Note added to sect. 4.15

This is to be added at the end of 4.15 (autocorrelations)

- Rule of thumb: lag of $2 \times \tau_{int}$ gives new independent configuration. (When there were no autocorrelations, C(t) = 0 and $\tau_{int} = 1/2$.)
- How to calculate τ_{int} in practice? The definitions for C(t) and τ_{int} above are valid in the limit $N \to \infty$, i.e. infinite statistics. However, in practice finite N modifies the procedure. In practice:
 - We assume that all measurements are written to a file, allowing free post-processing.
 - The optimised autocorrelation function C(t) for lag t now becomes

$$C(t) = \frac{\frac{1}{N-t} \sum_{i=1}^{N-t} X_i X_{i+t} - \langle X \rangle_1 \langle X \rangle_2}{\langle X^2 \rangle - \langle X \rangle^2},$$

where

$$\langle X \rangle_1 = \frac{1}{N-t} \sum_{i=1}^{N-t} X_i$$
 and $\langle X \rangle_2 = \frac{1}{N-t} \sum_{i=1}^{N-t} X_{i+t}$

In the denominator the expectation values can be the usual ones without significant effect.

- Because of finite statistics, C(t) becomes noisy when t is large, $t \gg \tau_{\text{int}}$. This causes the summation in τ_{int} actually not converge. Thus, the summation over the lag t should be cut self-consistently to a value which is larger than τ_{int} but not by a large factor; for example, to $6 \times \tau_{\text{int}}$. Remember that the real signal comes from the integral of function $\sim \exp[-t/\tau]$; thus, by cutting at 6τ the error in τ_{int} will be less than 0.5%.

Now the optimised integrated autocorrelation time can be shown to be

$$\tau_{\rm int} = \frac{1}{2} + \sum_{t=1}^{6\tau_{\rm int}} C(t) \, \frac{N-t}{N}.$$

Here the correction factor (N-t)/N corrects the statistical significance of the data. Clearly, as $N \gg \tau_{\text{int}}$, the result goes into the one on page 52.

- Course home page includes a general purpose program errors.c which calculates averages and errors (from data in files) using the autocorrelations as described above.