
10 Multicanonical methods

Normal Monte Carlo algorithms sample configurations with the Boltzmann weight p ∝
exp(−βE). Sometimes this is not desirable.

Example: if a system has a first order phase transitions between two states the
system is preferably in either of the states (at the transition temperature). The
tunnelling between the states can be strongly suppressed. If the goal is to study
the tunnelling process, the Monte Carlo simulation should enhance the probability
of those configurations!

Multicanonical methods tailor the MC probability in order to enhance configurations in
desired phase space domains.

Related methods:

• Umbrella sampling [Torrie, Valleau, J.Comp.Phys. 23 (1977)]

• Multicanonical [Berg, Neuhaus, Phys.Lett.B 267 (1991)]

• Simulated tempering [Marinari, Parisi, Europhys.Lett. 19 (1992)]

• Method of expanded ensembles [Lyubartsev et al, J.Chem.Phys. 96 (1992)]

• Parallel tempering [Hukushima, Nemoto 96]
[Geyer 91]

• . . .

[review: B. Berg, cond-mat/9909236]

10.1 1st order phase transitions

Consider again Ising model, this time at T < Tc: now it has a 1st order phase transition
between states with positive and negative magnetization.
Magnetization distribution p(M), volume 322, β = 1/T = 0.453, h = 0:

87



−1000 −500 0 500 1000
M

0.000

0.005

0.010

0.015

p(M)

 

 
 

Canonical probability

pcan(M) ∝
∑

{s}

δ(M, Ms)e
−βEs

is strongly suppressed between the peaks. → canonical MC simulations hardly ever
sample those configurations!
Why is the probability suppressed?
This is due to the fact that the sys-
tem at low temperatures wants to re-
main ordered, either to positive or neg-
ative magnetization. In order to get to
the “middle”, the system has to form a
state which is “mixed”: they contain a
fraction of both pure phases, with are
separated by interfaces.

The interface carries extra free energy,
fA = σA, where σ = surface tension,
and A is the area of the interface. Min-
imally A = 2L on 2-dim. lattice with
periodic boundaries. This causes ex-
ponential suppression of the configura-
tions in the middle:

pmin/pmax ∼ e−σ2L
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

P

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

This can actually be used to measure the surface tension σ, and it is one of the major
uses for the multicanonical method.

88



10.2 Multicanonical method:

• Instead of using the Bolzmann weight p ∝ exp[−βE] in Monte Carlo simulations,
use a modified probability

p ∝ exp[−βE + W (M)] ,

where W (M) is a weight function, inserted ‘by hand’, which is carfully tuned to
enhance the probability between the peaks.

• Multicanonical probability is produced by multicanonical simulations:

pmuca(M) ∝
∑

{s}

δ(M, Ms)e
−βEs+W (Ms) ∝ pcan(M)eW (M)

• If we want that pmuca(M) is flat in the region between the peaks we should choose
W (M) = − log pcan(M). However, we do not a priori know pcan(M). Thus, one has
to do with approximations (later).

• Multicanonical simulation gives us pmuca(M). We obtain the canonical distribution
(which is, after all, what we’re after!) by reweighting:

pcan(M) ∝ pmuca(M)e−W (M)

• Likewise, we can also reweight the measurements of any observable from mul-
ticanonical simulation to canonical one: let us consider measurements Oi of ob-
servable O, measured from configurations obtained from multicanonical simula-
tion. Then we can obtain the canonical expectation value of O by reweighting

〈O〉can =

∑

i Oie
−W (Mi)

∑

i e
−W (Mi)

.

Thus, this is just more general form of the reweighting presented earlier (there
W (M) = δhM)!

• The picture below shows pmuca(M), which is ∼ constant. The wigglines is due
to numerical noise (statistics) and the ‘incorrectness’ of W (M). pcan has been
obtained from pmuca by reweighting.

89



−1000 −500 0 500 1000
M

0.000

0.005

0.010

0.015

p(M)

pCAN.

pMUCA 

 

 
 

• How accurately should W be determined? Remember that the simulation is for-
mally correct with arbitrary W (M). Good W can just save a lot of cpu-time. We
should only demand that pmuca(M) does not become too small in any area of
interest.

7→ If we allow pmuca to vary ∼ 50%, W can vary by W ± log 2.

• The parametrization of W (M) is not unique. Perhaps the most common is a
piecewise linear one: choose a discrete small set {mi} of magnetizations, and
parametrize wi = W (mi), and interpolate linearly between mi’s:

W (M) = wi+1
M −mi

mi+1 −mi

+ wi
mi+1 −M

mi+1 −mi

when mi ≤M ≤ mi+1 .

• In the example above W was a function of M (“multimagnetic” ensemble). In
general, W can be a function of any order parameter. Original formulation was in
terms of E (useful for temperature-driven transitions).

Performance comparison: again 322 Ising, at β = 0.453.

Monte Carlo time history of M , from canonical and multicanonical simulations:

90



0 10000 20000 30000 40000
iteration

−1000

−500

0

500
M

−1000

−500

0

500

1000

M
 

The canonical simulation flips occasionally (rarely!) between the two phases, whereas
the multicanonical does a random walk. The flip frequency is ∝ e−2σL, where sigma
is surface tension (later). Thus, it becomes exponentially more suppressed when L
increases!

Canonical distributions pcan(M), obtained from multicanonical and canonical simula-
tions (200000 measurements):

−1000 −500 0 500 1000
M

10
−6

10
−5

10
−4

10
−3

10
−2

p(M)

Magnetization distribution p(M)  32
2
 Ising  β = 0.453

Multicanonical

Canonical

 

 

91



Another example:
20-state 2-d Potts model:

E = −
∑

ij

δsi,sj
)

si = 1 . . . 20

In this case the transition is temperature-driven
1st order phase transition at
βc = log(1 +

√
20) ≈ 2.900

[A. Billoire, T. Neuhaus and B. Berg, 1994]

Multicanonical simulations are not sensitive to the suppression seen in canonical sim-
ulations. However, they have to ‘random walk’ through the transition region. The region
widens ∝ V , but the ‘step size’ (change in one update cycle) increases only as ∝ V 1/2.
Thus, autocorrelation time τ behaves approximately as

• τ ∼ e−σ2L in canonical simulations (supercritical slowing down)

• τ ∼ V 2 = L2d in multicanonical simulations

10.3 How to calculateW?

If we know pcan, we know W – but pcan is the quantity we are trying to determine! To
determine W :
1. Use canonical simulations to obtain rough pcan

2. Finite-size scaling
3. Iterate: W 1 → W 2 → . . .

4. Recursive computation of W : automatic iterative process. There are several alter-
natives for this; for example:

• Let us divide our order parameter M into bins, so that the system is in bin m when
Mm ≤ M < Mm+1. The iteration is based on the frequency the system visits bin
m during the Monte Carlo run.

• For presentational simplicity, I parametrize the weight function with a piecewise
constant ansatz, W (M) = w(m), when Mm ≤ M < Mm+1. Generalization to
piecewise linear W is straightforward.

The iteration proceeds as follows:

92



a) Set initial w(m) = 0.

b) During the Monte Carlo simulation, we subtract w(m) every time we visit the
bin m, thus reducing the probability of revisiting it. This can be achieved by
modifying w(m) every time we visit bin m by

w(m)← w(m)− C

where initially constant C = 1 (or smaller). This forces the system quickly to
visit all m-bins.

c) In order to make the iteration converge, after we have visited all m-bins we
halve the value of C:

C ← C/2.

We continue with the new value of C until we again have visited all bins, then
we halve C again and keep on repeating the cycle. Thus, the evolution of
w becomes slower and slower, and it approaches a form which gives even
distribution across the m-bins.

d) The procedure is halted when w(m) has converged close enough to the right
result, for example, when w changes at all m by less than some specified
limit.
Note that w(m) is uniformly decreasing in the above process; however, we
can always add to w(m) a constant independent of m (for example, we can
renormalize first bin w(0) = 0).

The procedure above can be accelerated by starting from an initial guess for
w(m). However, in this case the initial value for C has to be small enough so that
the initial guess is not immediately erased.

10.4 Simulated tempering

• Idea: upgrade β to dynamical variable; that is, allow it to change during a simula-
tion.

• Canonical probability: pβ(E) = n(E)e−βE+fβ

• Let now βi be a set of β-values chosen so that pβi
(E) ≡ pi(E) and pi+1(E) overlap.

1. Perform a (small) number of standard MC simulation steps at fixed β = βi.

2. Propose a change βi → βj . This is accepted with probability

p(βi → βj) = min

(

1 ,
pβj

(E)

pβi
(E)

)

= min ( 1 , exp[−(βj − βi)E + fj − fi] )

93



• Iterate steps 1 and 2.

• The update in 2. satisfies detailed balance. However, we do not a priori know
the free energies fi! These have to be estimated, as with the multicanonical
algorithm.

• Note: fi’s are same parameters which appear in multiple histogram reweighting!
So, we can perform simulations at fixed βi’s and use multiple histogram method
to get fi’s.

• Advantage of simulated tempering over running with fixed temperatures: in simu-
lated tempering, the system goes up and down in temperature - thus, it becomes
periodically very disordered. This avoids it getting ‘stuck’ in one configuration at
low temperatures.

• Same result can be achieved with multicanonical simulation with W (E).

• Very suitable for spin glass simulations, polymers etc.

10.5 Parallel tempering

• Modification of simulated tempering idea:

• Again let βi’s, i = 1 . . . N , be a set of β-values chosen so that pβi
(E) ≡ pi(E) and

pi+1(E) overlap.

1. Perform a (small) number of simulation steps simultaneously on N systems, with
β = β1, β2 . . . βN respectively. After the simulation, these systems will have energy
values E1, E2, . . ..

2. Propose a swap of beta-values βi ↔ βj . This is accepted with probability

p(βi ↔ βj) = min
(

1 ,
Pafter

Pbefore

)

= min

(

1 ,
e−βiEje−βjEi

e−βiEie−βjEj

)

= min (1 , exp[−(βi − βj)(Ei −Ej)] )

• Iterate steps 1 and 2.

• Does essentially the same trick as parallel tempering - applicable to similar prob-
lems.

• Advantages: no fi’s needed, thus, no tuning! Also, method is inherently parallel.

94



11 Cluster update algorithms

• Cluster update algorithms are the most succesful global update methods in use.
These methods update the variables globally, in one step, whereas the standard
local methods operate on one variable at a time.

• Another common method: multigrid . Used a lot in solving differential equations;
however, multigrid has very limited success in Monte Carlo simulations.

• A global update can reduce the autocorrelation time of the update and thus
greatly reduce the statistical errors.

• To repeat, we recall that the expectation values (β ∼ 1/T ):

〈O〉T =
1

Z

∫

∏

x

dφx O(φ) e−βE(φ)

• With Monte Carlo simulation: generate a series of configurations Φ1, Φ2 . . . ΦN

with some MC method. Measure Oi = O(Φi). Now

1

N

∑

i

Oi → 〈O〉, when N →∞

• At finite N , the estimated error:

δO =

√

√

√

√

∑

i(Oi − 〈O〉)2

N(N − 1)

if and only if the measurements Oi are statistically independent.

• However, in reality the update modifies the previous configuration (Markov chain).
Thus, the successive configurations are correlated: C(t) ∝ exp−t/τ . τ = auto-
correlation time.

• # of independent configs is ∼ N/(2τ)→ δO ≈
√

2τδOnaive.

• τ depends on the MC update algorithm: we want an update with as small τ as
possible→ Cluster algorithms.

95



11.1 Fundamentals: Fortuin-Kasteleyn cluster decomposition

Ising model (arbitrary dim.):

E = − ∑

<i,j>

sisj Z =
∑

{s}
e−βE .

(si = ±1, < i, j > nearest neighbour sites).

Note: previously we defined E with a factor 1
2

in front. Thus, βhere = βprev./2, and
in 2 dimensions βc = 1/2 log(1 +

√
2) ≈ 0.44. This way is more conventional; the

transformation between normalizations is trivial.

Consider interaction between fixed n.n.-sites < l, m >, and remove it from E:

El,m = − ∑

<i,j> 6=<l,m>

sisj .

Define now partition functions where si, sj are equal or different:

Zsame

l,m ≡∑

{s}
δsl,sm

e−βEl,m , Zdiff.
l,m ≡

∑

{s}
(1− δsl,sm

)e−βEl,m .

Now we can clearly write the original partition function as

Z = eβZsame

l,m + e−βZdiff.
l,m

Furthermore, defining

Z ind.
l,m ≡

∑

e−βEl,m = Zsame

l,m + Zdiff.
l,m .

the partition function finally becomes

Z = (eβ − e−β)Zsame

l,m + e−βZ ind.
l,m

Remember that the partition function is Z =
∑

{s} p({s}). Thus, since Zsame contains
only configs where sl = sm, and Z ind. contains no restriction or input for si, sj-link, the
weighting factors of Z ’s can be considered as relative probabilities of a bond between
sites l, m and no bond (= independent states).

Normalizing the probabilities:

pbond = 1− e−2β

pind. = e−2β = 1− pbond

96



Repeating for all < i, j >,
a) sites linked to each other by bonds form clusters
b) different clusters are independent: sc = ±1

and the partition function can be written as

Z =
∑

all bond
configurations

∑

sc=±1

pb(1− p)n =
∑

all bond
configurations

pb(1− p)n2Nc

Here

p = pbond = 1− pind. = 1− e−2β

b = # of interactions that form a bond,

n = # of interactions that do not form a bond,

Nc = # of clusters.

This decomposition is at the core of the cluster algorithms.

11.2 Swendsen-Wang cluster update

[Swendsen and Wang, PRL 58 (1987) 86]
Beginning with an arbitary configuration si, one SW cluster update cycle is:

1. Inspect all nn-states si, sj . If si = sj , create a bond between sites i, j with proba-
bility p = 1− exp(−2β) (otherwise no bond).

2. Construct clusters = sets of points connected by bonds.
3. Set each cluster to a random value ±1.

The configuration changes a lot in one update!
Is this a valid update? It satisfies

a) ergodicity (obvious)

97



b) detailed balance:
P (A 7→ B)

P (B 7→ A)
= exp−β(EB −EA)?

Proof: consider A 7→ C 7→ B, where C is some bond configuration compatible with
both A and B. Since the clusters in C are independent, P (C 7→ A) = P (C 7→ B) =
1/2Nc.

Now,
P (A 7→ C)
P (B 7→ C) =

pb (1− p)dA

pb (1− p)dB
= exp[−β(EB − EA)]

where dA,B are the numbers of similar nn-states which are not connected by a
bond. The last step comes from EA = dim × V − 2(b + dA). Thus A 7→ C 7→ B
and B 7→ C 7→ A satisfy detailed balance for arbitrary C, and the total transition
probabilities A 7→ B, B 7→ A must do it also.

11.3 Wolff single cluster update

[U. Wolff, PRL 62 (1989) 361]

Principle: do the cluster decomposition as in S-W, but invert (‘flip’) only one randomly
chosen cluster! In practice:

1. Choose random site i.
2. Study neighbouring sites j. If sj = si, join site j to cluster with probability p =

1− exp(−2β).
3. Repeat step 2 for site j, if it was joined to the cluster. Keep on doing this as long

as the cluster grows.
4. When the cluster is finished, invert the spins which belong to it.

• Usually slightly more effective than S-W (the average size of the clusters is larger.
Why?).
• The minimum cluster size = 1, maximum = volume.
• Nicely recursive.
• Satisfies detailed balance.

11.4 Cluster update in c-pseudocode:

On the next page is a c-code snippet which performs Wolff cluster update.

• s[loc]: spin array, and dran() is a random number generator which returns a
number fro 0 to 1.

• n neighbours = 2× d is the number of neighbours a site has.

98



• neighbour[dir][loc] is the neighbour array: it gives the index of the site loc to
direction i.

• s[loc] is flipped during the cluster growth: this prevents revisiting sites already
included in the cluster.

• Recursion (as shown) is neat but not efficient! Better to reimplement the recursion
with loops and temporary arrays.

void update_cluster()
{
int start,state;

start = dran() * volume; /* starting location */
state = s[start]; /* starting spin value */
/* start growing and inverting the cluster */
grow_cluster(start, state);

}

void grow_cluster(int loc,int state)
{
int dir,new_loc;

s[loc] = -s[loc]; /* invert the spin at this location */

/* begin loop over neighbour locations */
for (dir=0; dir<n_neighbours; dir++) {

new_loc = neighbour[dir][loc]; /* neighbour index */

if (s[new_loc] == state && exp(-2.0*beta) < dran())
grow_cluster(new_loc,state);

}
}

• The presented algorithm for growing the cluster is a depth-first algorithm: it starts
from the root and follows the cluster tree branch as far as possible, before taking
another branch.

• Another option is width-first :

1. Start from the root.

2. Mark all neighbouring points which are accepted to the cluster.

3. Looping through all these points, mark all points where the cluster grows
further.

4. Continue from 3. for these new points, until no more points are accepted.

99



• Both the depth-first and width-first require comparable amount of information, and
are about as good. Width-first is somewhat easier to program, though.

• However, for Swendsen-Wang update all of the clusters have to be found. In this
case there exists an optimized cluster search algorithm by Hoshen and Kopel-
mann.

As an example, let us consider 2-dimensional Ising model. It has 2nd order phase
transition at β = 1/2 log(1 +

√
2) ≈ 0.44 (Curie point).

Correlation length (and cluster size!) diverges when one approaches the critical point.

Compare the performance of
a) Metropolis (typewriter ordering) and
b) Wolff cluster algorithm.

System size 642, β = βc ≈
0.44. Compare measure-

ments of absolute value

of magnetization

|M | = |∑
i

si|

Cluster update covers
the phase space much
faster than Metropolis!
(which was the best of
the “single-site” update
methods).

0 2000 4000 6000 8000 10000
0.0

1000.0

2000.0

3000.0

4000.0

|M|

Metropolis update

0 2000 4000 6000 8000 10000
configuration

0.0

1000.0

2000.0

3000.0

4000.0

|M|

Cluster update

100



The autocorrelation function de-
scribes how fast measurements
become decorrelated.

Let now Oi = |M |i− < |M | >,
where |M |i is the measurement #i
of |M |. Autocorrelation function
C(t) of |M |:

C(t) ≡
1

N−t

∑

i OiOi+t

〈O2〉 ∝ e−t/τ

0 100 200 300 400
τ

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C(τ)

Autocorrelation function of |M|

Metropolis:

Cluster

 

• Exponential autocorrelation
time: the exponential decay
length of C(t) at large t.

• Integrated autocorrelation time:
τint. ≡ 1

2
+
∑∞

t=1 C(t).

Shown here is the integrated au-
tocorrelation time τint. measured
from different lattice sizes L2 =
82 – 2562 at βc.

10 100
L

1

10

100

1000

10000

τ

Autocorrelation of |M|

Metropolis:
z = 2.01(14)

Cluster

z = 0.34(4)

 

• Expected behaviour: τa ∝ Lz, where z is the dynamical critical exponent. For local
(dissipative) algorithms, z>∼2.

• For volumes ∼ 2562, cluster algorithm is ∼ 1000 times better than Metropolis!

• Measured in real (cpu/wallclock) time, cluster is even better (at the critical tempera-
ture βc = 0.44):
time/update ∝ V (local Metropolis)
time/update ∝ V x, where x < 1

101



Using the example of section 3.14, 2d Ising, volume 642, and measuring the integrated
autocorrelation time of E:

τint. time(ms)/iteration time(ms)/iter. ×2τint

Cluster 5.7 0.28 3.2
Metro, typew. 54 1.0 108
HB, typew. 157 1.2 364
Metro, random 271 1.4 748
HB, random 316 1.6 1004

11.5 What about other models?

Cluster algorithms can work, if one can embed an Ising system into the original system.
Example: O(N) non-linear sigma model:
The Hamiltonian of the model is

E = −
∑

<ij>

σi · σj , where |σi|2 =
N
∑

α=1

(σα
i )2 = 1

Thus, spins σi are N-dimensional vectors of unit length.
Embedding: [U.Wolff, PRL 62 (1989) 361]
Map arbitrary sigma model configuration to Ising model with Hamiltonian

EI = −
∑

<ij>

Jijsisj

as follows:

• Choose a random O(N) vector r.
• Set all Ising model links Jij = (r · σi)(r · σj).
• Ising update si → −si corresponds to reflection of σi along the vector r: σi →

σi − 2(r · σi) r

• Initially, all si = +1.

After the mapping, we can use either S-W or Wolff update on the Ising spins. In prac-
tice, one Wolff update cycle proceeds as follows:

1. Choose random O(N) vector r.
2. Choose random site i as the starting point for the cluster.
3. Study neighbouring sites j. Join site j to cluster with probability p = 1 −

exp(−2βJij), where Jij = (r · σi)(r · σj).
4. Repeat step 3 for all sites joined to the cluster. Keep on doing this as long as the

cluster grows.

102



5. When the cluster is finished, reflect σi → σi− 2(r · σi) for all sites which belong to
the cluster.

Typically the reflection is performed during the cluster growth.

Single cluster O(N) sigma model algorithm works even better than for Ising: In 3-
dimensional O(4) sigma model, the dynamical critical exponent z becomes negative.

11.5.1 In what models clusters work, in what models they fail?

Clusters (usually) fail, if
• there are frustrated couplings (spin glasses, gauge theories . . . )
• one cannot construct a symmetric reflection operation
• spins are ‘frozen’ in place by external fields etc.

Cluster updates are (normally) usable only in proximity of a 2nd order phase transitions:
large correlation lengths→ large clusters.

Nevertheless, sometimes they are useful when correlation lengths are finite but still
large (≫ 1) in lattice units.

More conditions:

In order to work, the reflection operation Rσ = σ′ must satisfy the following: the set of
the fixed points of the reflection (Rσ = σ) must separate the phase space of σ in two
disconnected sets.
For example, in O(3), the fixed points are the points with r · σ = 0, i.e. the points on the
‘equator’ perpendicular to the reflection vector r. This divides O(3) into disconnected
‘northern’ and ‘southern’ hemisphere.
Mathematically: fixed point set should have codimension 1 [Lüscher, Weisz, Wolff, NPB
359 (1991) 221].

11.6 Reduced variance

• Clusters can also substantially reduce statistical noise in some measurements –
this is in addition to the acceleration in update speed (reduced variance).

• For example, consider spin-spin correlation function

G(i, j) = sisj 〈G(i, j)〉 ∼ e−|i−j|/ξ

103



• Using normal MC averaging over spin configurations (whichever algorithm we
use), the variance of G is

〈G2〉 − 〈G〉2 ≈ 1− e2|i−j|/ξ ≈ 1

Thus, the absolute error is ∼ constant independent of |i − j|, and signal/error∼
e−|i−j|/ξ.

• However, consider the expectation value using the cluster partition function

〈G(i, j)〉 =
1

Z

∑

bonds

pb(1− p)n
∑

sclust.

sisj

The last sum is clearly

∑

sclust.

sisj =

{

1 if si and sj belong to the same cluster
0 otherwise.

• Thus, in a (Swendsen-Wang) cluster MC update/measurement, we measure

〈sisj〉SW =

〈

∑

clust.

Θc(i)Θc(j)

〉

SW

where Θc(i) = 1 if point i belongs to cluster c, 0 otherwise. Since the fraction of 1
to 0’s must be e−|i−j|/ξ, the variance is

(〈G2〉 − 〈G〉2)SW ≈ e−|i−j|/ξ − e−2|i−j|/ξ ≈ e−|i−j|/ξ

The absolute error ∼ e−|i−j|/2ξ, and signal/error∼ e−|i−j|/2ξ.

• An exponential factor is gained over the ‘naive method! This is due to the fact that
the cluster measurement effectively sums over all possible spin configurations
compatible with the cluster decomposition.

• Another example: magnetic susceptibility

χM = 〈M2〉 =
1

V

∑

i,j

sisj =
1

V

∑

clust.

N2
c

where Nc is the cluster size, and we assume 〈M〉 = 0 (T > Tc).

104



• This readily generalizes to other spin observables. However, 3- or higher point
functions do not usually gain from cluster measurements, nor observables which
depend on energy. The operators rapidly become quite complicated, for example,

〈sisjsksl〉 = θ(i, j, k, l) + θ(i, j)θ(k, l) + θ(i, k)θ(j, l) + θ(i, l)θ(j, k).

• The above was for Swendsen-Wang type update. What about the Wolff single
cluster update? In this case, the clusters are chosen with biased probability pc =
Nc/V . This we can compensate by multiplying the observable with 1/pc, and thus

〈sisj〉1C =
〈

V

Nc
Θc(i)Θc(j)

〉

1C

• Likewise, the single-cluster susceptibility measurement becomes

χM = 〈M2〉 = 〈Nc〉1C

• Through the Ising embedding, the reduced variance measurements can be done
also for other models.

105



12 Final notes

Monte Carlo simulation is a versatile method for studying thermodynamical properties
in a very wide variety of frameworks. It is also widely used in studying (quantum) field
theories.

In this course we have studied the main framework of Monte Carlo simulation methods.
The central parts of the course are:

– Sect. 2: Monte Carlo integration, importance sampling, convergence

– Sect. 3: generation of random numbers from given distributions (not so much the
basic generators, albeit it is good to know the weaknesses)

– Sect. 4 (& 5): detailed balance, Metropolis/heat bath etc. updates, applied to various
models, autocorrelation, autocorrelation time, error estimation

Thus, given almost any (potential) energy functional (must be bounded from below!),
the methods above should be sufficient to construct a valid update algorithm and mea-
sure quantities of interest!

In further sections we discussed more specialized analysis- and simulation methods.
Of these, reweighting (Sect. 6) and bootstrap (or jackknife) (Sect. 7) are in very com-
mon use.

What we did not discuss?

In this course we kept to simple “spin models” and potential systems. In general, the
interaction energy can be much more complicated (e.g. quantum mechanical fermion
systems), requiring quite different Monte Carlo methods.

There are also several methods which apply Monte Carlo -like methodology but the
system does not remain in equilibrium. These include simulated annealing, where the
temperature is varied up and down during the simulation.

In this course we discussed only static problems, i.e. not dependent on time. Time
evolution opens up a vast variety of methods, which can be more or less related to
Monte Carlo.
For example, in some cases it is possible to associate the Monte Carlo simulation time
with the real time. These processes are fully dissipative. In another end of the spec-
trum the time evolution is fully deterministic (solving equations of motion; molecular
dynamics). There also exist methods which have some degree of noisiness included
in the equations of motion (Langevin-like methods).

106


