qα
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and Παβ are orthogonal to uα, qαu
α = 0, Παβu

β = 0, and Παβ is symmetric and
traceless, Παβ = Π(αβ), g

αβΠαβ = 0. Taking different projections of (4.7), we find
that these quantities are given in terms of the energy-momentum tensor as

ρ = uαuβTαβ (4.8)

P =
1

3
hαβTαβ (4.9)

qα = −hαβuγTβγ (4.10)

Παβ = hα
µhβ

νTµν −
1

3
hµνTµνhαβ . (4.11)

Observers with different uα have a different decomposition of the energy-momentum
tensor and measure different values of the energy density and other quantities. (Com-
pare to the fact that energy of a particle with momentum pα as measured by an
observer with four-velocity uα is E = −uαpα.) The trace of the energy-momentum
tensor is the same for all observers, Tαα = −ρ+ 3P . If qα = 0,Παβ = 0, we say that
matter is an ideal fluid:

Tαβ = ρuαuβ + Phαβ . (4.12)

If also P = 0, we say that matter is dust. Two observations are in order. First, these
conditions say nothing about the microscopic properties of matter, in particular it
need not consist of a gas of particles in thermal equilibrium. (In chapter 6 we
will see that the energy-momentum tensor of a scalar field has the ideal fluid form,
for example.) Second, the ideal fluid (and dust) form is observer-dependent. We
say that observers for which the energy-momentum tensor has the ideal fluid form
are comoving with the fluid. Observers who move with respect to the comoving
observers do not see the energy-momentum tensor as having the ideal fluid form.
So, precisely speaking, matter is an ideal fluid if and only if there exists a timelike
unit velocity field such that when the energy-momentum tensor is decomposed with
respect to that field, qα = 0,Παβ = 0.

Consider the energy-momentum tensor in Minkowski space in Cartesian coordi-
nates with the time direction taken to be the coordinate time, uα = δα0. We then
have uα = −δα0 and hαβ = δαiδβjδij , so the non-zero components of the decompo-
sition quantities are

ρ = T00 (4.13)

P =
1

3
T ii (4.14)

qi = −T0i (4.15)

Πij = Tij −
1

3
T kkδij . (4.16)

In matrix form we have

Tαβ =


ρ −q1 −q2 −q3
−q1 P + Π11 Π12 Π13

−q2 Π12 P + Π22 Π23

−q3 Π13 Π23 P + Π33

 , (4.17)
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with δijΠij = 0.
An important property of the energy-momentum tensor in Minkowski space is

that (in Cartesian coordinates)

∂αT
αβ = 0 ⇐⇒ energy and momentum are conserved . (4.18)

Let us prove (4.18). Assume that the left-hand side holds, take β = 0 and
integrate over a fixed volume V

0 =

∫
V

d3x(∂0T
00 + ∂iT

0i)

= ∂0

∫
V

d3xρ+

∫
∂V

dSniq
i , (4.19)

where on the second line we have used (4.13) and Gauss’ theorem, and ni are the
components of the unit vector orthogonal to the boundary ∂V . If there is no energy
flux through the boundary ∂V (i.e. qi = 0 there), the total energy, defined as E ≡∫
V dx3ρ, is conserved. Repeating the exercise for β = i and assuming that the

momentum flux Tij through the boundary vanishes we find that the total momentum,
defined as P i ≡

∫
V dx3qi, is conserved. This also clarifies the physical meaning of

the components Tij . To prove the implication in the other direction, we assume
that the time derivative is zero when the flux through the boundary vanishes, and
work backwards. Requiring this to hold regardless of how V is chosen gives the local
result.

The property ∂αT
αβ = 0 is sometimes called the energy conservation equation.

Note the similarity to the electrodynamics equation ∂αj
α = 0 for the charge current,

from which it follows that charge is conserved. Moving from Cartesian coordinates
to general coordinates (but still in Minkowski space), the equation ∂αT

αβ = 0 gen-
eralises to

∇αTαβ = 0 in Minkowski space . (4.20)

There is no physics in the above generalisation, just coordinate transformations.
However, we now assume that the above equation generalises to the following law:

∇αTαβ = 0 on a general manifold . (4.21)

The physical assumption in (4.21) is that the geometry of the manifold affects the
covariant divergence of the energy-momentum tensor only via the connection. The
equation (4.21) is called the energy-momentum tensor continuity equation or
sometimes the covariant conservation law of the energy-momentum tensor.
The latter term is misleading and not recommended: because it is a tensor equation
(of rank higher than zero), it cannot be integrated on the manifold, and hence does
not lead to a conservation law. In fact, the equation quantifies how energy is not
conserved in GR, as we will see when we discuss cosmology. (It would be more
accurate to say that in GR, total energy as a concept is not in general defined, and
when it can be defined, it is not in general conserved.)

Taking SR equations for non-gravitational physics in Cartesian coordinates and
replacing the Minkowski metric with a general metric and partial derivatives with
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covariant derivatives is called the minimal coupling principle. Looking only at
the equations of motion, it does not follow from other properties of the theory, and
is an extra assumption. For example, if we add to (4.21) terms that depend on
the Riemann tensor, it will still have the desired SR limit. The minimal coupling
principle is in fact not much needed in GR once we use the action formulation,
to which we come in chapter 6. We will then see how partial derivatives in the
action for scalars and gauge fields turn into covariant derivatives in the equations of
motion automatically via the variational principle, without the need to invoke extra
assumptions. (The fermion case is a bit more complicated, and we will not discuss
it.) We will also see in which way terms that break the minimal coupling principle
are allowed.

4.1.3 Generality of the Einstein equation

Let us now get back to our equation of motion (4.6). Contracting with the covariant
derivative gives zero on the left-hand side by the assumption (4.21). Therefore the
right-hand side must be zero as well. Comparing to (3.67) and (3.68), we see that
we must have A = −1

2 , i.e. the right-hand side has to be the Einstein tensor. We
end up with

Gαβ = κTαβ , (4.22)

where Gαβ = Rαβ− 1
2gαβR is the Einstein tensor. The relation (4.22) is the Einstein

equation. This is the equation of motion for general relativity that we have been
seeking.

How general is this equation of motion? Assume that the equation of motion is
of the form κTαβ = Aαβ for some gravitational tensor Aαβ. It can be shown that if
the following conditions hold,

1) Aαβ = Aαβ(g, ∂g, ∂2g) ,

2) ∇αAαβ = 0 ,

3) Aαβ is linear in ∂2g ,

4) Aαβ = A(αβ) ,

then in addition to the Einstein tensor, Aαβ can consist of only one other tensor,
namely the metric itself: Aαβ = λGαβ + Λgαβ, where λ and Λ are constants. The
coefficient Λ is called the cosmological constant. It was not present in the original
formulation of the equation of motion, and the name comes from the fact that it was
added by Einstein in 1917 to obtain a static cosmological solution; we will discuss
this in chapter 9. If we demand that Minkowski space is a solution when there is no
matter, we get Λ = 0 (although it is not clear whether this is a reasonable demand).

Alternatively, we can replace conditions 3 and 4 with the requirement that there
are no more than 4 spacetime dimensions:

1) Aαβ = Aαβ(g, ∂g, ∂2g) .

2) ∇αAαβ = 0 .
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3) d ≤ 4 .

At d = 5, there is one extra tensor that satisfies the above two conditions and that
is quadratic in the Riemann tensor; every other dimension thereafter adds a new
term that is one power higher in the Riemann tensor. (The cosmological constant
term and the Einstein tensor are part of this progression, appearing at d = 1 and
d = 3, respectively.)

So either way, we end up with the equation of motion

Gαβ + Λgαβ = κTαβ . (4.23)

Comparing to the decomposition (4.7) of the energy-momentum tensor, we see that
if we shift the cosmological constant term to the right-hand side, it corresponds to
a contribution to the energy-momentum tensor of the ideal fluid form with ρ = Λ/κ
and P = −ρ. This form of matter with constant energy density and pressure is
called vacuum energy. We will sometimes drop the cosmological constant term,
because it can always be considered to be included in the energy-momentum tensor
like this.

The identity ∇αGαβ = 0 (which, recall, is just the trace of the Bianchi identity)
reduces the number of independent differential equations by 4. So (4.23) consists
of 10 equations connected by 4 constraints. This is just as well, because it should
give the 10 components of the metric, up to 4 coordinate transformations. If the
number of independent equations of motion were equal to the number of components
of the metric, the equations of motion would fix the coordinate system in addition
to fixing the physics, in violation of diffeomorphism invariance according to which
all coordinate systems are physically equivalent.

With the equation of motion (4.23), conservation of energy and momentum in
the limit of flat spacetime is a consequence of Bianchi identity. This analogous to
how charge conservation follows from the structure of the dynamical part of the
Maxwell equations, Fαβ,β = jα. (Because Fαβ = F[αβ], ∂αj

α = 0 is a consistency
condition for the equation.) Of course, since we used the conservation of energy and
momentum to find the equation of motion, we cannot say that we have derived it.
This will change once we find the equation of motion from varying an action; then
∇αTαβ = 0 and, in the flat spacetime limit, energy conservation become results and
not assumptions.

Note how the requirement of diffeomorphism invariance has pinned down the
equation of motion. We noted in chapter 1 that the symmetries of Newtonian
mechanics do not fix the gravitational force: its magnitude could depend on the
distance between particles in an arbitrary manner. In GR, the situation is strikingly
different: we have no free functions, and only two constants. Before going to the
action, let us look at the Newtonian limit to fix one of them, κ that determines the
strength of the curvature sourced by matter.

4.2 Newtonian limit

4.2.1 Weak field and small velocity

Our study of the relativistic theory of gravity so far has one major shortcoming:
we haven’t shown that it has anything to do with gravity. Let’s now demonstrate
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that Newtonian gravity is a limit of GR. We expect to need at least two conditions
for the Newtonian limit: weak gravitational fields and small velocities. The second
condition is necessary, because we know that the validity of Newtonian physics is
limited to the region where velocities are much smaller than the speed of light (i.e.
unity).

Let us begin by defining that by weak gravitational fields we mean that there
exists a coordinate system where the metric is close to the Minkowski metric, gαβ =
ηαβ + δgαβ, with |δgαβ| � 1. We will expand to linear order in δgαβ, and the
derivatives of δgαβ are considered to be of the same order of smallness as δgαβ. In
chapter 8 we will consider the full decomposition of δgαβ into ten degrees of freedom
(and the impact of coordinate transformations on them). For now, we simply take
the metric to be diagonal and of the form:

ds2 = −(1 + 2φ)dt2 + (1− 2φ)δijdx
idxj , (4.24)

i.e. gαβ = ηαβ − 2φδαβ, with |φ| � 1. To linear order, the inverse metric is

gαβ ' ηαβ + 2φδαβ . (4.25)

It is straightforward to derive the connection coefficients. To linear order, they
are

Γγαβ =
1

2
gγµ(∂αgµβ + ∂βgαµ − ∂µgαβ)

' −ηγβ∂αφ− ηαγ∂βφ+ δαβη
γµ∂µφ . (4.26)

Writing out the coefficients, we have

Γ0
00 ' φ̇ (4.27)

Γ0
0i ' ∂iφ (4.28)

Γ0
ij ' −δijφ̇ (4.29)

Γi00 ' ∂iφ (4.30)

Γi0j ' −δijφ̇ (4.31)

Γijk ' −δik∂jφ− δij∂kφ+ δjk∂iφ , (4.32)

where dot denotes partial derivative with respect to the coordinate time t. These
do not agree with the connection coefficients derived for the exact Newtonian case
in section 4.1.1, where the only non-zero coefficient was Γi00 = ∂iφ. One simple
difference is the presence of φ̇, but the exact Newtonian theory is also missing terms
that have the same form as Γi00, and are not suppressed by any small factor. We
will see why this is when we look at the trajectories of observers.

4.2.2 Equation of motion of matter

Consider a timelike geodesic with unit tangent vector uα = δα0 + δuα. We assume
that the spatial velocity is small: in the coordinate system (4.24), |δui| � 1. The
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normalisation condition then gives

−1 = gαβu
αuβ

' g00u
0u0

= −(1 + 2φ)u0u0 , (4.33)

which gives δu0 ' −φ. Recalling that u0 = dt
dτ , this gives gravitational time dilation.

The geodesic equation is

0 = uβ∇βuα

= uβ∂βu
α + Γαβγu

βuγ

' ∂0δu
α + Γα00 , (4.34)

where we discarded all terms that are nonlinear in φ and/or δui. Using (4.27) and
(4.33), the component α = 0 reduces to an identity. The component α = i gives,

using (4.27) and noting that up to linear order ui = dxi

dτ = dt
dτ

dxi

dt '
dxi

dt ,

0 =
d2xi

dt2
+ δij∂jφ , (4.35)

the Newtonian equation of motion under gravity. We now see why the exact Newto-
nian theory is missing the non-zero parts of the terms Γ0

0i and Γijk. In the geodesic
equation, they couple to the velocity, and their effect is suppressed when the velocity
is small. They are thus invisible in the Newtonian limit.

4.2.3 Equation of motion of the gravitational field

We have shown that gravity affects matter in the same way as in the Newtonian
limit. Let now us turn to how matter generates gravity. For that we need the
Riemann tensor. To linear order we have, using (4.26)

Rαβγδ ' ∂γΓαδβ − ∂δΓαγβ (4.36)

' ηβδ∂α∂γφ− ηαδ∂β∂γφ+ ηαγ∂β∂δφ− ηβγ∂α∂δφ . (4.37)

Writing the Riemann tensor component by component, we have

Ri0j0 ' ∂i∂jφ+ δijφ̈ (4.38)

Ri0jk ' δij∂kφ̇− δik∂jφ̇ (4.39)

Rijkl ' δik∂j∂lφ− δjk∂i∂lφ+ δjl∂i∂kφ− δil∂j∂kφ . (4.40)

We thus get for the Ricci tensor Rαβ = Rµαµβ

R00 ' ∇2φ+ 3φ̈ (4.41)

R0i ' 2∂iφ̇ (4.42)

Rij ' δij(∇2φ− φ̈) , (4.43)

and the Ricci scalar is

R = gαβRαβ ' ηαβRαβ ' 2∇2φ− 6φ̈ . (4.44)
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Finally, the Einstein tensor is

Gαβ = Rαβ −
1

2
gαβR ' Rαβ −

1

2
ηαβR , (4.45)

which gives

G00 ' 2∇2φ (4.46)

G0i ' 2∂iφ̇ (4.47)

Gij ' 2δijφ̈ . (4.48)

Note how the Einstein tensor is simpler in terms of the metric than the Ricci tensor.
We should now look at the Einstein equation. We consider a general energy-

momentum tensor and decompose it using the decomposition (4.7) for the observer
velocity uα. Because we treat the derivatives of φ as small quantities, it follows that
the source terms in the energy momentum tensor must also be small, so we linearise
with respect to them. To linear order, as δui is small, we have q0 ' 0, Π0α ' 0.
Linearising the Einstein equation (4.23) (and dropping the cosmological constant),
we get

2∇2φ ' κρ (4.49)

2∂iφ̇ ' −κqi (4.50)

2δijφ̈ ' κ(Pδij + Πij) . (4.51)

We immediately note that (4.51) is inconsistent unless Πij is smaller than the other
source terms so that it can be neglected, Πij ' 0. (We will see later that Πij would
generate a difference between δg00 and δgij , which we have not accounted for, and
which is not present in the Newtonian limit, where there is only one gravitational
potential.) The equation (4.49) gives the Poisson equation if κ = 8πGN and if the
energy density is dominated by the mass density, i.e. if matter consists of a gas
of particles whose masses are much larger than their kinetic energies, ρ ' ρm. In
general, not only rest energy due to mass but also other forms of energy contribute
to the energy density. When we discuss cosmology in chapter 9, we will see how
massless particles contribute to the energy density.

What about the other two equations, (4.50) and (4.51) (with the latter sourced
only by pressure)? These equations are not independent: taking a time derivative
of (4.49) and a spatial derivative of (4.50) gives ρ̇ + ∂iq

i = 0. (Note the analogy
between the energy density of GR and charge density of electrodynamics, and the
energy flux of GR and charge current of electrodynamics.) From (4.50) and (4.51)
we likewise get ∂iP + q̇i = 0. These relations are in fact just the 0 and i components
of the linearised continuity equation ∇αTαβ ' ∂αTαβ. This is related to our earlier
comment that not all components of the Einstein equation are independent, because
they are related by the Bianchi identity.

If we want the Newtonian limit to include the condition that only the mass
density has an effect on gravity (as in Newtonian theory), then we should impose
the conditions P ' 0, qi ' 0. Together with Πij ' 0, this amounts to demanding
that the energy density is much larger than any other contribution to the energy-
momentum tensor. In this case φ̇ ' 0, i.e. the gravitational potential varies slowly in
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time, and so does the energy density, ρ̇ ' 0. So this version of the Newtonian limit
corresponds to not only slow motion of sources, but also to slow evolution of the
metric. We see that the Newtonian limit implies conditions not just on the strength
of the gravitational fields and observer velocities, but also on the energy-momentum
tensor. For matter that consists of a gas of particles, the conditions that Πij , qi and
P are small reduce to the demand that the particle velocities are small, which also
guarantees ρ ' ρm. So they can be considered part of the small velocity assumption,
if it is extended to cover not only the velocity of the observer but also the velocity
of the sources.

Note that the Poisson equation we end up with is elliptic: time derivatives
have disappeared. This is because in Newtonian theory, the gravitational field does
not have its own degrees of freedom, it is fixed by the matter via a constraint
equation. This is not true in GR: for suitable conditions on the matter content,
the Einstein equation is hyperbolic and has a well-defined initial value problem.
This difference means that the Newtonian limit is singular: solving the Einstein
equation and taking the Newtonian limit do not commute. There are solutions of
the Newtonian equations that are not the limit of any GR solution. (There are
also, less surprisingly, GR solutions that have no Newtonian limit.) Describing the
Newtonian limit in detail, correctly accounting for this feature, is an interesting
problem that we cannot stop to further discuss, as our itinerary calls for us to move
on to the orbit of Mercury and the bending of light in the Schwarzschild solution.
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