Due on Monday February 12 by 14.15.

1. Transformation rule of the connection coefficients. Derive the transformation rule (3.6) of the connection coefficients.
2. Rules for derivatives. Show the following identities in a coordinate basis $\left(g \equiv \operatorname{det}\left(g_{\alpha \beta}\right)\right)$.
a) $g_{, \alpha}=g g^{\mu \nu} g_{\mu \nu, \alpha}$
b) $\Gamma_{\alpha \beta}^{\alpha}=\frac{1}{2} g^{-1} g_{, \beta}=(\ln \sqrt{-g})_{, \beta}$
c) $U^{\alpha}{ }_{; \alpha}=(\sqrt{-g})^{-1}\left(\sqrt{-g} U^{\alpha}\right)_{, \alpha}$
d) $F^{\alpha \beta}{ }_{; \beta}=(\sqrt{-g})^{-1}\left(\sqrt{-g} F^{\alpha \beta}\right)_{, \beta}$, where $F^{\alpha \beta}$ is antisymmetric. Is this true if $F^{\alpha \beta}$ is symmetric?
e) $\square f \equiv g^{\alpha \beta} f_{; \alpha \beta} \equiv g^{\alpha \beta} f_{; \alpha ; \beta}=(\sqrt{-g})^{-1}\left(\sqrt{-g} g^{\alpha \beta} f_{, \alpha}\right)_{, \beta}$
3. Euclidean connection. The Euclidean metric is

$$
\mathrm{d} s^{2}=\delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

in Cartesian coordinates, i.e. $g_{i j}=\delta_{i j}$. Consider other coordinates $x^{\prime i}(x)$.
a) Express $g_{i j}^{\prime}$ in terms of the partial derivatives

$$
\frac{\partial x^{i}}{\partial x^{\prime j}}
$$

b) The equation for a straight line is

$$
\frac{\mathrm{d}^{2} x^{i}}{\mathrm{~d} \lambda^{2}}=0
$$

in Cartesian coordinates. (Are there any requirements for the curve parameter λ ?) Transform this equation into the new coordinates $x^{\prime i}$ and compare to the geodesic equation. What are $\Gamma_{j k}^{\prime i}$?
4. The merry-go-round connection. Find the connection coefficients for the rotating coordinate system (for Minkowski space) of exercise 1.4.
5. Parallel transport on a 2 -sphere. Consider a 2 -sphere with the metric (a is a constant)

$$
\mathrm{d} s^{2}=a^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right) .
$$

a) Show that lines of constant longitude ($\varphi=$ constant) are geodesics, and that the only line of constant latitude ($\theta=$ constant $)$ that is a geodesic is the equator $(\theta=\pi / 2)$. (Hint: start by calculating the Christoffel symbols.)
b) Take a vector with components $U^{\alpha}=(1,0)$ and parallel transport it once around a circle of constant latitude. What are the components of the resulting vector, as a function of θ ?

