GENERAL RELATIVITY I

Due on Monday January 22 by 14.15. Return via Moodle, or to the metal box marked "General relativity" in the A corridor on the second floor.

1. Boost. Show that the matrix

$$
\Lambda^{\alpha}{ }_{\beta}=\left(\begin{array}{cccc}
\cosh \psi & -\sinh \psi & 0 & 0 \\
-\sinh \psi & \cosh \psi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

satisfies the condition $\Lambda^{\mathrm{T}} \eta \Lambda=\eta$.
2. The twin non-paradox. Consider the twins Alice and Betty. Alice stays on Earth. Betty leaves Alice and travels to Alpha Centauri (distance 4 light years) at the speed $v=0.8$, turns around, and returns at the same speed. How much have Alice and Betty aged when they meet again? Draw a spacetime diagram of the worldlines of Alice and Betty
a) in the frame of Alice (K),
b) in the frame of Betty traveling towards α Cen (K^{\prime}),
c) in the frame of Betty returning ($K^{\prime \prime}$).

3. Null and timelike vectors.

a) Show that the sum of two future-pointing null vectors is a future-pointing timelike vector (except when the null vectors are parallel).
b) Show that any timelike vector can be expressed as a sum of two null vectors. For a given timelike vector, the null vectors are not uniquely determined; what is the freedom in choosing them?
4. Rotating coordinate system. Minkowski space metric in Cartesian coordinates is

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2} .
$$

Find the metric in the merry-go-round coordinates defined by the transformation

$$
\begin{aligned}
t & =t^{\prime} \\
x^{\prime} & =\sqrt{x^{2}+y^{2}} \cos (\varphi-\omega t) \\
y^{\prime} & =\sqrt{x^{2}+y^{2}} \sin (\varphi-\omega t) \\
z^{\prime} & =z,
\end{aligned}
$$

where $\varphi \equiv \arctan (y / x)$, and ω is a constant.

