
GENERAL RELATIVITY I Homework 6 Spring 2024

Due on Monday February 24 by 14.15. These are the last exercises of General relativity I.
(Note that this document has two pages.)

1. Time dilation. Time dilation was first verified experimentally in 1971 by flying atomic
clocks around the world (and the corrections are now routine for GPS satellites). Consider a
flight along the equator at altitude 10 km and velocity 300 m/s. How much does the time of
the clock that travelled around the world differ from the time of a clock that remained still
with respect to the Earth (at sea level)

(a) for an eastbound flight

(b) for a westbound flight.

Take into account that the Earth rotates. How much of the time dilation is due to gravity?

2. Newtonian limit of the Schwarzschild solution. In the lecture notes the relation between
the Schwarzschild solution integration constant rs and the Newtonian mass M is determined
carelessly, by comparing the Schwarzschild metric written in spherical coordinates with the
earlier Newtonian limit metric written in Cartesian coordinates. Do the calculation correctly,
either by transforming the Newtonian limit metric (4.24) into spherical coordinates or by
transforming the Schwarzschild metric into Cartesian coordinates. (In the former case, you
should define the radius r so that the area of a two-sphere is 4πr2.)

3. Shapiro time delay.

a) In the Schwarzschild spacetime, a radial radar signal is sent from (r2, θ0, ϕ0) to
(r1, θ0, ϕ0). The signal is immediately reflected and travels back again. Assume r2 >
r1 > rs. The signal is lightlike, so ds2 = 0. Find the round-trip time ∆τ measured by
an observer at (r2, θ0, ϕ0).

b) The proper distance L between the two points is given by (5.29). We might naively
expect the round-trip time to be ∆τ̃ ≡ 2L. The difference ∆τ − ∆τ̃ is called the
Shapiro time delay. Show that for r1 � rs, it is

∆τ − ∆τ̃ ≈ rs
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.

Explain the cause of the Shapiro time delay.

4. Schwarzschild orbits. In the Schwarzschild metric, the normalisation condition for a vector
tangent to a geodesic reads (

1 − rs
r

)
ṫ2 − ṙ2

1 − rs
r

− r2ϕ̇2 = β ,

where β = 1 for massive particles and β = 0 for massless particles.

a) Using the constants of motion h and k, convert this equation into the form

1

2
ṙ2 + V (r) =

1

2
k2 ,

where V (r) depends on rs and h.

b) Draw V (r) (a typical case) for massive and massless particles.

c) The above equation has the same form as that of a Newtonian particle moving in 1+1
dimensions with potential V (r), with total energy 1

2k
2. Using this analogy, explain how

different values of k correspond to bound (motion limited to r1 ≤ r ≤ r2) and unbound (no



upper limit to r) orbits, and orbits that lead towards the black hole at the center. (You don’t
have to solve the corresponding k values.)

d) Are there bound orbits for photons?

e) Explain how to locate stable and unstable circular (r = constant) orbits on the plot of
V (r).

f) Are there stable/unstable orbits for massive particles? What about photons?
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