
4 Importance sampling and update algorithms

4.1 Canonical ensemble

• One of the most common use for Monte Carlo method is to study thermodynam-
ics of some statistical model defined on a lattice. For example, we may have a
(real-valued,say) field φx, which is defined at each lattice coordinate x, with the
Hamiltonian energy functional H(φ). We shall discuss here regular (hyper) cubic
lattices, where

xi = ani, ni = 0 . . .Ni,

where a is the lattice spacing (in physical units).

• The most common statistical ensemble we meet is the canonical ensemble, which
is defined by the partition function

Z =
∫

[dφ] exp

[

−H(φ)

kBT

]

.

Here [dφ] ≡ ∏

x dφx. The free energy is defined as F = −kBT ln Z.

• We would like to evaluate Z, and especially thermal average of some quantity A:

〈A〉 =
1

Z

∫

[dφ] A(φ) exp

[

−H(φ)

kBT

]

.

The dimensionality of the integrals is huge:

(# points in space) × (dim. of field φx) ∼ 106 − 109.

Thus, some kind of (quasi?) Monte Carlo integration is required.

• The integral is also very strongly peaked:

∫

[dφ] exp

[

−H(φ)

kBT

]

=
∫

dEn(E)e−E/kBT ,

which is an integral over sharply localized distribution. Here n(E) is the density
of states at energy E, i.e.

n(E) =
∫

[dφ] δ(H(φ)− E)

Only states with E<∼〈E〉 contribute, which is an exponentially small fraction of the
whole phase space. This kills standard “simple sampling” Monte Carlo, which
is homogeneous over the phase space. This is a form of the so-called overlap
problem – we are not sampling the interesting configurations nearly often enough.

35

4.2 Importance sampling

Importance sampling takes care of the overlap problem:

• Select N configurations φi, chosen with the Boltzmann probability

p(φ) =
exp[−H(φ)/kBT]

Z

The set {φi} is called an ensemble of configurations.

Note that in practice we cannot calculate Z! Thus, we actually do not know the
normalization of p(φ). However, this is sufficient for Monte Carlo simulation and
measuring thermal averages.

• Measure observable Ai = A(φi) from each configuration.

• The expectation value of A is now

〈A〉 ≡ 1

N

∑

i

Ai → 〈〈A〉〉, as N → ∞. (2)

If now the value of Ai’s are ∼ equal for all i, all of the configurations contribute with
the same order of magnitude. This is the central point of importance sampling in
Monte Carlo simulations.

The result (2) follows directly from the general results we got in Sect. 1. about
importance sampling Monte Carlo integration, or even more directly by realizing
that the Ai-values obviously come from distribution

pA(A′) =
∫

[dφ] p(φ) δ(A′ − A[φ])

⇒ Ā ≡
∫

dA A pA(A) =
∫

[dφ] A[φ] p(φ) = 〈〈A〉〉.

4.3 How to generate configurations with
p(φ) = exp[−H(φ)/kBT]/Z?

• Directly – from scratch – we do not know how to do this! (except in some limited
simple cases.)

36

• The basic method (which is really behind almost all of the modern Monte Carlo
simulation technology) is based on the proposal by Metropolis, Rosenbluth2 and
Teller2 (J. Chem. Phys 21 1087 (1953)): we can modify existing configurations
in small steps, Monte Carlo update steps. Thus, we obtain a Markov chain of
configurations

φ1 7→ φ2 7→ φ3 7→ . . . φn . . .

With suitably chosen updates and large enough n the configuration φn is a “good”
sample of the canonical probability p(φ).

How does this work? Let us look at it in detail:

• Let f be an “update”, a modification of an existing configuration φ: φ
f7→ φ′. It

can be here a “small” update, one spin variable or even a component of it (if φ
is a vector), or arbitrarily “large” one, for example all of the d.o.f’s (usually just
repeated application of small updates).

• Transition probability Wf(φ 7→ φ′) is the probability distribution of configurations
φ′, obtained by one application of f on some (fixed) configuration φ. It naturally
has the following properties:

Wf(φ 7→ φ′) ≥ 0 ,
∫

dφ′ Wf(φ 7→ φ′) = 1

The latter property comes from the fact that f must take φ somewhere with prob-
ability 1.

• We can also apply the update f to probability distributions p(φ):

p(φ)
f7→ p′(φ′) ≡

∫

dφ p(φ) Wf (φ 7→ φ′).

This follows directly from the fact that we can apply f to an ensemble of configu-
rations from distribution p(φ).

• What requirements must a “good” update f fulfill:

A) f must preserve the equilibrium (Boltzmann) distribution peq.(φ) ∝
exp[−H(φ)/kBT]:

∫

dφ Wf (φ 7→ φ′) peq.(φ) = peq.(φ
′)

In other words, peq.(φ) is a fixed point of f .

B) f must be ergodic: starting from any configuration, repeated applica-
tion of f brings us to arbitrarily close to any other configuration. This
implies that

∫

dφ Wf (φ 7→ φ′) > 0 for any φ′.

37

• These two simple and and rather intuitive properties are sufficient to guarantee
the following 2 important results:

I) Any initial ensemble approaches the equilibrium canonical ensemble → peq. as
f is applied to it (“thermalization”).

II) If we sum up the distribution of all of the configurations in a single Markov chain
φ0 7→φ1 7→ φ2 7→ φ3 . . .

the distribution approaches peq., as the number of configurations → ∞.

• Proof: let p(φ) be the probability distribution of the initial ensemble of config-
urations. After applying f once to all configs in the ensemble, we obtain the
distribution p′(φ′). Let us now look how the norm ||p − peq|| evolves:

||p′ − peq.|| ≡
∫

dφ′ |p′(φ′) − peq.(φ
′)|

=
∫

dφ′ |
∫

dφ Wf (φ 7→ φ′)(p(φ) − peq.(φ))|

≤
∫

dφ′
∫

dφ Wf(φ 7→ φ′)|p(φ) − peq.(φ)| = ||p − peq.||

Thus, we get closer to the equilibrium when f is applied. Nevertheless, this is not
sufficient to show that we really get there; it might happen that ||p− peq.|| reaches
a plateau without going to zero. This would mean that there exists another fixed
point ensemble besides the equilibrium one, i.e. an ensemble which is preserved
by f .

However, the ergodicity forbids this: let us assume that pfix is another fixed point,
and let ||pfix − peq.|| > 0. Then we can split φ’s into two non-empty sets: set A has
those configurations where (pfix(φ) − peq.(φ)) ≥ 0 and set B the rest. Because of
ergodicity, there must be some configurations φ′ for which Wf (φ 7→ φ′) is non-zero
for some φ in set A and some other in set B. Thus, on the 3rd line ≤ → <, and
p cannot be a fixed point.

4.4 Detailed balance

The standard update algorithms satisfy the following detailed balance condition:

Wf(φ 7→ φ′)

Wf(φ′ 7→ φ)
=

peq.(φ
′)

peq.(φ)
= e(H(φ)−H(φ′))/kBT

Obviously, peq.(φ) is a fixed point of this update. Thus, (I) detailed balance and (II)
ergodicity are sufficient for a correct Monte Carlo update. Detailed balance is not

38

a necessary condition; there may be updates which do not satisfy detailed balance.
But it is much more difficult then to prove that these updates preserve the Bolzmann
distribution. Thus, all of the commonly used update algorithms satisfy detailed balance.

The physical interpretation of detailed balance is microscopic reversibility of the update
algorithm.

4.5 Common transition probabilities

The detailed balance condition is a restriction for Wf ; however, it is still very general.
For concretenss, let us now consider an update step of one variable (lattice spin, for
example). Some of the most common choices for Wf are (all of these satisfy detailed
balance):

• Metropolis: (Metropolis et al, 1953)

Wf(φ 7→ φ′) = C ×
{

exp[−δH/kBT] if δH > 0
1 otherwise

,

where δH ≡ H(φ′) − H(φ) is the change in energy, and C is a normalization
constant.

• Glauber:

Wf(φ 7→ φ′) =
C

2

[

1 − tanh

(

δH

2kBT

)]

= C
1

1 + exp[δH/kBT]

• Heat bath:

Wf(φ 7→ φ′) = C exp[−H(φ′)/kBT]

This does not depend on old φ at all!

• Overrelaxation: The standard overrelaxation as presented in the literature is a
special non-ergodic update. It assumes that the energy functional H has a sym-
metry wrt. some reflection in the configuration space. For example, there may
exist some α so that

H(α − φ) = H(φ)

for any φ, and p(φ) = p(φ′). Then the reflection (“overrelaxation”)

φ 7→ φ′ = α − φ.

39

This satisfies detailed balance, because H(φ) and p(φ) do not change. However,
it obviously is not ergodic! One has to mix overrelaxation with other updates to
achieve ergodicity. Nevertheless, overrelaxation is a very useful update, because
it generally reduces autocorrelations better than other updates (to be discussed).

• Generalized overrelaxation: It is possible to generalize the overrelaxation update
to a non-symmetric case. This is not discussed in the standard literature, but the
method is often useful. Thus, let us now define “overrelaxation” update through
the transfer function

Wf(φ 7→ φ′) = δ(φ′ − F (φ)) ,

i.e. the update is deterministic: φ 7→ φ′ = F (φ). The function F is chosen so that
(p = exp(−H(φ)/kBT))

A) p(φ)dφ = p(φ′)dφ′ = p(φ′)

∣

∣

∣

∣

∣

∣

∣

∣

dφ′

dφ

∣

∣

∣

∣

∣

∣

∣

∣

dφ

⇒
∣

∣

∣

∣

∣

∣

∣

∣

dF (φ)

dφ

∣

∣

∣

∣

∣

∣

∣

∣

= exp

[

H(F (φ)) − H(φ)

kBT

]

B) F [F (φ)] = φ.

A) means that the resulting configuration φ′ must be as likely to occur as the
original one φ in thermal equilibrium, and B) implies that applying overrelaxation
twice we get back to where we started from. These properties guarantee detailed
balance. Note that the energy is not necessarily conserved in this case.

As with the standard overrelaxation, this one is not generally ergodic. It must
be mixed with other updates to achieve ergodicity. The standard overrelaxation
naturally satisfies conditions A) and B).

If φ is a one-component variable, A) and B) are both met by defining φ′ = F (φ)
through the cumulants:

P (φ′) = 1 − P (φ), P (φ) =
∫ φ

min
dα p(α).

4.6 Updating O(2) sigma model:

• Let us illustrate these update methods with a concrete example, O(2) σ-model or
the XY model:

H/kBT ≡ S = −β
∑

<xy>

sx · sy = −β
∑

<xy>

cos(θx − θy)

Z =
∫ π

−π
[
∏

x

dθx]e
−S[θ]

40

Here sx is a 2-component vector with |sx| = 1, and θx is its angle from, say, 1
-axis. x and y are discrete coordinate vectors (in 2 or 3 dimensions), and < x, y >
refers to nearest-neighbour coordinate pairs.

• Physics of the model: In 3 dimensions the XY model has a phase transition at
β = βc = 0.454165(4). The model exhibits spontaneous symmetry breaking; there
is spontaneous magnetization if β > βc (T < Tc), i.e.

〈|M |〉 =
1

V

〈∣

∣

∣

∣

∣

∑

x

sx

∣

∣

∣

∣

∣

〉

6= 0 as V ≡ N3 → ∞.

The transition is of second order, and the most important critical exponents have
been measured/calculated; for example,

|M | = (β − βc)
b b ≈ 0.35

Universality: Phase transitions in systems which have 2d (internal) rotational
symmetry (O(2)) have the same critical exponents as the XY model:

– superfluidity λ-transition in liquid 4He (space shuttle experiment)

– ferromagnets with an “easy plane”

– some liquid crystals

– density waves

– type II superconductors (?)

In 2 dimensions, there is no magnetization,3 but there is still a phase transition,
Kosterlitz-Thouless transition.

A lot more information about XY model can be found in [Pelisetto, Vicari, cond-
mat/0012164], for example.

• Choose a variable at site x for updating

• Calculate the local action, the part of the action which depends on the variable
sx:

Sx(sx) = −β
∑

y=n.n.of x

sx · sy = −sx · V = −v cos α, V = β
∑

y=n.n.of x

sy

Here v = |V | and α is the angle between sx and V . When we modify the variable
sx, the change in total action is δS = δSx.

3This is due to the Coleman-Mermin-Wagner theorem: in 2d, continuous symmetries cannot
break spontaneously!

41

• Heat bath:

Choose new sx with probability

p(sx) ∝ e−Sx(sx) = ev cos α

- Satisfies detailed balance

- Computer gives random numbers from uniform distribution, X ∈ [0, 1). We
obtain s from distribution p(s) from the inversion

X =
∫ s

min
ds′p(s′) = Cα

∫ α

−π
dα′ev cos α′

where Cα =
∫ π
−π dα′ev cos α′

is a normalization constant.

- We’re unlucky: p(s) is not very easily integrable. See sect. 2., where we dis-
cussed how to do generate random numbers just from this kind of distribution.

- Integrability is often a problem for many actions. For an easier case, consider
O(3) sigma model. However, we can always generate random numbers with
distribution p(s) by using some version of the rejection method.

- Heat bath update is quite common in Monte Carlo simulations. In gauge theo-
ries, efficient implementation ∃ for SU(2)

• Metropolis:

How to generate the new angle variable with the Metropolis probability form?
Integrating WM is as complicated as the heat bath integral. However, we may
do an efficient restricted Metropolis transition by using the following accept/reject
method:

Choose new θ′x with

θ′x = θx + C(X − 0.5) (mod 2π),

where C is a tunable constant. θ′x is accepted with probability

WM(θx 7→ θ′x) = min(1, eSx(θx)−Sx(θ′x)) ,

if rejected, either repeat or leave θx as is.

- Satisfies detailed balance.

- More generally: instead of using the uniform distribution θ′x ∈ [θx−C/2, θx+C/2],
we could choose θ′x from any distribution f(θx −θ′x), which satisfies f(a) = f(−a).
For example, f(a) could be a Gaussian distribution.

42

- Function f (or constant C) is tuned to optimize the performance; usually so that
the acceptance is ∼ 50 − 70%.

- If C = 2π, θ′ will be evenly distributed from 0 to 2π. However, the rejection rate
will be (usually) very large.

- Metropolis is very versatile method, and can be applied to almost any problem.
We only have to evaluate eS! No integrals or inversions. One Metropolis update
is also usually quite fast. It is also the “original” update, first one to be used in a
real simulation.

- If you repeat Metropolis update of φx (fixed site) many times, the final distribution
7→ heat bath update!

• Overrelaxation:

Reflect sx to the “other side” of the potential Sx:

α → −α, or equivalently

sx → 2
sx · V

v2
V − sx.

- Deterministic, very fast to implement.

- Satisfies detailed balance

- Not ergodic: S never changes: in other words, the update is microcanonical.

- Must be usually mixed with other updates to achieve ergodicity.

- Nevertheless, often overrelaxation is more efficient than the other updates
above.

- In this case Sx(s) is always symmetric wrt. V (V varies from site to site and
update to update, but it is always simple to find!). If Sx is not symmetric, overre-
laxation is much more difficult (often not worth it).

- Not applicable to discrete spins.

• The Glauber form (and also other transition probabilities which depend on δSi)
can be implemented very much along the lines of Metropolis. However, accep-
tance becomes slightly worse than in Metropolis → possibly worse performance.

4.7 Update sweep

Repeat the above single-site (φx) updates for all of the sites on the lattice → update
sweep.

43

Typical program structure:
1) 1 or more update sweeps
2) measure what you want, accumulate or print
3) repeat from 1) until enough statistics

Even after all of the sites have been updated,
the system evolves only a finite step in the phase
space; it “remembers” the previous configuration.

Autocorrelation time τA: number of update sweeps
required to make the configuration statistically inde-
pendent from the starting configuration.

⇒ The number of independent configurations in a
Monte Carlo simulation of N configurations is N/τA.

⇒ Errors ∝
√

τA/N .

phase space

"important"
configurations

start

Thus, a good update minimises τA. Rule of thumb:

Metropolis < heat bath < overrelaxation

where < shows the “goodness” relation of the algorithm, i.e. 1/τA. However, the real
performance depends on the details. We always should compare to the (wall-clock)
time, not to the # of updates!

Because of non-ergodicity, overrelaxation is usually mixed with heat bath or Metropolis:
for example, we can do
5 overrelaxation sweeps + 1 heat bath sweep.

Autocorrelation time diverges at phase transition points (or more generally, when the
correlation length diverges): critical slowing down.

4.8 Ising model

The Ising model is the simplest discrete spin model. In this case the field variable
φx → sx = ±1, and the partition function is

Z =
∑

{sx=±1}

exp

−β

1
2

∑

<xy>

(1 − sxsy) + H
∑

x

sx

Here < xy > goes over the nearest-neighbour sites of the rectangular lattice, and H is
an external magnetic field. We shall consider here mostly the case where H = 0.

When H = 0 the Ising model has a second-order phase transition in all dimensions
> 1. In 2 dimensions, the Ising model has been solved analytically (Onsager), and the
transition is at βc = ln(1 +

√
2) ≈ 0.88137. In 3 dimensions, βc ≈???

44

If β > βc (“T < Tc”), the system shows spontaneous magnetization:

〈|M |〉 = 〈
∣

∣

∣

∣

∣

1

V

∑

x

sx

∣

∣

∣

∣

∣

〉 6= 0

Phase diagram:

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

T = 1/ β

2nd order

1st order

H

T = 1/ β

M

(T,H) phase diagram Magnetization

Universality:
– Ferromagnetism, Curie point
– Liquid-vapour transition (lattice gas)
– Generic transition for systems without explicit symmetry

4.9 Updating the Ising model

• Let us assume here H = 0, and that we are in 2 dimensions.

• Choose spin sx. The local energy functional

Sx(sx) = β/2
∑

y=n.n.of x

(1 − sxsy) = β/2

4 − sx

∑

y=n.n.of x

sy

Sx has only 5 possible values! (Can be calculated beforehand.)

• Heat bath: Choose new sx = ±1 with probability

p(sx) =
e−Sx(sx)

e−Sx(+1) + e−Sx(−1)

(see sect. 2.)

• Metropolis: Flip the spin sx 7→ s′x = −sx, and calculate δSx = Sx(s
′
x) − Sx(sx).

Accept this flip with probability

paccept = min(1, e−δSx)

If the update is rejected, leave sx as is (do not redo until accepted! You can redo
Metropolis a fixed number of times, though.)

45

• Glauber: Substitute paccept = 1/(1 + eδSx) above.

• Kawasaki: Choose a nearest-neighbour pair sx, sy. If sx 6= sy, consider exchang-
ing the spins sx 7→ s′x = sy and sy 7→ sx. This is accepted with the Metropolis
probability

paccept = min(1, e−δS)

If the update is rejected, leave the pair as is.

Kawasaki update preserves the magnetization M . It is used if we really want to
study an ensemble with fixed magnetization (lattice gas: fixed particle number!)

4.10 Boundary conditions

How do we choose the boundary conditions on a rectangular lattice? There are several
choices, usually dictated by the physics we want to study. Let us assume 2-dimensional
N × N lattice, with coordinates x, y = 1 . . .N .

• Periodic boundaries: This is the most popular choice when we want to minimize
the effect of boundaries. The neighbours wrap around the edges, thus the coor-
dinate pairs (N, y) ↔ (1, y) and (x, N) ↔ (x, 1) are neigbours.

Topology: 2-dim. torus (surface of a donut)

The boundaries are not special points, the system has translational invariance!

• Fixed boundaries: The boundary layers (x = 1, N or y = 1, N) are fixed either all
to the same value or to some specially chosen values. Strong boundary effects.

• Free boundaries: The boundary sites just have less neighbour sites. Strong
boundary effects.

• Twisted periodic boundaries: For example, the spins s(N, y) and s(1, y) are neigh-
bours, but with “inverted” sign – i.e. the action has opposite sign for these partic-
ular links. When β > βc the system has magnetization, but because of the “twist”
there must be an interface (kink) somewhere in the system. Despite the appear-
ance, this boundary is also translationally invariant: the boundary does not form
a special point.

This is used to study the properties of the interface between states with +1 and
-1 magnetization.

46

4.11 Structure of the Monte Carlo program

Traversal order: in which order should we go through the points on the lattice? In
principle this is (largely) up to you, except in some special cases. The common orders
are:

• Typewriter ordering: go through the sites row-by-row, from left to right. Fast &
recommended, for standard uses.

However: breaks detailed balance for Ising model + Metropolis update! (at least
in 1 dimensions. . .)!!

• Random ordering: pick the site at random. Good, but in practice computationally
slower than typewriter. Used in some real-time calculations.

• Checkerboard ordering: divide the sites into black and white sets (x+y even/odd),
as in the checkerboard. Since each black site has only white neighbours and vice
versa, we can update all of the black sites independently from each other while
keeping white sites fixed. Repeat for white sites.

This must be used in vector computers (Crays, many other older supercomputers)
and in parallel programming.

Sample: heat bath for Ising

#define NX 32
#define NY 32
...

int s[NX][NY];
int sum,x,y;
double beta,p_plus,p_minus;
...

/* sum over the neighbour sites - typewriter fashion */
for (x=0; x<NX; x++) for (y=0; y<NY; y++) {
sum = s[xup[x]][y] + s[xdn[x]][y]

+ s[x][yup[y]] + s[x][ydn[y]];

/* Heat bath update - calculate probability of +-1 */
p_plus = exp((beta/2.0) * sum); /* prob. of +1, unnormalized */
p_minus = 1.0/p_plus; /* and -1 */
p_plus = p_plus/(p_plus + p_minus); /* normalized prob of +1 */

/* and choose the state appropriately */
if (mersenne() < p_plus) s[x][y] = 1; else s[x][y] = -1;

}

47

4.12 Some implementation details

I. Looping over the lattice:

2 common ways to organize the lattice arrays:

A) 1 variable/dimension:

int s[NX][NY];

In this case one should loop over y-coordinate in the inner loop:

for (x=0; x<NX; x++) for (y=0; y<NY; y++)

in C, the last index is the “fastest,” i.e. these variables are stored in consecutive
locations.

In Fortran, this is opposite:

integer s(NX,NY)

Here the first index (x) is faster.

The speed difference varies a lot depending on the problem/computer.

B) 1 loop variable only:

#define VOLUME (NX*NY)
int s[VOLUME];

Looping:

for (i=0; i<VOLUME; i++) s[i] ...

Used a lot in old vector supercomputers – long loops, vectorizes effectively.

II. Fetching the neighbours:

Typically (simple) MC programs use a significant amount of time fetching the
neighbours of a site (periodic boundaries!). There are several ways to do this:

A) Use modulus to get the neighbours:

xup = (x + 1) mod NX, xdown = (x + NX − 1) mod NX

– works in C [x = 0 + . . . (NX − 1)], has to be modified a bit in Fortran.

– slow, unless NX = 2n and NX constant (so that the compiler knows what it is).

B) Tabulate the neighbours beforehand:

for (x=0; x<NX; x++) {
xup[x] = (x+1) % NX;
xdn[x] = (x-1+NX) % NX;

}

48

(same for y-coordinate) and use the tables xup[] etc. in the loop. This was used
in the example.

– Usually pretty good. If the size is always the same to x- and y-directions, then
single up,down -arrays can be used.

– Has to be modified a bit in Fortran:

xup(x) = mod(x,NX)+1

etc.

C) If single volume index (I.B) is used, then it is usually easiest to use global
neighbour pointer arrays, which are again initialized at the beginning:
#define ixy(x,y) ((x+NX)%NX + NX*((y+NY)%NY))
...

for (i=0; i<VOLUME; i++) {
x = i % NX;
y = i / NX;
xup[i] = ixy(x+1,y);
xdn[i] = ixy(x-1,y);
yup[i] = ixy(x,y+1);
ydn[i] = ixy(x,y-1);

}

Here xup[] etc. is an integer array of size VOLUME.

– Easy to use in the loops over volume. However, neighbour arrays are large, and
memory access can become expensive.

– Again, this style vectorizes easily. It is also used in parallel programming.

III. Variable type:

For discrete models (like Ising), it is usually worthwhile to use the smallest easy
variable (in this case, (unsigned) char).

However, gains depend very much on details.

IV. Structure of the program: The program flow of a Monte Carlo simulation program
is usually as follows:

1. Initialize what is needed:
– seed the random numbers
– initialize the configuration, or
– load a stored configuration
– initialize neighbour arrays etc.

49

2. Update, i.e. do one or more update sweeps through the system. Different
algorithms can be used.

3. Measure, and either
– accumulate the results or
– write results to a file for post-processing (preferred).

4. Return to 2, until we have the desired amount of measurements.

5. Do whatever maintenance is needed (for example, save the configuration)

4.13 Measurements

The configurations of the model are generated with some algorithm, such as Metropo-
lis. We want to measure numerically thermodynamic quantities of interest, for example
(for Ising model)

• Energy density E = − 1
V

∑

<i,j> sisj

• Magnetization M = 1
V

∑

i si

• Correlation function Γ(z) = 1
V

∑

i sisi+z

• Correlation length ξ: Γ(z) ∼ e−z/ξ

• Specific heat: CV = 1
V

∂E
∂T

= 〈E2〉 − 〈E〉2

• Magnetic susceptibility: χM = 1
V

∂M
∂T

= 〈M2〉 − 〈M〉2

Note that the last 2 measurements do not require “new” measurements; these can be
calculated directly from measurements Ei, Mi (if these have been stored in a file, for
example).

The correlation function requires usually special methodology.

4.14 Phase transitions and critical exponents

Most phase transitions are described by an order parameter which is zero in one phase
(disordered phase), non-zero in the other phase (ordered phase). Thus, it cannot be
an analytic function at the critical point.

• First order — the order parameter (and in general almost any thermodynamical
quantity) has a discontinuous jump; i.e. the 1st derivative of the partition function.

– latent heat, discontinuity in energy

50

• Second order — the susceptibility or specific heat are divergent (in general, sec-
ond derivatives of partition function).

Second order transitions are classified by their critical exponents, which measure the
divergence at the critical point:

M ∼ |T − Tc|β

χM ∼ |T − Tc|−γ

CV ∼ |T − Tc|−α

ξ ∼ |T − Tc|−ν

For the 2d Ising model, these exponents are α = 0, β = 0.125, γ = 1.75, ν = 1.

However, on a finite lattice we have finite number of degrees of freedom and everything
is analytic! Thus, on a finite lattice the order parameter is either always non-zero or
always zero. Indeed:

M =

〈

1

V

∑

i

si

〉

≡ 0 |M | =

〈∣

∣

∣

∣

∣

1

V

∑

i

si

∣

∣

∣

∣

∣

〉

> 0

always on a finite lattice! Careful finite size analysis (FSS)is needed. (Return to that
later)

4.15 Autocorrelations

In sect. 3.5. we already mentioned that the Monte Carlo simulations suffer from auto-
correlations: since the update step is a smaller or larger modification of some configu-
ration (Markov chain!), successive configurations and measurements are correlated.

• Let Xi be the measurements of some quantity X from configuration number i =
1 . . .N . At finite N , the error is

δX =

√

√

√

√

∑

i(Xi − 〈X〉)2

N(N − 1)

if and only if the measurements Xi are statistically independent.

• We can define an autocorrelation function of quantity X:

C(t) =

1

N − t

N−t
∑

i=1

XiXi+t − 〈X〉2

〈X2〉 − 〈X〉2 ∼ e−t/τexp

where the last point holds if N → ∞ and t → ∞, t ≪ N .

51

• The denominator is there to normalize C(0) = 1.

• τexp is the exponential autocorrelation time. This is in principle (almost) unique;
i.e. almost all observables show the unique longest autocorrelation time, which
really measures when the configurations become thoroughly uncorrelated.

• However, for error analysis, the relevant quantity is the integrated autocorrelation
time:

τint =
1

2
+

∞
∑

t=1

C(t)

Note that τint ≈ τexp if the autocorrelation function is purely exponential, C(t) ≈
e−t/τexp . However, usually τint < τexp.

• In Monte Carlo analysis with correlated measurements, the error estimate is

error of X ≡ δX =
√

2τint δx,naive =

√

√

√

√2τint

∑

i(Xi − 〈X〉)2

N(N − 1)

Here δX,naive is the naive error shown on previous page.

• How to calculate τint? One has to write all measurements in a file during the sim-
ulation. However, the double summation can become expensive, and because
C(t) is noisy when t ≫ τint, the sum in τint can behave badly when t is large.
Thus, the sum should be cut self-consistently to values, for example, t ≤ 5τint, as
the summation proceeds:

τint =
1

2
+

5τint
∑

t=1

C(t).

4.16 Error estimates in Monte Carlo measurements

There are 2 commonly used methods for estimating the errors in Monte Carlo mea-
surements:

1. Use

δX =
√

2τint δx,naive

as above.

52

2. Block the measurements in M bins of length m. Calculate averages of observ-
ables in each bin, Xb

k, k = 1 . . .M . If the bin length m ≫ τint, the bins are
statistically independent, and we can use the naive formula

δX =

√

√

√

√

∑M
i=1(X

b
i − 〈X〉)2

M(M − 1)

In practice, one divides the set in variable number of blocks. The error estimate
should be ∼ constant if the bin length is large enough (sometimes one has to
extrapolate to block length → ∞.).

Note that neither the autocorrelation nor the blocking method change the expectation
value 〈X〉 in any way! Just the error bars.

Clearly, in order to minimize the errors, we want to use an update which has as small
τ as possible – but measured in CPU-time used, not in iterations!

If we manage to improve τ 7→ τ/10, then either
– we need a factor of 10 less configurations for given accuracy
– for a fixed number of configurations, the errors are reduced by a factor of

√
10 ∼ 3.

4.17 Example: Ising model

Time histories of the measurements
of the total energy, measured from 642

Ising model at βc. Sample of 1000
(from a total of 400000 each).

From top to bottom: Metropolis and
heat bath with “typewriter” ordering,
then Metropolis and heat bath with
random ordering.

It is next to impossible to see by eye
which of these algorithms has the
shortest autocorrelations.

1000

1500

1000

1500

1000

1500

0 200 400 600 800 1000

1000

1500

53

The autocorrelation function of the to-
tal energy from the previous case.
Clearly, the Metropolis update with
typewriter ordering is the fastest of
these algorithms.

However, this is characteristic for the
Ising model - in general heat bath
tends to be faster than Metropolis!

0 500 1000 1500 2000

0

0.1

0.2

0.3

0.4

C(t)

typewriter, Metropolis
typewriter heat bath
random Metropolis
random heat bath

The integrated autocorrelation time τint, measurement average, and error calculated in
various ways are as follows (with 400000 update+measurement cycles for each case):

τint 〈E〉 δnaive δτ δ100 δ1000 δ10000

Metro, typew. 54 1182.44 0.17 1.78 1.03 1.76 2.18
HB, typew. 157 1176.45 0.17 3.01 1.18 2.50 3.04
Metro, random 271 1181.29 0.17 3.99 1.24 2.80 3.52
HB, random 316 1180.66 0.17 4.26 1.26 2.97 4.34

The Metropolis with typewriter ordering is the best of the bunch - for fixed # of updates.
The quantity δ100 means the error using binned naive estimate, the number is the bin
size. Clearly, the bin length has to be ≫ τ in order for the method to work!

The real figure of merit is obtained when we compare the time used to the number of
configurations:

time(ms)/iteration time(ms)/iter. ×2τint

Metro, typew. 1.0 108
HB, typew. 1.2 364
Metro, random 1.4 748
HB, random 1.6 1004

Here the times are in milliseconds. The last column is the real measure of the effi-
ciency of the algorithm (and implementation): how much time is needed to obtain one
independent configuration (t ∼ 2τ).

However, the random ordering is still useful: using random ordering the evolution of the
system can be in some cases interpreted as a real-time evolution (∼ Glauber dynam-
ics).

54

4.18 Thermalization

Because of autocorrelations, and because we typically start the simulation from a “bad”
configuration (often fully ordered, “cold”, or disordered, “hot” configuration), the initial
measurements are just wrong. We should get rid of these.

One should discard at least n ≫ τ measurements from the beginning, often values

n = 5 . . . 10 τ

are used. This depends on the problem, though.

Autocorrelation time τ can be very large – if the thermalization time <∼τ and measure-
ment time ∼ τ , the results are very much suspect! This can happen in practice in
Monte Carlo calculations, because of critical slowing down.

In the binning method of error analysis (previous subsection), the data from the initial
bin(s) should be discareded.
Hot and cold starts are also often used to estimate the needed thermalization:

0 100 200 300 400 500

t

0

500

1000

1500

2000

2500

3000

E

random start

ordered start

64
2
 Ising model

This is often actually used to investigate metastable states – for example, in 1st order
phase transitions.

4.19 Critical slowing down

• How does the statistical error (and hence, the cost in cpu-time) behave in Monte
Carlo simulations?

• We have already established (N = number of sweeps)

δ ∼ 1

(# indep. configs)1/2
∼
√

τint/N.

55

• More precisely, when we consider also the system size, the error behaves as

δ ∼ (τint/N)1/2(ξ/L)d/2

where d is the dimensionality of the system, ξ is the correlation length and L the
linear system size (volume = Ld).

• Why (ξ/L)d/2? Now (L/ξ)d = # of independent ξ-sized domains in the volume.
These are, in practice, statistically independent, so that the total # of independent
correlation volumes = N/2τ × (L/ξ)d.

• The autocorrelation time τ ∼ ξz, where z is a dynamical exponent which depends
on the update algorithm.

• How about the cpu-time cost? Naturally, the time for one sweep is ∝ Ld. Thus, if
we require errors of some definite level δ, the time behaves as

time ∼ τintξ
d/δ2

Surprisingly, if ξ is constant (in lattice units), this is independent of L! Because
large volumes help to get rid of finite-size effects, it pays to use as large volumes
as practically possible.

• However, the situation is very different when we are at or near a critical point (or
continuum limit). In this case ξ diverges, and, in principle, the autocorrelation time

τ ∼ ξz ∼ |T − Tc|−zν

diverges also at the critical point! This is known as the critical slowing down.

• However, on a finite volume, the correlation length is cut-off by the system size
ξ ∼ L — or, in other words, when the action has no built-in mass/length scale,
the scale is set by the infrared cutoff — the system size.

• Thus, at the critical point,

τ ∼ Lz.

The exponent z is called the dynamical critical exponent. The cost of the simula-
tion now behaves as

cost ∼ Ld+z.

56

instead of being ∼ constant!4 Here Ld just reflects the fact that the correlation
volume ∼ total volume, due to the physics. This we cannot get rid of. However,
different update algorithms have different values of z.

• Because interesting physics happens at the phase transition points, and because
obtaining meaningful results at a critical point requires finite-size scaling (FSS)
scaling analysis, it is important to use algorithms with as small z as possible.

• Common stochastic algorithms — heat bath, Metropolis — have z ≈ 2: the
nearest-neighbour update is a stochastic process, so that the signal propagates
over a distance ξ in time ∝ ξ2 (diffusion, random walk).

More precisely, it has been argued that for stochastic algorithms z ≥ γ/ν.

• Some non-stochasticupdate algorithms may have z = 1, or the signal propagates
over a distance ξ in time ∝ ξ. Physically, this means that the update algorithms
support some kind of wave motion instead of diffusion.

Examples: Overrelaxation in many cases has z ≈ 1; also evolving the lattice
fields using equations of motion. However, if the process involves randomness,
z ≈ 2 at the limit L → ∞.

Thus, for many practical purposes, a good update is a mixture of overrelaxation
and Metropolis/heat bath.

• z ≪ 1, and even z = 0 can be achieved in some cases using non-local update
algorithms (cluster, multigrid . . .).

Cluster algorithms are the most succesful non-local update methods.

4In reality, the cost depends quite a lot on the observable: some observables have non-trivial
volume dependence at a critical point.

57

