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3 Curvature

3.1 Connection and covariant derivative

3.1.1 General connection

We have established that the second derivatives of the metric contain (in 4 dimen-
sions) a total of 100 functions, of which 80 are coordinate degrees of freedom. The
remaining 20 functions describe coordinate-independent information, called curva-
ture, that distinguishes between the manifold from Minkowski space at a point. We
will in fact see that the curvature contains all information about that difference
in the sense that if it vanishes, the spacetime is Minkowski. We want to express
this information in a way that (unlike partial derivatives) is independent of the
coordinates, in other words we seek a tensor that describes spacetime curvature.
A straightforward way to do this would be to find the combination of the second
derivatives of the metric (and the metric and its first derivatives) that transforms
like a tensor. However, the combination turns out to be quite messy. It is easier to
first introduce a bit more structure on the manifold, and then express the curvature
in terms of that structure. The structure in question is the covariant derivative.

In the previous chapter, we noted that the partial derivatives of the components
of a tensor field (of rank≥ 1) are not the components of a tensor field. In other words,
a partial derivative is defined only in a coordinate system, not on the manifold: it
operates on components, not on tensors. Let us now define a derivative that instead
operates on tensors, the covariant derivative ∇. Formally, it is an operation that
maps a tensor field to another tensor field:

∇ : tensor field of type (r, s) → tensor field of type (r, s+ 1) . (3.1)
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3 CURVATURE 41

In order to be identified as a derivative operator that generalises the concept of par-
tial derivative to manifolds, we demand the map∇ to satisfy the following conditions
(A and B are tensors, a and b are real numbers):

1) Linearity: ∇(aA+ bB) = a∇A+ b∇B .

2) Leibniz rule: ∇(A⊗B) = ∇A⊗B +A⊗∇B .

3) The covariant derivative of a scalar function is the partial derivative.

4) The covariant derivative commutes with contraction of indices.

The components of the covariant derivative are denoted by

(∇T )µ
α1...αr

β1...βs ≡ ∇µTα1...αr
β1...βs ≡ Tα1...αr

β1...β;µ . (3.2)

Note that ∇µ comes before the other indices, whereas ;µ comes after them. Condi-
tion 4) then reads

∇µ(Tα1...ν...αr
β1...ν...βs) = (∇T )µ

α1...ν...αr
β1...ν...βs . (3.3)

For a vector field U we have

(∇U)β
α ≡ ∇βUα ≡ Uα;β . (3.4)

It follows from properties 1) to 4) that the components of the covariant derivative
are given by a partial derivative of the components of the tensor it operates on, plus
a linear combination of those components. (This is not obvious; we skip the proof.)
For a vector, we have

∇βUα = ∂βU
α + ΓαβγU

γ , (3.5)

where the numbers Γαβγ are called the connection coefficients, or simply the con-

nection. In d dimensions, there are d3 of them, so 64 for d = 4. These numbers
define the covariant derivative. The connection coefficients are not the components
of a tensor. From the condition that ∇U is a type (1, 1) tensor, we find that the
connection coefficients transform as (Exercise: show this.)

Γ′γαβ → Γ′γαβ = Mγ
ρ(M

−1)µα(M−1)νβΓρµν − (M−1)µα(M−1)νβM
γ
µ,ν , (3.6)

where Mα
β = ∂x′α

∂xβ
is the Jacobian matrix as usual. If the tensor has more than one

contravariant index, they all transform in the same way.
For a covector ω̃ we have

∇βωα ≡ ∂βωα + Γ̃γβαωγ ≡ ωα;β . (3.7)

where Γ̃αβγ are some coefficients that are a priori independent of Γαβγ . From property
4) it follows that ∇β(V αωα) = ∂β(V αωα), and applying the Leibniz rule on both
sides of the equation gives (Exercise: show this.)

Γ̃γαβ = −Γγαβ . (3.8)
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The components of the covariant derivative for a tensor of any type are therefore

∇µTα1...αr
β1...βs = ∂µT

α1...αr
β1...βs + Γα1

µγT
γ...αr

β1...βs + . . .+ ΓαrµγT
α1...γ

β1...βs

−Γγµβ1T
α1...αr

γ...βs − . . .− ΓγµβsT
α1...αr

β1...γ . (3.9)

This rule is easy to remember: we contract one tensor index at a time with the
connection, with a plus sign for up indices, and a minus sign for down indices. The
rules for tensors up to rank 2 are listed below.

f;α = f,α

Uα;β = Uα,β + ΓαβγU
γ

ωα;β = ωα,β − Γγβαωγ

Tαβ ;γ = Tαβ,γ + ΓαγδT
δβ + ΓβγδT

αδ

Tαβ;γ = Tαβ,γ + ΓαγδT
δ
β − ΓδγβT

α
δ

Tαβ;γ = Tαβ,γ − ΓδγαTδβ − ΓδγβTαδ

(3.10)

3.1.2 Levi–Civita connection

So far, the connection has been left general. It is an an extra structure, in addition to
the metric, that is part of the definition of the manifold. For example, we could give
any 64 functions in some coordinate system and say that they are the connection
coefficients, and their values in other coordinate systems are given by the rule (3.6).
(Of course, such a definition would be restricted to one coordinate patch.) The Lie
derivative mentioned in chapter 2 is in a sense a simpler object than the covariant
derivative, because it does not require the existence of a connection (nor the metric),
just a vector field. We instead want to derive the connection from structure that
already exists on the manifold.

From the transformation rule (3.6) for the connection coefficients, it follows that
the difference between two connections transforms like a tensor, because the homo-
geneous part drops out. And anything that transforms like a tensor is a tensor.
So, given two connections Γγαβ and Γ̂γαβ, the difference Γγαβ − Γ̂γαβ is a tensor. In

particular, we can take Γ̂γαβ = Γγβα; the resulting tensor with components

T γαβ ≡ Γγαβ − Γγβα = 2Γγ[αβ] (3.11)

is called the torsion. In 4 dimensions, it has 4 × 6 = 24 independent components
(4 for the up index, times 6 for the two antisymmetric down indices). The other
40 independent functions needed to define the connection are given by the non-
metricity tensor, defined in terms of the components as

Qγαβ ≡ ∇γgαβ . (3.12)

Non-metricity has 4× 10 = 40 independent components (4 for the first index, times
10 for the two symmetric indices).

We started with a manifold M and added the metric gαβ. Now we also have the
torsion and the non-metricity. The latter two tensors could be left as functions to
be determined by the equations of motion (as we will do for the metric). We will in
chapter 6 discuss the Palatini formulation, also called the metric-affine formula-
tion, where the metric and the connection are taken to be independent variables. In
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GR (more precisely, the metric formulation of GR), we instead make the simplest
possible choice and do not add any new tensors, but fix the connection in terms of
the metric by making two assumptions:

5) The connection is torsion-free: T γαβ = 0 ⇐⇒ Γγαβ = Γγ(αβ) .

6) The connection is metric-compatible: ∇γgαβ = 0 .

The conditions Tγαβ = 0, Qγαβ = 0 are a set of 64 independent equations (defined
in terms of tensors on the manifold), which fix the 64 components of the connection
uniquely in terms of the metric. It is easy to show this. Let us write the condition
Qγαβ = ∇γgαβ = 0 three times, permuting the indices and sum the equations,
assuming Γγαβ = Γγ(αβ):

+ ∇γgαβ = ∂γgαβ −����Γµγαgµβ −
HHHH
Γµγβgαµ = 0

− ∇αgβγ = −∂αgβγ + Γµαβgµγ +���
�Γµαγgβµ = 0

− ∇βgγα = −∂βgγα +
HHHH
Γµβγgµα + Γµβαgγµ = 0

∂γgαβ − ∂αgβγ − ∂βgγα + 2Γµαβgµγ = 0

Contracting with gνγ and solving for Γναβ, we get

Γναβ =
1

2
gνγ(∂αgβγ + ∂βgγα − ∂γgαβ) . (3.13)

This is the Levi–Civita connection1, and its connection coefficients are known as
the Christoffel symbols. This is the connection of GR. (From the transformation
rule of the metric, you can show that the Levi–Civita connection indeed transforms
according to the transformation rule (3.6).) It is obtained from a tensor (the metric),
but is is not a tensor (as partial derivatives of tensor components are not compo-
nents of a tensor). From now on, we assume that the connection is the Levi–Civita
connection, unless otherwise noted. Because we can set the first derivative of the
metric to zero at a point, the connection can be put to zero at a point. So covariant
derivatives at a point can be reduced to partial derivatives, just as the metric can
be reduced to the Minkowski metric.

Because the covariant derivative of the metric is zero (we say that the metric is
“covariantly constant”), this is also true for the inverse metric,

∇γgαβ = 0 . (3.14)

We also define the covariant derivative of the determinant of the metric as the
covariant derivative in terms of the components of the covariant derivative of the
metric using the Leibniz rule. This is an exception, as usually the covariant derivative
is not defined for quantities that are not tensors:

∇γg = 0 . (3.15)

1 No relation to the Levi–Civita tensor, except that both are named after Tullio Levi–Civita.
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It follows from (3.15) that the Levi–Civita tensor is also covariantly constant,

∇µεαβγδ = 0 . (3.16)

Metric compatibility implies that the covariant derivative commutes with raising
and lowering indices:

gαµ∇βAµ = ∇β(gαµA
µ) = ∇βAα . (3.17)

In contrast, partial derivatives do not commute with raising and lowering indices:
gαµ∂βA

µ 6= ∂β(gαµA
µ) = ∂βAα.

As the Levi–Civita connection is symmetric, it drops out of the antisymmetrisa-
tion of the covariant derivative of a covector. Therefore the antisymmetrised partial
derivative of a covector, called the exterior derivative, can be equivalently written
in terms of the covariant derivative:

(dω)αβ = 2∂[αωβ] = 2∇[αωβ] . (3.18)

The Levi–Civita connection also drops out from the commutator of two vector fields,

[U, V ]α = UβV α
,β − V βUα,β = UβV α

;β − V βUα;β . (3.19)

For a connection with non-zero torsion, these equalities do not hold, but the exterior
derivative and the commutator of two vector fields are still tensors. They are defined
with partial derivatives, with no need to involve the connection.

The Levi–Civita connection satisfies (Exercise: Show this.2)

Γααβ =
1√
−g

∂β
√
−g . (3.20)

This leads to a simple result for the covariant divergence of a vector:

∇αV α = ∂αV
α + ΓααβV

β = ∂αV
α +

1√
−g

∂β
√
−gV β =

1√
−g

∂α
(√
−gV α

)
. (3.21)

The result (3.21) plays an important role in Stokes’ theorem.

3.1.3 Stokes’ theorem

In three-dimensional Euclidean space in Cartesian coordinates, Gauss’ theorem re-
lates the integral of the divergence of a vector field ~V over the volume Σ to the
integral of the vector field projected onto the surface ∂Σ of the volume (see figure
1a): ∫

Σ
d3x∇ · ~V =

∫
∂Σ

dS~n · ~V , (3.22)

2 Hint: it may be helpful to use the relation g = 1
4!
ηα0α1α2α3ηβ0β1β2β3gα0β0gα1β1gα2β2gα3β3

and apply the chain rule ∂µg = ∂g
∂gαβ

∂µgαβ . For any non-singular n × n matrix Aαβ , the

components of the inverse are (A−1)αβ =
adj(A)αβ

det(A)
, where the components of the adjugate are

adj(A)αβ = 1
(n−1)!

ηα
α1α2α3ηβ

β1β2β3Aα1β1Aα2β2Aα3β3 .
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(a) Volume, surface, area element
and orthogonal unit vector.

(b) The unit vector nµ is orthogonal to the
“surface” element d3σ. The vector points
inward when it is timelike and outward when
it is spacelike.

Figure 1: For Gauss’ theorem in Euclidean space and Minkowski space.

where dS is the area element and ~n is the unit vector orthogonal to the surface.
In 4-dimensional Minkowski space in Cartesian coordinates, the corresponding

result is (see fig. 1b) ∫
Σ

d4x∂µU
µ =

∫
∂Σ

d3σnµU
µ , (3.23)

where d3σ is the three-volume element on the boundary.
On a general manifold in general coordinates, we have Stokes’ Theorem:∫

Σ
dnx

√
|g|∇µUµ =

∫
∂Σ

dn−1x
√
|γ|nµUµ , (3.24)

where we have used (3.21), and γ is the determinant of the induced metric on the
boundary ∂Σ. The induced metric is obtained from the full metric by inputting the
condition f(x) = constant that defines the boundary into the metric. For the surface
x0 = constant, we simply put dx0 = 0. For a general case, we have df = dxα∂αf = 0.
We will not go into details, as the only thing important for us is that the proper
volume integral of the divergence of a vector field vanishes if the vector field vanishes
on the boundary. We will need this result when we come to the variational principle
in chapter 6.

The condition (3.21), and hence Stokes’ theorem, holds only for the Levi–Civita
connection. For a general connection, torsion and non-metricity make an appear-
ance, and the integral over the total divergence of a vector does not reduce to a
boundary term.

3.2 Parallel transport and geodesics

3.2.1 Parallel transport

The covariant derivative measures the change of a tensor on the manifold in a given
direction, generalising the way a partial derivative measures the change of a scalar
function in a given direction. A coordinate-independent way of looking at this is
to consider the rate of change of a vector field along a curve on the manifold. In
Minkowski space or Euclidean space in Cartesian coordinates, a tensor T = Tαβeαeβ
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being constant along a curve with coordinates xα(λ) just means that its components
do not change when moving along the curve:

d

dλ
Tαβ =

dxµ

dλ
∂µT

αβ = 0 . (3.25)

If we consider Minkowski space or Euclidean space in general coordinates, we
have the covariant derivative instead, so the same condition reads

D

dλ
Tαβ ≡ dxµ

dλ
∇µTαβ = 0 . (3.26)

We now promote this equation to hold also on a general manifold in general
coordinates, defining the directional covariant derivative (a map from tensors of
type (r, s) to tensors of type (r, s))

D

dλ
≡ dxµ

dλ
∇µ . (3.27)

So being constant along a curve means that (using a type (2, 0) tensor as an example)(
D

dλ
T

)αβ
≡ D

dλ
Tαβ =

dxµ

dλ
∇µTαβ = 0 . (3.28)

The condition (3.28) is the parallel transport equation. A tensor that satisfies
this equation for the curve whose tangent vector has the components dxµ

dλ is constant
when transported along the curve.

For a vector field, the parallel transport equation reads(
D

dλ
V

)γ
=

dxα

dλ

(
∂αV

γ + ΓγαβV
β
)

=
dV γ

dλ
+ Γγαβ

dxα

dλ
V β = 0 . (3.29)

We can think of the parallel transport equation as an initial value problem. Given a
tensor at initial point p, and a curve γ with coordinates xα(λ) that passes through
p, the first order differential equation (3.29) gives the parallel-transported tensor
along the curve.

Parallel transport thus provides a map between any two tangent (and cotangent)
spaces on any points on the manifold joined by a curve. The mapping is in general
not unique, but depends on the curve. This is illustrated in figure 2 for the two-
sphere. If we take a vector that is orthogonal to the equator and parallel transport
it directly to the north pole along a great circle, the result is different than if we first
transport it along the equator and then take it to the North pole along a different
great circle.

From metric compatibility it follows that the metric satisfies the parallel trans-
port equation,

D

dλ
gαβ =

dxµ

dλ
∇µgαβ = 0 . (3.30)

Therefore parallel transport conserves the dot product:

D

dλ
(U · V ) =

D

dλ

(
gαβU

αV β
)

= gαβ
D

dλ

(
UαV β

)
= gαβU

α D

dλ
V β + gαβV

β D

dλ
Uα = 0 , (3.31)
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Figure 2: Parallel transport on the two-sphere.

if both U and V are parallel transported. In particular, the norm of a vector is
unchanged by parallel transport. So parallel transport is a rigid bijective map from
one tangent space to another in the sense that it preserves the lengths and relative
directions of vectors.

3.2.2 Example of parallel transport

Let us consider an example of parallel transport on the two-sphere. We get the
metric of the two-sphere of radius a by putting r = a in (2.48), the metric of R3:

ds2 = a2(dθ2 + sin2 θdϕ2) . (3.32)

It is straighforward to calculate the Levi–Civita connection from (3.13). The non-
zero coefficients are

Γθϕϕ = − sin θ cos θ (3.33)

Γϕϕθ = Γϕθϕ =
cos θ

sin θ
. (3.34)

Consider the unit vector V that points along the meridian at point p, which is
the intersection of the meridian and the equator (where (θ, ϕ) = (π2 , 0)). We will
transport it to point q, which is on the meridian line halfway up to the North pole
(where (θ, ϕ) = (π4 , 0)). (We don’t go all the way to the North pole because our
coordinate system doesn’t apply there.) We do the transport along two different
routes. Route A goes along the meridian. Route B goes π

2 radians forward on the
equator, then up π

4 radians on a great circle towards the North Pole, and finally
back π

2 radians on a great circle to point q. At p, we have V (p) = V θ(p)∂θ = a−1∂θ.
Route A is given by the curve (θ(λ), ϕ(λ)) = (λ, 0), where λ goes from π

2 to π
4 .

The curve corresponding to B consists of three sections. First, (θ(λ), ϕ(λ)) = (π2 , λ),
where λ goes from 0 to π

2 . Second, (θ(λ), ϕ(λ)) = (π − λ, π2 ), where λ goes from π
2

to 3π
4 . Third, (θ(λ), ϕ(λ)) = (π4 ,

5π
4 − λ), where λ goes from 3π

4 to 5π
4 . Now we just

have to solve the parallel transport equation (3.29) along these two curves, with the
connection coefficients (3.33) and the given initial condition.
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On route A,

dxα

dλ
= (1, 0) , (3.35)

so

0 =
dV γ

dλ
+ Γγαβ

dxα

dλ
V β =

dV γ

dλ
+ ΓγθϕV

ϕ , (3.36)

where we have used (3.33). Therefore, again using (3.33), dV θ

dλ = 0, while for the ϕ
component we get

0 =
dV ϕ

dλ
+

cos θ

sin θ
V ϕ . (3.37)

We could integrate (3.37) using the fact that along route A we have θ = λ. However,
because the initial V ϕ is zero, we see that it will remain zero. So all in all,

V α = (a−1, 0) . (3.38)

This result is expected. Because both the initial vector and the tangent vector of the
curve along which it is parallel transported point along the meridian, the resulting
vector will also point along the meridian. And given that parallel transport conserves
the norm of vectors, the parallel transported vector has unit norm.

Let us now consider route B. Along section 1, ϕ = λ, and

dxα

dλ
= (0, 1) . (3.39)

Writing the parallel transport equation (3.29) terms of the components, we have
(still along section 1)

0 =
dV θ

dλ
− sin θ cos θV ϕ

0 =
dV ϕ

dλ
+

cos θ

sin θ
V θ . (3.40)

On section 1 we have θ = π
2 , so dV α

dλ = 0: there is no change in the components.
Along section 2, θ = π − λ, and

dxα

dλ
= (−1, 0) . (3.41)

We know from calculation of route A that there is no change in the components.
That leaves section 3, where ϕ = 5π

4 − λ, and

dxα

dλ
= (0,−1) . (3.42)

We get

0 =
dV θ

dλ
+ sin θ cos θV ϕ =

dV θ

dλ
+

1

2
V ϕ

0 =
dV ϕ

dλ
− cos θ

sin θ
V θ =

dV ϕ

dλ
− V θ , (3.43)



3 CURVATURE 49

where in the second equality we have taken into account that θ = π
4 . We can separate

the equations by taking a derivative with respect to λ, getting

0 =
d2V θ

dλ2
+

1

2
V θ

0 =
d2V ϕ

dλ2
+

1

2
V ϕ . (3.44)

With the initial condition V α = (a−1, 0), the solution is

V θ = a−1 cos

[
1√
2

(
λ− 3π

4

)]
V ϕ =

√
2a−1 sin

[
1√
2

(
λ− 3π

4

)]
. (3.45)

Using the metric (3.32), it is easy to check that these are the components of a unit
vector. Putting λ = 5π

4 now gives us the vector at point q, and shows that the result
is different from that obtained along route A:

V θ(q) = a−1 cos

(
π

2
√

2

)
V ϕ(q) =

√
2a−1 sin

(
π

2
√

2

)
. (3.46)

3.2.3 Geodesics

In the above example, we discussed great circles, which have a special role on the
two-sphere. We now use parallel transport to define straight lines for a general
manifold; great circles will turn out to be straight lines on two-spheres. To do so,
we promote a result from Euclidean space into a definition on a general manifold.
In Euclidean space, a straight line is characterised by two properties:

1) A straight line is the shortest path between any two points on it.

2) A straight line parallel transports its own tangent vector.

The first property has to do with distance, the second with direction. For a general
connection, distance and direction are independent properties. Distance is given
by the metric, direction is defined by the connection. The way we defined constant
direction with the parallel transport equation above involves only the connection, the
metric makes no direct appearance. The Levi–Civita connection gives the connection
in terms of the metric, relating direction and distance.

We choose the property 2) above as the definition of a straight line, called a
geodesic, on the manifold. A geodesic is a curve whose tangent vector u is parallel
transported with respect to itself, i.e. the curve is autoparallel. Then the parallel
transport equation (3.28) reads

D

dλ
u = u · ∇u = 0 , (3.47)
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where we have denoted u · ∇ ≡ uα∇α. This is the geodesic equation, and a curve
is a geodesic if and only if its tangent vector satisfies this equation. In terms of
components, the geodesic equation reads

0 = uα∇αuγ

= uα∂αu
γ + Γγαβu

αuβ

=
dxα

dλ

∂

∂xα
dxγ

dλ
+ Γγαβ

dxα

dλ

dxβ

dλ

=
d2xγ

dλ2
+ Γγαβ

dxα

dλ

dxβ

dλ

≡ ẍγ + Γγαβẋ
αẋβ . (3.48)

In the definition (3.47) we could have opted for the seemingly weaker requirement
that the tangent vector changes only in the direction proportional to itself, i.e.
its length changes but the direction does not. However, the change of length can
be undone by a redefinition λ → λ′(λ). We assume that the parameter λ has
been chosen in this way. Such a parameter λ along the curve is called an affine
parameter, and the parametrisation of a curve in terms of it is called an affine
parametrisation. The only freedom in changing λ is then λ → λ′(λ) = aλ + b,
where a 6= 0 and b are constants.

On the last line of (3.48) we have denoted the derivative with respect to λ by an
overdot. If the spacetime is such that we can set the connection to zero everywhere3

and we do so, the geodesic equation reduces to ẍγ = 0. This is Newton’s second
law for inertial observers in the absence of forces, which says that particles have
constant velocity. (We will come back to this in more detail in chapter 4.)

Even in Minkowski space or Euclidean space we can choose coordinates other
than Cartesian coordinates, such as spherical coordinates or the merry-go-round co-
ordinates introduced in section 1.5.1., relevant for an observer attached to a body
that rotates with constant angular velocity, such as the Earth. In Newtonian me-
chanics, the connection is non-zero in non-Cartesian coordinate systems, and New-
ton’s second law does not hold. The connection terms give the corrections to New-
ton’s second law. If we move them to the right-hand side of the equation, we can call
them “apparent forces”, as is sometimes done in discussions of Newtonian mechan-
ics, although this can be somewhat misleading. In the language of manifold, metric
and connection, these contributions are conceptually simple. The partial derivative
of a vector field does not give a coordinate-invariant description of the direction and
rate of change of the vector field, because the coordinates change as one moves on
the manifold, in addition to the vector field changing. The Levi–Civita connection
is the connection that precisely corrects for these changes in the coordinate system
as described by the metric.

Exercise: Find the connection for the merry-go-round coordinates defined in
section 1.5.1..

3 From (3.13) we see that the connection vanishes precisely when the metric is constant; we will
soon give a coordinate-independent characterisation of when it is possible to choose such a
coordinate system.
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In GR, we have generalised the geodesic equation to describe the motion of free
particles (meaning particles that are not under the influence of any force – gravity not
being a force but an aspect of spacetime geometry) even when the manifold is non-
trivial, i.e. when the metric cannot be taken to be constant everywhere. This gives a
precise meaning to the weak equivalence principle, according to which particles fall in
the same way: they move in the same way because they all move on straight lines.
Thus GR unifies motion at constant velocity and motion in “free fall” (meaning
under the influence of gravity alone), like Newtonian mechanics unified being at rest
and moving at constant velocity. This is a unification of inertia and gravity: gravity
only affects motion through the connection, which is derived from the metric. So
the connection, like the metric, has a double role: it encodes information both about
the geometry of the manifold and the coordinate system used to describe it.

In chapter 6, we will derive the property that free particles move on geodesics
starting from more fundamental properties, so it will be a result, not an assump-
tion. (We will also derive the generalisation of the geodesic equation with the force
included, i.e. the generalisation of Newton’s second law in full.) But for now we
just take it as given that free particles move on straight lines in GR, as they do in
Newtonian mechanics and SR.

3.2.4 Geodesics as curves of extremal length

Defining straight lines as autoparallel curves is a local condition: given a position
on the manifold and the initial direction of the curve, the geodesic equation (3.48)
allows us to construct the full geodesic piece by piece. In contrast, property 1)
that identifies straight lines as curves of minimum length is a global statement. It
will not be true on a general manifold, and to see whether it holds for a particular
manifold we would need to check all possible curves joining all possible pairs of
points. However, for the Levi–Civita connection, a weaker version holds: a geodesic
gives a local extremum of the path length. For a timelike curve, it gives the maximum
proper time; for a spacelike curve, it gives the minimum proper length. (A null line
always has zero length, regardless whether or not it is geodesic.)

Let us show that timelike geodesics give a local extremum of the distance. Con-
sider a timelike curve from point p to point q, parametrised in a given coordinate
system as xα(λ). The proper time from p to q along the curve is

τpq =

∫ q

p
dτ =

∫ λq

λp

dλ
√
−gαβẋαẋβ︸ ︷︷ ︸

= dτ
dλ

, (3.49)

where ẋα = dxα

dλ . Let us now consider the change of τpq under a small variation of
of the curve, keeping the endpoints fixed. Under a variation of the path

xα(λ)→ xα(λ) + δxα(λ) , (3.50)

with δxα(λp) = δxα(λq) = 0, the metric changes as (working to first order in the
small quantity δxα(λ))

gαβ[xµ(λ)] → gαβ[xµ(λ) + δxµ(λ)]

= gαβ[xµ(λ)] + gαβ,γ [xµ(λ)]δxγ(λ) . (3.51)
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Inputting these changes into (3.49), the change of τpq is

δτpq = −1

2

∫ q

p
dλ

1√
−gαβẋαẋβ︸ ︷︷ ︸

=dλ
dτ

δ(gαβẋ
αẋβ)

= −1

2

∫ q

p
dτ(δgαβẋ

αẋβ + 2gαβẋ
αδẋβ)

= −1

2

∫ q

p
dτ(gαβ,γδx

γ ẋαẋβ + 2gαγ ẋ
αδẋγ) , (3.52)

where on the second line we have chosen λ = τ . Integrating the last term by parts
and using the property that that the variation δxβ vanishes at the endpoints, we get

δτpq =

∫ q

p
dτ

(
−1

2
gαβ,γ ẋ

αẋβ + gαγ,βẋ
βẋα + gαγ ẍ

α

)
δxγ

=

∫ q

p
dτ

[
−1

2
gαβ,γ ẋ

αẋβ +
1

2
(gαγ,β + gβγ,α)ẋαẋβ + gµγ ẍ

µ

]
δxγ

=

∫ q

p
dτ

[
ẍµ +

1

2
gµν(gαν,β + gβν,α − gαβ,ν)︸ ︷︷ ︸

Γµαβ

ẋαẋβ

]
gµγδx

γ . (3.53)

We now demand that the curve gives an extremum of the proper time, i.e. that
δτpq = 0 for all δxγ . The term inside the square brackets then has to vanish, and
we get the geodesic equation (3.48). So the curve is a geodesic, assuming that the
connection is Levi–Civita. Were we to use a connection that is not Levi–Civita,
straight lines and curves of local extremum length would not coincide. Viewed from
another direction, had we opted to define geodesics as lines of local extrema of path
length, we would have ended up with the Levi–Civita connection.

For the spacelike case, the calculation goes the same way, apart from some sign
differences. Considering the second variation of the path length shows that a timelike
geodesic gives a local maximum of the proper time, and a spacelike geodesic gives a
local minimum of the path length. Recall the “twin paradox”: the twin who stays
home moves on a geodesic, so their proper time is longer than the proper time of the
the twin who undergoes acceleration i.e. is pushed off a geodesic. Note that geodesics
give only local extrema: the above result says nothing about whether there may be a
longer/shorter (in the timelike/spacelike case, respectively) path that is not close to
a geodesic. When we come to black holes in chapter 7, we will see a simple example
of a timelike path that is longer than the geodesic connecting two points.

3.2.5 Calculating the connection with the Euler–Lagrange equation

In the expression (3.49) for the proper time, the integrand is proportional to the
square root of L ≡ 1

2gαβẋ
αẋβ (where, again, · ≡ d

dτ ), which is the Lagrangian of
a free particle moving in a spacetime with metric gαβ. The variation that gives
the locally longest duration also gives the path of a classical particle, because free



3 CURVATURE 53

particles move on geodesics. Therefore we can use the classical equations of motion
of the particle to find the connection coefficients. Consider the action

S =

∫
dτL(xα, ẋα) =

1

2

∫
dτgαβ(xγ)ẋαẋβ . (3.54)

By the usual variational principle of classical mechanics, variation of the above
action gives the Euler–Lagrange equations

∂L

∂xα
− d

dτ

∂L

∂ẋα
= 0 . (3.55)

These equations are often a quicker way to calculate the geodesic equations and the
connection coefficients for a given metric gαβ than the definition (3.13).

Let us consider the spatially flat Friedmann–Lemâıtre–Robertson–Walker
(FLRW) metric as an example. It is one of the simplest –and most useful– met-
rics of GR. It describes a spacetime that has spatial sections that are homogeneous,
isotropic and flat (i.e. the spatial sections are Euclidean). It is is the spatially flat
subcase of the spatially homogeneous and isotropic solutions, called the Friedmann–
Lemâıtre–Robertson–Walker solutions, which we will discuss in more detail in chap-
ter 9. The spatially flat FLRW metric is

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
= −dt2 + a(t)2δijdx

idxj , (3.56)

where a(t) is called the scale factor.
The free particle Lagrangian reads

L =
1

2
gαβẋ

αẋβ = −1

2
ṫ2 +

1

2
a(t)2δij ẋ

iẋj = −1

2
ṫ2 +

1

2
a(t)2

(
ẋ2 + ẏ2 + ż2

)
, (3.57)

so variation with respect to t and ṫ gives

∂L

∂ṫ
= −ṫ , d

dτ

∂L

∂ṫ
= −ẗ , ∂L

∂t
= aa′δij ẋ

iẋj , (3.58)

where ˙ ≡ d
dτ and ′ ≡ d

dt . The 0 component of the Euler–Lagrange equation is
therefore

d

dτ

∂L

∂ṫ
− ∂L

∂t
= −ẗ− aa′δij ẋiẋj = −ẗ− aa′

(
ẋ2 + ẏ2 + ż2

)
= 0 . (3.59)

Comparing to the 0 component of the geodesic equation,

ẗ+ Γ0
αβẋ

αẋβ = 0 , (3.60)

we find
Γ0

00 = Γ0
0i = Γ0

i0 = 0 , Γ0
ij = aa′δij . (3.61)

Varying now the Lagrangian (3.57) with respect to xi and ẋi, we get

∂L

∂ẋi
= a2ẋi ,

d

dτ

∂L

∂ẋ

i

= a2ẍi + 2aa′ṫẋi ,
∂L

∂xi
= 0 , (3.62)
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so the xi component of the Euler–Lagrange equation reads

d

dτ

∂L

∂ẋi
− ∂L

∂xi
= a2ẍi + 2aa′ṫẋi = 0 . (3.63)

Dividing by a2 to make the coefficient of the second derivative term unity, and again
comparing to the geodesic equation

ẍi + Γiαβẋ
αẋβ = 0 , (3.64)

we find the connection coefficients

Γi00 = Γijk = 0 , Γi0j = Γij0 =
a′

a
δij . (3.65)

All in all, the non-zero connection coefficients for the spatially flat FLRW metric
are (not writing down Γij0 = Γi0j)

Γ0
ij = aa′δij , Γi0j =

a′

a
δij . (3.66)

3.2.6 Null geodesics and redshift

As an example, let us consider null geodesics and photon energy measured by an
observer in the spatially flat FLRW universe. The four-velocity of an observer who
observes the universe to be symmetric and homogeneous has the components uα =
δα0. Photon momentum is k, and the energy measured by the observer is E =
−u · k = −uαkα = k0. The geodesic equation gives

0 = kα∇αk0

= kα(∂αk
0 + Γ0

αβk
β)

= kα∂αk
0 + a∂0aδijk

ikj

= k0∂0k
0 +

∂0a

a
k0k0 , (3.67)

where we have on the third line used the connection coefficients (3.66), and on the
fourth line used the null condition gαβk

αkβ = −k0k0 + a2δijk
ikj = 0. We have

also taken into account that for symmetry reasons k0 can only depend on time.
Dividing (3.67) by k0 and integrating, we get the result k0 ∝ 1/a. This decrease of
photon energy in an expanding universe inversely proportional to the scale factor
is called the cosmological redshift. This is an example of the feature energy is
not conserved in GR. The relation between expansion and redshift applies more
generally than in the highly symmetric FLRW spacetimes, although terms related
to violation of homogeneity and isotropy will enter as well.

3.3 The Riemann tensor

3.3.1 What is the Riemann tensor

Let us come back to the problem with which we closed chapter 2: what is the tensor
representation of the 20 physical degrees of freedom in the second derivatives of
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the metric? In other words, what is the tensor that represents the curvature of the
manifold?

Consider Euclidean space or Minkowski space. On these manifolds, the following
three properties hold:

1) Parallel transport around a closed loop leaves vectors unchanged (see figure
3a).

2) Covariant derivatives commute, ∇β∇αUγ = ∇α∇βUγ .

3) Geodesics that are initially parallel remain parallel (see figure 3b).

(a) (b)

Figure 3: Properties of flat manifolds.

Condition 1) implies that parallel transport is independent of the path, and only
depends on the endpoints. This can be seen as follows. Pick any two points p and q
on a closed loop. The loop defines two curves from p to q, γ1 and γ2. The change in
the tensor when parallel transported from p to q along γ1 and from q to p along γ2

is zero, so the change in the segment γ1 equals minus the change in the segment γ2.
Switching the direction of the second segment to be from p to q switches the sign,
proving the result.

In the case of straight lines, we listed two results that hold in Euclidean space
(minimum length and parallel tangent vector curve), and picked one to serve as
the definition of straightness on a general manifold. It turned out that the two
conditions are not in general equivalent (geodesics give only the local extrema of
length). In the same vein, the above three properties are results on flat manifolds,
and we can pick one of them as the definition of flatness on a general manifold. Its
violation will then be a measure of curvature. Unlike in the case of straight lines,
it turns out that all the three properties are equivalent on a general manifold, so it
doesn’t make a difference which one we choose.

The least geometrical (and therefore perhaps the least intuitive) of the three
properties, number 2, is the algebraically most straightforward way to define the
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curvature tensor. Consider the commutator of two covariant derivatives:

[∇γ ,∇δ]Uα ≡ ∇γ∇δUα −∇δ∇γUα

= ∂γ∇δUα −���
��Γµγδ∇µU
α + Γαγµ∇δUµ − (γ ↔ δ)

= ∂γ
(
���∂δU

α + ΓαδµU
µ
)

+ Γαγµ(∂δU
µ + ΓµδβU

β)− (γ ↔ δ)

= ∂γΓαδµU
µ +
(((

((((
(((Γαδµ∂γU

µ + Γαγµ∂δU
µ + ΓαγµΓµδβU

β − (γ ↔ δ)

= (∂γΓαδβ − ∂δΓαγβ + ΓαγµΓµδβ − ΓαδµΓµγβ)Uβ

≡ RαβγδU
β , (3.68)

where we have slashed the terms that vanish due to the antisymmetry in γδ. Because
the coefficients on the left-hand side are the components of a tensor and Uβ are
the components of a tensor, Rαβγδ are also the components of a tensor, called the
Riemann curvature tensor or simply the Riemann tensor.

Exercise: Show that condition 1) above leads to the same definition for cur-
vature. (Find how a vector changes when it is when parallel transported around a
closed loop and show that the change is zero precisely when Rαβγδ = 0.)

Exercise: Show that condition 3) above leads to the same definition for cur-
vature. (Find how initially parallel geodesics change and show that they remain
parallel precisely when Rαβγδ = 0.)

If the Riemann tensor were defined in terms of a general connection, it would
have nothing to do with the metric. Curvature as defined by the Riemann tensor is
related to straight lines, not distances. (The curvature we have used above is not
completely general, we assumed in the derivation that the connection is symmetric,
i.e. torsion is zero.) The Levi–Civita connection relates directions and distances,
as we have noted, and connects the Riemann tensor to the second derivatives of
the metric and their 20 physical degrees of freedom. Note how complicated the
components of the Riemann tensor are when written in terms of the components
of the metric: we need to find the components of the inverse metric to write the
connection (3.13), and take various derivatives and sums over indices.

For the Levi–Civita connection, the following result holds:

∃ coordinate system where gαβ = constant everywhere ⇐⇒ Rαβγδ = 0 everywhere .

(3.69)
In one direction, the implication is trivial: if gαβ is constant, its derivatives are zero,
so the connection is zero, so the Riemann tensor is zero. (If the components of a
tensor are zero in one coordinate system, they are zero in all coordinate systems.)
The proof in the other direction is a bit more involved, and we will not go through
it. The idea is to introduce a locally inertial coordinate system at one point, parallel
transport the basis vectors to an arbitrary point on the manifold, and show that
they constitute a coordinate basis.

We say that the manifold is flat if and only if the Riemann tensor is zero every-
where. If the manifold is not flat, it is curved. Given any metric in any coordinate
system, we can determine whether or not it describes a flat manifold by calculating
the Riemann tensor.
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Let us return to the parallel transport equation (3.28). We have said that par-
allel transport is path independent if and only if the curvature is zero. With the
equivalence (3.69), we see this as follows. If the Riemann tensor vanishes, we can
choose the connection to be zero everywhere. Then the covariant derivative in the
parallel transport equation reduces to a partial derivative, and by the chain rule we
get a total derivative with respect to the parameter along the curve:

0 =
D

dλ
Tαβ =

dxµ

dλ
∇µTαβ =

dxµ

dλ
∂µTαβ =

d

dλ
Tαβ . (3.70)

If we integrate over λ, the result now depends only on the value of Tαβ at the
endpoints, i.e. parallel transport is independent of the path when the spacetime is
flat. (We have just shown that this is a sufficient condition. It is easy to show
that this condition is also necessary.) This means there is a unique way to compare
vectors at different points if and only if the curvature is zero.

So, strictly speaking the question“at which velocity is the airplane overhead
moving with respect to me?” is meaningless unless you specify along which curve its
velocity is transported to your location. The same holds for the velocity of a person
walking one meter away from you. In practice, the path-dependence of the result is
small if the path along which the velocity is transported only goes through a region
where the curvature is small. On Earth (in fact, everywhere in the Solar system) in
the vicinity of the present time the path-dependence of parallel transport is tiny.

3.3.2 Symmetries of the Riemann tensor

The Riemann tensor has 4 indices, so it has d4 components; for d = 4 we have
256 components. However, not all of them independent. Let us see how they are
related to the 20 independent degrees of freedom of the metric. The Riemann
tensor is by construction antisymmetric in the last two indices. A Riemann tensor
corresponding to a general connection has no other symmetries, so it has 6 × 42 =
96 independent components. The extra symmetries of the Levi–Civita connection
reduce the number to 20. The symmetries are most transparent in the version of
the Riemann tensor where all indices are down, Rαβγδ = gαµR

µ
βγδ. Symmetries

of tensors are independent of coordinates, as they are equality relations between
tensors. We can therefore simplify the problem by using local inertial coordinates
at point p, so

Γγαβ
∣∣
p

= 0 (but in general Γγαβ,δ
∣∣
p
6= 0) .

The expression (3.68) for the Riemann tensor now reads

Rαβγδ|p = gαµ(∂γΓµδβ − ∂δΓ
µ
γβ)

=
1

2
gαµg

µν∂γ(gδν,β + gνβ,δ − gδβ,ν)

−1

2
gαµg

µν∂δ(gγν,β + gνβ,γ − gγβ,ν)

=
1

2
(gδα,βγ − gδβ,αγ − gγα,βδ + gγβ,αδ)

= gδ[α,β]γ − gγ[α,β]δ , (3.71)
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where on the second line we have inserted the Levi–Civita connection (3.13) and
taken into account gαβ,γ |p = 0. We observe that the Riemann tensor is antisymmetric
in the first two indices (in addition to the last two). Furthermore, we see that it
is is symmetric under the interchange of the first and the second pair of indices.
As tensor equalities do not depend on the coordinate system and the point p is
arbitrary, the result holds at all points. To summarise:

1) antisymmetric under α↔ β

2) antisymmetric under γ ↔ δ

3) symmetric under αβ ↔ γδ

Rαβγδ = −Rβαγδ
Rαβγδ = −Rαβδγ
Rαβγδ = +Rγδαβ

(3.72)

For d = 4 each antisymmetric pair αβ and γδ can take 6 different values: (4 ×
3)/2 = 6. The symmetry under pair exchange means that the Riemann tensor is
effectively a symmetric 6 × 6 tensor. Such a tensor has 6 independent diagonal
components and (6× 5)/2 = 15 independent off-diagonal components, for a total of
21.

A less obvious symmetry of the Riemann tensor that can be read off (3.71) is
that the Riemann tensor antisymmetrised in the last three indices vanishes:

4) Rα[βγδ] = 0 . (3.73)

Because of the antisymmetry of the last two indices, this condition is equivalent to
the vanishing of the cyclic permutation of the last three indices,

Rαβγδ +Rαγδβ +Rαδβγ = 0 . (3.74)

The condition (3.73), known as the first Bianchi identity, is the last algebraic
symmetry of the Riemann tensor. It reduces the number of independent components
from 21 to 20, which we know is the maximum possible number.

In addition to these purely algebraic symmetries, the Riemann tensor satisfies
an important differential identity, the second Bianchi identity, often called just
the Bianchi identity,

Rαβ[γδ;ε] = 0 . (3.75)

Again, due to the antisymmetry of the last two indices of the Riemann tensor, this
condition is equivalent to the vanishing of the cyclic permutation of the last three
indices,

Rαβγδ;ε +Rαβεγ;δ +Rαβδε;γ = 0 . (3.76)

This result is analogous to the equation F[αβ,γ] = 0 in electromagnetism. It is easy
to prove the Bianchi identity. Let us again adopt local inertial coordinates at p, so
the connection is zero at p. We then have

Rαβγδ;ε = (∂γΓαβδ − ∂δΓαβγ + ΓµβδΓ
α
µγ − ΓµβγΓαµδ);ε

= ( ),ε + Γ( )− Γ( )− Γ( )− Γ( )︸ ︷︷ ︸
vanish at p

= ∂ε∂γΓαβδ − ∂ε∂δΓαβγ + terms of the form Γ∂Γ︸ ︷︷ ︸
vanish at p

. (3.77)
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We thus have:

(Rαβγδ;ε +Rαβδε;γ +Rαβεγ;δ)|p
= ���

�∂ε∂γΓαβδ −XXXX∂ε∂δΓ
α
βγ +���

�XXXX∂γ∂δΓ
α
βε −����∂γ∂εΓ

α
βδ +XXXX∂δ∂εΓ

α
βγ +���

�XXXX∂δ∂γΓαβε

= 0 . (3.78)

Again, as p is arbitrary, this holds at all points.

3.3.3 Ricci tensor and Weyl tensor

Let us decompose the Riemann tensor into its trace and the traceless part. Due to
its symmetries, the Riemann tensor has only one independent non-zero first trace,
called the Ricci tensor, defined as the contraction of the up index and the third
down index (beware: different authors have different conventions for which indices
to contract, leading to sign differences):

Rαβ ≡ Rγαγβ . (3.79)

The Ricci tensor is symmetric, Rβα = Rαβ. The trace of the Ricci tensor (the full
trace of the Riemann tensor) is called the Ricci curvature scalar, or the Ricci
scalar, or the curvature scalar:

R ≡ gαβRαβ . (3.80)

In 4 dimensions the Ricci tensor has 10 degrees of freedom. The other 10 degrees
of freedom of the Riemann tensor are contained in its traceless part, called the Weyl
tensor. In d dimensions it is

Cαβγδ ≡ Rαβγδ −
2

d− 2

(
gα[γRδ]β − gβ[γRδ]α

)
+

2

(d− 1)(d− 2)
gα[γgδ]βR . (3.81)

The Weyl tensor is only defined for d ≥ 3, and it is identically zero for d = 3. It has
the same algebraic symmetries as the Riemann tensor, but all of its traces are zero.

The differential symmetry of the Riemann tensor, the (second) Bianchi identity,
is reflected in the Ricci tensor as follows. Summing over the indices α and γ in (3.76)
(i.e. contracting with δγα) and contracting with gβε gives

0 = 2∇βRβδ −∇δR

= 2∇β
(
Rβδ −

1

2
gβδR

)
. (3.82)

The combination inside the parenthesis is called the Einstein tensor:

Gαβ ≡ Rαβ −
1

2
gαβR , (3.83)

for which ∇αGαβ = 0 by definition.
We have found the tensorial expression for the coordinate-independent informa-

tion contained in the second derivatives of the metric. From here it is a small step
to find the equation of motion for the metric, sourced by matter. This is the topic
of the next chapter.
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