GENERAL RELATIVITY II

Due on Tuesday April 30 by 14.15. These are the last exercises.

- 1. Killing vectors. Show that if \underline{U} and \underline{V} are Killing vectors, then $[\underline{U}, \underline{V}]$ is a Killing vector.
- 2. No static universe. Consider a FLRW universe filled with matter with $\rho > 0, p \ge 0$ and $\omega \equiv p/\rho = \text{constant}.$
 - a) Show that there are no static solutions for $\Lambda \leq 0$.
 - b) Show that there is a static solution for $\Lambda > 0$, and that it is unstable.
- 3. Age of the Universe. The expansion of the universe is well described by the Λ CDM model, where the universe is spatially flat, and there are two main energy components, matter with w = 0 and vacuum energy (Λ), with w = -1. (Radiation is only important for the first million years or so; we ignore it here.) This model is a good fit to the data if the Hubble constant (the current value of the Hubble parameter H(t)) is $H_0 = 67 \text{ km/s/Mpc}$ and the total energy density is 32% matter and 68% vacuum energy at present, $\Omega_{m0} = \rho_m(t_0)/\rho(t_0) = 0.32$ and $\Omega_{\Lambda 0} = \rho_{\text{vac}}(t_0)/\rho(t_0) = 0.68$.
 - a) Find the age of the universe t_0 .
 - b) At what time t_{Λ} were the matter and vacuum energy densities equal?

c) At present the expansion is accelerating, $\ddot{a} > 0$. When did the acceleration begin ($\ddot{a} = 0$), in redshift and in time?

(Hint: Use the substitution $x^{3/2} = b \sinh \phi$ in the integral $\int \frac{x^{1/2} dx}{\sqrt{b^2 + x^3}}$.)

4. Penrose diagram for an accelerating FLRW universe. Draw a Penrose diagram for a FLRW universe where the equation of state w is constant and $-1 < w < -\frac{1}{3}$, and K = 0. Explain the causal structure.