Return the solutions (with program printouts) at the latest at the beginning of the 27.9. excercise session. You can also e-mail the solutions to Ahti Leppänen, <ahtilepp AT mail.student.oulu.fi>.

1. Show that the probability of the needle intersecting one of the lines in Buffon's experiment (see notes) is

$$
P=\frac{2 \ell}{\pi d} .
$$

2. Programming task: Let us compare the performance of the Monte Carlo integration to the regular midpoint method. Consider the integral

$$
I=\int_{0}^{1} d x \frac{3}{2}\left(1-x^{2}\right)=1
$$

Calculate the integral using
a) The midpoint method, i.e. divide the integration range into N equal intervals and evaluate the function at the midpoints of the intervals. Give the answers (at least) for $N=10,100,1000,10000$.
b) Standard Monte Carlo integration, evaluating the function using the same number of random points as in a). (You can use here, for example, the drand48() generator in C-language standard library (see page 26 of the notes for an example of using it) or the "Mersenne twister" generator given in the course web-page.)

Compare the convergence of the methods towards the correct answer.
(Extra (not graded): if this was very easy, consider the integral in d-dimensional unit hypercube, with $f(\vec{x})=\prod_{i=1}^{d} \frac{3}{2}\left(1-x_{i}^{2}\right)$, with $d \sim 10$. In this case the midpoint method is evaluated at the center of a d-dim. hypercubes.)
3. Estimate the volume of a d-dimensional sphere, with (at least) $d=2$ and 3 , using the hit-and-miss method. Use $N=10000$ random vectors.

