Note added to sect. 2.6

Why does this work? Even though

$$
\left\langle f^{2}\right\rangle_{N}=\frac{1}{N} \sum_{i} f_{i}^{2}
$$

does not have a well-defined limit as $N \rightarrow \infty$, the error estimate

$$
\sigma_{N}=\sqrt{\frac{\left\langle f^{2}\right\rangle_{N}-\langle f\rangle_{N}^{2}}{N-1}}
$$

does, becaues of the extra factor of $(N-1)$ in the denominator! Thus, usually one can use the formula above as long as $f(x)$ is integrable. However, the convergence of the error is slower than $1 / \sqrt{N}$, depending on the function!
What about integrals with non-integrable subdivergences? Example:

$$
\int_{-1}^{1} d x \frac{1}{x}=0
$$

(in principal value sense). Usually Monte Carlo methods are not able to handle these (test the above!). The integral requires special treatment of the subdivergences (not discussed here).

