Inverse problems for wave equation

Matti Lassas

HELSINKI UNIVERSITY OF TECHNOLOGY
Institute of Mathematics

Finnish Centre of Excellence
in Inverse Problems Research

Motivation

Let $\Omega \subset \mathbb{R}^{m}$,
$u(x, t)$ satisfy a wave equation in $\Omega \times \mathbb{R}$

Inverse problem:

Can we determine the coefficients of the wave equation, i.e., physical model in Ω by observing

$$
u(x, t) \text { near } \partial \Omega \times \mathbb{R}
$$

for all possible solutions $u(x, t)$?

The inverse problem has no unique solution as

- We can change definition of x-coordinate: Let

$$
v(x, t)=u(\phi(x), t)
$$

where

$$
\phi: \Omega \rightarrow \Omega,\left.\quad \phi\right|_{\partial \Omega}=i d
$$

- We can change scale of u-coordinate: Let

$$
w(x, t)=\kappa(x) u(x, t)
$$

where $\kappa(x)>0$.
All functions u, v and w model the same physical process.

Let us consider Ω as Riemannian manifold

$$
d_{g}(x, y)=\text { travel time between } x \text { and } y .
$$

Let us identify all isometric Riemannian manifolds, that is, we ask following question
Do the boundary measurements determine uniquely the isometry type of the Riemannian manifold?

Let u satisfy the wave equation

$$
u_{t t}+a(x, D) u=0
$$

Then the gauge transformation of u,

$$
w(x, t)=\kappa(x) u(x, t)
$$

satisfy

$$
w_{t t}+a_{\kappa}(x, D) w=0
$$

where

$$
a_{\kappa}(x, D) w=\kappa a(x, D)\left(\kappa^{-1} w\right)
$$

We say that the gauge equivalence class of $a(x, D)$ is

$$
[a(x, D)]=\left\{a_{\kappa}(x, D): \quad \kappa>0\right\}
$$

Can the equivalence class be uniquely determined?

1 Setting of the problem I

Let us consider the wave equation

$$
\begin{aligned}
u_{t t}(x, t)+A u(x, t) & =0, \quad \text { in } \quad M \times \mathbb{R}_{+}, \\
\left.u\right|_{t=0} & =0,\left.\quad u_{t}\right|_{t=0}=0, \\
\left.u\right|_{\partial M \times \mathbb{R}^{+}} & =f
\end{aligned}
$$

where M is a m-dimensional manifold and

$$
A u=-\sum_{j, k=1}^{m} a^{j k} \frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}+\sum_{j=1}^{m} b^{j} \frac{\partial u}{\partial x^{j}}+c u,
$$

where $a^{j k}, b^{j}, c$ are real, smooth, $\left[a^{j k}(x)\right]>0$. In addition ...

Assume that there is $d V$ such that A is selfadjoint in $L^{2}(M, d V)$ with

$$
\mathcal{D}(A)=H^{2}(M) \cap H_{0}^{1}(M) .
$$

Now

$$
g^{j k}=a^{j k} \text { defines a metric tensor on } M .
$$

This makes (M, g) a Riemannian manifold.

1.1 Invariant inverse problem

The Robin-to-Dirichlet map is

$$
\Lambda:\left.\left.\left(\partial_{\nu} u+\sigma u\right)\right|_{\partial M \times \mathbb{R}_{+}} \mapsto u\right|_{\partial M \times \mathbb{R}_{+}} .
$$

Dynamical inverse problem:

Let ∂M and the map Λ be given. Can we determine

$$
(M, g) \text { and }[A(x, D)] \text { ? }
$$

Energy flux through boundary The energy of the wave at time t is

$$
\begin{aligned}
E(u, t)= & \int_{M}\left(\left|\partial_{t} u(t)\right|^{2}+|\operatorname{Grad} u(t)|_{g}^{2}+q|u(t)|^{2}\right) d V+ \\
& +\int_{\partial M} \sigma|u(t)|^{2} d S
\end{aligned}
$$

For $h=\left.u\right|_{\partial M \times \mathbb{R}_{+}} \in C_{0}^{\infty}\left(\partial M \times \mathbb{R}_{+}\right)$let

$$
\Pi(h)=\lim _{t \rightarrow \infty} E(u, t) .
$$

Inverse problem for energy flux:
Let ∂M and map Π be given. Can we determine

$$
(M, g) \text { and }[A(x, D)] ?
$$

Inverse boundary spectral problem:

Operator A has in $L^{2}(M, d V)$ orthonormal eigenfunctions φ_{j},

$$
\begin{gathered}
\left(-\Delta_{g}+P+q-\lambda_{j}\right) \varphi_{j}=0, \\
\left.\partial_{\nu} \varphi_{j}\right|_{\partial M}=0 .
\end{gathered}
$$

Let boundary spectral data

$$
\left\{\partial M, \quad \lambda_{j},\left.\quad \varphi_{j}\right|_{\partial M}, \quad j=1,2, \ldots\right\}
$$

be given. Can we determine

$$
(M, g) \text { and }[A(x, D)] ?
$$

- The above inverse problems are equivalent.
- Consider gauge equivalence class $[A(x, D)]$ of operator $A(x, D)$. Then there is a unique Schrödinger operator

$$
-\Delta_{g}+q \in[A(x, D)] .
$$

Because of this we next restrict ourselves to the case $A=-\Delta_{g}+q$.

2 Setting of the problem II

Denote by

$$
u^{f}=u^{f}(x, t)
$$

the solutions of

$$
\begin{aligned}
& u_{t t}-\Delta_{g} u+q u=0 \quad \text { on } M \times \mathbb{R}_{+} \\
& -\left.\partial_{\nu} u\right|_{\partial M \times \mathbb{R}_{+}}=f \\
& \left.u\right|_{t=0}=0,\left.\quad u_{t}\right|_{t=0}=0
\end{aligned}
$$

where ν is unit interior normal of ∂M. Define

$$
\Lambda_{T} f=\left.u^{f}\right|_{\partial M \times(0, T)}
$$

We denote $\Lambda=\Lambda_{\infty}$. Assume that we are given the boundary data $(\partial M, \Lambda)$.

Results on the problem:

- Nachman-Sylvester-Uhlmann '88.
- $c(x)^{2} \Delta$ in \mathbb{R}^{m} by boundary control method, Belishev '87, Belishev-Kurylev '87.
- Δ_{g} on manifold, Belishev-Kurylev '92.
- Local controllability, Tataru '95.
- Equivalence of above inverse problems Katchalov-Kurylev-L.-Mandache 2004
- Maxwell's equations Kurylev-L.-Somersalo 2006.
- Dirac system Kurylev-L.-Somersalo 2006.
- Reconstruction based on iterated time reversal Bingham-Kurylev-L.-Siltanen 2007.
In the following we consider the geometric version of the Belishev-Kurylev-Tataru method, or Boundary Control method, see references [1-7].

2.1 Blagovestchenskii identity

Lemma 2.2 Let $f, h \in L^{2}(\partial M \times[0,2 T])$. Then

$$
\int_{M} u^{f}(x, T) u^{h}(x, T) d V_{\mu}(x)=
$$

$\int_{[0,2 T]^{2}} \int_{\partial M} J(t, s)\left[f(t)\left(\Lambda_{2 T} h\right)(s)-\left(\Lambda_{2 T} f\right)(t) h(s)\right] d S_{g}(x) d t d s$,
where $J(t, s)=\frac{1}{2} \chi_{L}(s, t)$ and χ_{L} being the characteristic function of the triangle

$$
L=\left\{(s, t) \in \mathbb{R}_{+} \times \mathbb{R}_{+}: t+s \leq 2 T, \quad s<t\right\} .
$$

Proof. Let $w(t, s)=\int_{M} u^{f}(t) u^{h}(s) d V_{\mu}$. Integrating by parts, we see that

$$
\begin{aligned}
\left(\partial_{t}^{2}-\partial_{s}^{2}\right) w(t, s) & =-\int_{M}\left[A u^{f}(t) u^{h}(s)-u^{f}(t) A u^{h}(s)\right] d V_{\mu}(x) \\
& =-\int_{\partial M}\left[\partial_{\nu} u^{f}(t) u^{h}(s)-u^{f}(t) \partial_{\nu} u^{h}(s)\right] d S_{g} \\
& =\int_{\partial M}[f(t) \Lambda h(s)-\Lambda f(t) h(s)] d S_{g} .
\end{aligned}
$$

Moreover,

$$
\left.w\right|_{t=0}=\left.w\right|_{s=0}=0,\left.\quad \partial_{t} w\right|_{t=0}=\left.\partial_{s} w\right|_{s=0}=0
$$

Thus we can find $w(s, t)$ by solving a wave equation with known initial data and right side.

2.3 Domains of influence

Let $\Gamma \subset \partial M$ be a non-empty open set. We denote by $L^{2}(\Gamma \times[0, T])$ the subspace of $L^{2}(\partial M \times[0, T])$ that consists of the functions f with supp $(f) \subset \bar{\Gamma} \times[0, T]$.
Definition 2.4 The subset $M(\Gamma, \tau) \subset M, \tau>0$,

$$
M(\Gamma, \tau)=\{x \in M: d(x, \Gamma) \leq \tau\}
$$

is called the domain of influence of Γ at time τ.

Lemma 2.5 Let $f \in L^{2}(\Gamma \times[0, T])$. Then

$$
\operatorname{supp}\left(u^{f}(\tau)\right) \subset M(\Gamma, \tau) .
$$

Proof. The result follows finite velocity of wave propagation.

We denote by $L^{2}(\Omega), \Omega \subset M$, the subspace of $L^{2}(M)$, which consists of all functions $f \in L^{2}(M)$ that are equal to zero in $M \backslash \Omega$. We prove following Tataru-type controllability type theorem.

Theorem 1 Let $\tau>0$. The linear subspace,

$$
\left\{u^{f}(\tau) \in L^{2}(M(\Gamma, \tau)): f \in C_{0}^{\infty}(\Gamma \times[0, \tau])\right\},
$$

is dense in $L^{2}(M(\Gamma, \tau))$.

Proof. Let $\psi \in L^{2}(M(\Gamma, \tau))$ be such that

$$
\left\langle u^{f}(\cdot, \tau), \psi\right\rangle=0
$$

for all $f \in C_{0}^{\infty}(\Gamma \times[0, \tau])$.
To prove the claim, it is sufficient to show that $\psi=0$.

We consider the wave equation,

$$
\begin{aligned}
& \left(\partial_{t}^{2}-\Delta_{g}+q\right) e=0, \quad \text { in } \quad M \times(0, \tau), \\
& \left.\partial_{\nu} e\right|_{\partial M \times(0, \tau)}=0,\left.\quad e\right|_{t=\tau}=0,\left.\quad \partial_{t} e\right|_{t=\tau}=\psi .
\end{aligned}
$$

Integrating by parts we obtain

$$
\begin{aligned}
0 & =\int_{M \times(0, \tau)}\left[u^{f}\left(\partial_{t}^{2}-\Delta_{g}+q\right) e-\left(\left(\partial_{t}^{2}-\Delta_{g}+q\right) u^{f}\right) e\right] d V_{g} d t \\
& =\int_{M} u^{f}(\tau) \psi d V_{g}+\int_{\partial M \times(0, \tau)} f e d S_{g} d t \\
& =\int_{\partial M \times(0, \tau)} f e d S_{g} d t,
\end{aligned}
$$

for all $f \in C_{0}^{\infty}(\Gamma \times[0, \tau])$.
This yields that the Cauchy data of e vanish on $\Gamma \times(0, \tau)$.

Recall that $e(x, \tau)=0$. We continue e onto $t \in[\tau, 2 \tau]$ as

$$
E(x, t)= \begin{cases}e(x, t), & \text { for } t \leq \tau \\ -e(x, 2 \tau-t), & \text { for } t>\tau\end{cases}
$$

Then $E \in C\left([0,2 \tau] ; H^{1}(M)\right) \cap C^{1}\left([0,2 \tau] ; L^{2}(M)\right)$ and

$$
\left(\partial_{t}^{2}-\Delta_{g}+q\right) E=0 \quad \text { in } M \times(0, \tau) .
$$

The Cauchy data of E vanish on $\Gamma \times([0,2 \tau] \backslash\{\tau\})$. Since $\partial_{\nu} E \in L^{2}(\partial M \times(0,2 \tau))$, we see that

$$
\left.E\right|_{\Gamma \times(0,2 \tau)}=0,\left.\quad \partial_{\nu} E\right|_{\Gamma \times(0,2 \tau)}=0 .
$$

Then $\psi=0$ by the following Tataru-Holmgren-John theorem.

Theorem 2 Let u be a solution in $M \times(0,2 \tau)$ of the wave equation

$$
\left(\partial_{t}^{2}-\Delta_{g}+q\right) u=0 \quad \text { in } M \times(0,2 \tau) .
$$

such that for an open set $\Gamma \subset \partial M$,

$$
\left.u\right|_{\Gamma \times[0,2 \tau]}=0,\left.\partial_{\nu} u\right|_{\Gamma \times(0,2 \tau)}=0 .
$$

Then, at $t=\tau$, the function u and its derivative $\partial_{t} u$ vanish in the domain of influence of Γ,

$$
u(x, \tau)=0, \partial_{t} u(x, \tau)=0 \quad \text { for } x \in M(\Gamma, \tau)
$$

2.6 Wave basis

The set

$$
\left\{u^{f}(\tau) \in L^{2}(M(\Gamma, \tau)): f \in L^{2}(\Gamma \times[0, \tau])\right\}
$$

is dense in $L^{2}(M(\Gamma, \tau))$. Thus, there are functions f_{j}, $j=1,2, \ldots$, such that $\left\{u^{f_{j}}(\tau)\right\}_{j=1}^{\infty}$ form an orthonormal basis in the space $L^{2}(M(\Gamma, \tau))$.
We will construct such functions f_{j} from the boundary data.
The corresponding basis $\left\{u^{f_{j}}(\tau)\right\}_{j=1}^{\infty}$ is called the wave basis.

Lemma 2.7 Let $\tau>0$. Given the boundary data it is possible to construct boundary sources $f_{j} \in L^{2}(\Gamma \times[0, \tau])$ such that

$$
v_{j}=u^{f_{j}}(\tau), j=1,2, \ldots,
$$

form an orthonormal basis of $L^{2}(M(\Gamma, \tau))$.

Proof. Let $\left\{h_{j}\right\}_{j=1}^{\infty} \subset C_{0}^{\infty}(\Gamma \times(0, \tau))$ be a complete set in $L^{2}(\Gamma \times[0, \tau])$.
We can compute that inner products

$$
c_{j k}=\left\langle u^{h_{j}}(\tau), u^{h_{k}}(\tau)\right\rangle
$$

Next we use the Gram-Schmidt orthogonalization procedure to construct f_{j}. More precisely, we define $f_{j} \in L^{2}(\Gamma \times[0, \tau])$ recursively by

$$
\begin{gathered}
g_{j}=h_{j}-\sum_{k=1}^{j-1}\left\langle u^{h_{j}}(\tau), u^{f_{k}}(\tau)\right\rangle f_{k}, \\
f_{j}=\frac{g_{j}}{\left\langle u^{g_{j}}(\tau), u^{g_{j}}(\tau)\right\rangle^{1 / 2}} .
\end{gathered}
$$

When $g_{j}=0$, we remove the corresponding h_{j} from the original sequence and continue the procedure.

Since $\left\{h_{j}\right\} \subset C_{0}^{\infty}(\Gamma \times[0, \tau])$, we have $f_{j} \in C_{0}^{\infty}(\Gamma \times[0, \tau])$. Thus $u^{f_{j}}(\tau) \in C^{\infty}(M)$.
Let $T>\operatorname{diam}(M)$. Then $M(\partial M, T)=M$, and the corresponding wave basis

$$
\left\{u^{\eta_{j}}(T)\right\}_{j=1}^{\infty}
$$

is the orthonormal basis in $L^{2}(M)$. Next we reserve the notation $\eta_{j} \in C^{\infty}(\partial M \times(0, T))$ for such boundary values.

2.8 Projectors

Denote by $P_{\Gamma, \tau}$ the orthogonal projector in $L^{2}(M)$ onto the space $L^{2}(M(\Gamma, \tau))$,

$$
\begin{aligned}
P_{\Gamma, \tau}: L^{2}(M) & \rightarrow L^{2}(M(\Gamma, \tau)), \\
\quad\left(P_{\Gamma, \tau} a\right)(x) & =\chi_{M(\Gamma, \tau)}(x) a(x),
\end{aligned}
$$

where $\chi_{M(\Gamma, \tau)}$ is the characteristic function of the domain of influence $M(\Gamma, \tau)$,

$$
\chi_{M(\Gamma, \tau)}(x)= \begin{cases}1, & \text { for } x \in M(\Gamma, \tau) \\ 0, & \text { for } x \notin M(\Gamma, \tau)\end{cases}
$$

Lemma 2.9 Let $f, h \in L^{2}(\partial M \times[0, T])$ and $\Gamma \subset \partial M$ be an open set. Then, given the the map Λ, it is possible to find the inner product

$$
\left\langle P_{\Gamma, \tau} u^{f}(t), u^{h}(s)\right\rangle=\int_{M(\Gamma, \tau)} u^{f}(x, t) u^{h}(x, s) d V_{g}
$$

for any $0 \leq t, s, \tau \leq T$.

Proof. We can find $f_{j} \in C_{0}^{\infty}(\Gamma \times[0, \tau])$ such that $v_{j}=u^{f_{j}}(\tau)$ is an orthonormal basis in $L^{2}(M(\Gamma, \tau))$,
Then, for any $a \in L^{2}(M(\Gamma, \tau))$,

$$
a=\sum_{j=1}^{\infty}\left\langle a, v_{j}\right\rangle v_{j}
$$

As $\left\langle P_{\Gamma, \tau} u^{f}(t), v_{j}\right\rangle=\left\langle u^{f}(t), v_{j}\right\rangle$, we have

$$
\left\langle P_{\Gamma, \tau} u^{f}(t), u^{h}(s)\right\rangle=\sum_{j=1}^{\infty}\left\langle u^{f}(t), v_{j}\right\rangle\left\langle u^{h}(s), v_{j}\right\rangle .
$$

Here $\left\langle u^{f}(t), v_{j}\right\rangle$ and $\left\langle u^{h}(s), v_{j}\right\rangle$ can be computed using boundary data.

Denote by $M(y, \tau)$ the domain of influence of a point $y \in \partial M$,

$$
M(y, \tau)=\{x \in M: d(x, y) \leq \tau\},
$$

and by $P_{y, \tau}$ the orthoprojector

$$
P_{y, \tau}: L^{2}(M) \rightarrow L^{2}(M(y, \tau)) .
$$

Corollary 2.10 Let $f, h \in L^{2}(\partial M \times[0, T])$ and $y \in \partial M$ be given. Then the boundary data determine the inner product

$$
\left\langle P_{y, \tau} u^{f}(t), u^{h}(s)\right\rangle=\int_{M(y, \tau)} u^{f}(x, t) u^{h}(x, s) d V_{g}
$$

for any $0 \leq t, s, \tau \leq T$.

Proof. Let $\Gamma_{l}, l=1,2, \ldots$ be open sets such that

$$
\Gamma_{l+1} \subset \Gamma_{l}, \quad \bigcap_{l=1}^{\infty} \Gamma_{l}=\{y\} .
$$

Then,

$$
\lim _{l \rightarrow \infty} \chi_{M\left(\Gamma_{l}, \tau\right)}(x)=\chi_{M(y, \tau)}(x)
$$

pointwise. By the Lebesgue dominated convergence theorem,

$$
\lim _{l \rightarrow \infty}\left\langle P_{\Gamma_{l, \tau}} u^{f}(t), u^{h}(s)\right\rangle=\left\langle P_{y, \tau} u^{f}(t), u^{h}(s)\right\rangle .
$$

Corollary 2.11 Let $f \in L^{2}(\partial M \times[0, T])$ and $y \in \partial M$. Then the boundary data determine uniquely the inner product

$$
\left\langle P_{y, \tau} u^{\eta_{k}}(T), u^{\eta_{l}}(T)\right\rangle=\sum_{j=1}^{\infty}\left\langle u^{\eta_{k}}(T), u^{f_{j}}(\tau)\right\rangle\left\langle u^{\eta_{l}}(T), u^{f_{j}}(t)\right\rangle,
$$

where $\left\{u^{f_{j}}(\tau)\right\}_{j=1}^{\infty}$ form an orthonormal basis in $L^{2}(M(y, \tau))$.

Corollary 2.12 Let $f \in L^{2}(\partial M \times[0, T])$ and $y_{j} \in \partial M, \tau_{j}>0$. Then the boundary data determine the inner product

$$
\left\langle Q_{N} u^{f}(s), u^{\eta_{l}}(T)\right\rangle
$$

where

$$
Q_{N}=\prod_{j=1}^{N} P_{y_{j}, \tau_{j}}
$$

and $\left\{u^{f_{j}}(\tau)\right\}_{j=1}^{\infty}$ form an orthonormal basis in $L^{2}(M(y, \tau))$.

Proof. For $N=1$ the claim follows from Corollary 2.11. Assume now that it is valid for $N-1$.
We can write

$$
Q_{N-1} u^{f}(s)=\sum_{k=1}^{\infty}\left\langle Q_{N-1} u^{f}(s), u^{\eta_{k}}(T)\right\rangle u^{\eta_{k}}(T)
$$

and

$$
\begin{aligned}
& \left\langle Q_{N} u^{f}(T), u^{\eta_{l}}(T)\right\rangle=\left\langle P_{y_{N}, \tau_{N}} Q_{N-1} u^{f}(T), u^{\eta_{l}}(T)\right\rangle \\
= & \sum_{k=1}^{\infty}\left\langle P_{y_{N}, \tau_{N}} u^{\eta_{k}}(T), u^{\eta_{l}}(T)\right\rangle\left\langle Q_{N-1} u^{f}(s), u^{\eta_{k}}(T)\right\rangle .
\end{aligned}
$$

From this the claim follows by induction.

Observations:

- We can compute the Gram matrix $\left[q_{j k}\right]_{j, k=1}^{\infty}$,

$$
q_{j k}=\left\langle Q u^{\eta_{j}}(T), u^{\eta_{k}}(T)\right\rangle
$$

where $\left\{u^{\eta_{j}}(T)\right\}_{j=1}^{\infty}$ is an orthonormal basis in $L^{2}(M)$ and

$$
Q=\left(\prod_{j=1}^{N} P_{y_{j}, \tau_{j}^{+}}\right)\left(\prod_{j=1}^{N}\left(1-P_{y_{j}, \tau_{j}^{-}}\right)\right.
$$

- The projector $Q: L^{2}(M) \rightarrow L^{2}(M)$ is

$$
Q v(x)=\chi_{I}(x) v(x), \quad I=\bigcap_{j=1}^{N}\left(M\left(y_{j}, \tau_{j}^{+}\right) \backslash M\left(y_{j}, \tau_{j}^{-}\right)\right) .
$$

- The projector $Q: L^{2}(M) \rightarrow L^{2}(M)$ is

$$
Q v(x)=\chi_{I}(x) v(x), \quad I=\bigcap_{j=1}^{N}\left(M\left(y_{j}, \tau_{j}^{+}\right) \backslash M\left(y_{j}, \tau_{j}^{-}\right)\right)
$$

- The projector $Q: L^{2}(M) \rightarrow L^{2}(M)$ vanishes, that is, its Gram matrix is zero if and only if

$$
m(I)=0, \quad I=\bigcap_{j=1}^{N}\left(M\left(y_{j}, \tau_{j}^{+}\right) \backslash M\left(y_{j}, \tau_{j}^{-}\right)\right) .
$$

Thus we can check using boundary data if $m(I)=0$.

Boundary distance functions. For $x \in M$ define

$$
r_{x}(y)=d(x, y), y \in \partial M .
$$

Let

$$
R: M \rightarrow C(\partial M), \quad R(x)=r_{x} .
$$

Next we consider $R(M)$ as a submanifold on $C(\partial M)$. Theorem 3 Using boundary data we can determine

$$
R(M)=\left\{r_{x} \in C(\partial M): \quad x \in M\right\} .
$$

Thus the constructed set $R(M)$ can be identified with M.

By previous observations, it is enough to prove the following result:
Lemma 2.13 Let $\left\{z_{n}\right\}_{n=1}^{\infty}$ be a dense set on ∂M. Then $r(\cdot) \in C(\partial M)$ lies in $R(M)$ if and only if, for any $N>0$,

$$
I_{N}=\bigcap_{n=1}^{N} M\left(z_{n}, r\left(z_{n}\right)+\frac{1}{N}\right) \cap \bigcap_{n=1}^{N}\left(M\left(z_{n}, r\left(z_{n}\right)-\frac{1}{N}\right)\right)^{c} .
$$

satisfies

$$
\begin{equation*}
m\left(I_{N}\right) \neq 0 \tag{1}
\end{equation*}
$$

Moreover, condition (1) can be verified using the boundary data.

Proof "ff"-part. Assume that $r(\cdot)=r_{x}(\cdot)$ with some $x \in M$. Consider a ball $B_{1 / N}(x)$. Then,

$$
B_{1 / N}(x) \subset M\left(z, r(z)+\frac{1}{N}\right) \backslash M\left(z, r(z)-\frac{1}{N}\right) .
$$

Thus if $B_{1 / N}(x) \subset I_{N}$ and $m\left(I_{N}\right) \neq 0$.
"Only if"-part. Assume that $m\left(I_{N}\right) \neq 0$. Then there exists

$$
x_{N} \in \bigcap_{n=1}^{N}\left(M\left(z_{n}, r\left(z_{n}\right)+\frac{1}{N}\right) \backslash M\left(z_{n}, r\left(z_{n}\right)-\frac{1}{N}\right)\right) .
$$

Since M is compact, we can choose a subsequence of x_{N} (denoted also by x_{N}), so that there exists a limit

$$
x=\lim _{n \rightarrow \infty} x_{N} .
$$

By continuity of the distance function, it follows from (2) that

$$
d\left(x, z_{n}\right)=r\left(z_{n}\right), \quad n=1,2, \ldots
$$

Since $\left\{z_{n}\right\}$ are dense in ∂M, we see that $r(z)=d(x, z)$ for all $z \in \partial M$. Thus $r=r_{x}$.

Visualization how to check if $r(\cdot)$ is in $R(M)$.

Visualization how to check if $r(\cdot)$ is in $R(M)$.

Visualization how to check if $r(\cdot)$ is in $R(M)$.

Visualization how to check if $r(\cdot)$ is in $R(M)$.

Visualization how to check if $r(\cdot)$ is in $R(M)$.

Visualization how to check if $r(\cdot)$ is in $R(M)$.

Visualization how to check if $r(\cdot)$ is in $R(M)$.

Visualization how to check if $r(\cdot)$ is in $R(M)$.

2.14 Reconstruction of (M, g) from $R(M)$.

Theorem 4 The set $R(M)$ has a Riemannian manifold structure which is isometric to (M, g).

Recall that for $x \in M$

$$
r_{x}(z)=d(x, z), z \in \partial M
$$

and that

$$
R: M \rightarrow C(\partial M), \quad R(x)=r_{x} .
$$

Next we consider $R(M)$ as a submanifold on $C(\partial M)$.

By triangular inequality we have

$$
\left\|r_{x}-r_{y}\right\|_{C(\partial M)} \leq d(x, y), \quad x, y \in M .
$$

Example: Consider that case when all geodesics of a compact manifold (M, g) are the shortest curves between their endpoints and all geodesics can be continued to geodesics that hit the boundary. Then for any $x, y \in M$ the geodesic from x to y hits later to $z \in \partial M$. Then

$$
\left\|r_{x}-r_{y}\right\|_{C(\partial M)} \geq\left|r_{x}(z)-r_{y}(z)\right|=d(x, y)
$$

Then (M, d) is isometric to $\left(R(M),\|\cdot\|_{\infty}\right)$.

Lemma 2.15 The set $R(M)$ is homeomorphic to (M, g). Proof.
Recall the following simple result from topology:
Assume that X and Y are Hausdorff spaces, X is compact and $F: X \rightarrow Y$ is a continuous, bijective map from X to Y. Then F is a homeomorphism.

Clearly, $R: M \rightarrow R(M)$ is surjective and continuous. Next we prove that it is one-to-one. Assume that $r_{x}(\cdot)=r_{y}(\cdot)$. Denote by z_{0} any point where

$$
\begin{aligned}
& d(x, \partial M)=\min _{z \in \partial M} r_{x}(z)=r_{x}\left(z_{0}\right) \quad \text { or } \\
& d(y, \partial M)=\min _{z \in \partial M} r_{y}(z)=r_{y}\left(z_{0}\right) .
\end{aligned}
$$

Then z_{0} is a nearest boundary point to x implying that the shortest geodesic from z_{0} to x is normal to ∂M. The same is true for y with the same point z_{0}.
Thus $x=\gamma_{z_{0}}(s)=y$ for $s=d\left(x, z_{0}\right)$.

Boundary normal coordinates.

Consider a normal geodesic $\gamma_{z}(s)$ starting from z. For small s,

$$
\begin{equation*}
d\left(\gamma_{z}(s), \partial M\right)=s \tag{2}
\end{equation*}
$$

and z is the unique nearest point to $\gamma_{z}(s)$ on ∂M. Let $\tau(z)$ be the largest value for which (2) is valid. Then for $s>\tau(z)$,

$$
d\left(\gamma_{z}(s), \partial M\right)<s
$$

and z is no more the nearest boundary point.
$\tau(z) \in C(\partial M)$ is the cut locus distance function.
The cut locus is

$$
\omega=\left\{x_{z}: z \in \partial M, x_{z}=\gamma_{z}(\tau(z))\right\} .
$$

In domain $M \backslash \omega$ we can use the coordinates

$$
x \mapsto(z(x), t(x)),
$$

where $z(x) \in \partial M$ is the unique nearest point to x and $t(x)=d(x, \partial M)$.

We will now use boundary normal coordinates to introduce a differential structure and metric tensor, g_{R}, on $R(M)$ to have an isometry

$$
R:(M, g) \rightarrow\left(R(M), g_{R}\right) .
$$

We will concentrate mainly on doing so for $R(M) \backslash R(\omega)$. (For the general case, see [KKL])

First, observe that we can identify those $r=r_{x} \in R(M)$ with $x \in M \backslash \omega$.
Indeed, $r=r_{x}$ with $x=\gamma_{z}(s), s<\tau(z)$ if and only if
i. $r(\cdot)$ has a unique global minimum at some point $z \in \partial M$.
ii. there is $\widetilde{r} \in R(M)$ having a unique global minimum at the same z and $r(z)<\widetilde{r}(z)$.

A differential structure on $R(M \backslash \omega)$ can be defined by introducing coordinates near each $r^{0} \in R(M \backslash \omega)$.
In a sufficiently small neighbourhood $V \subset R(M)$ of r^{0} the coordinates

$$
r \mapsto(Y(r), T(r))=\left(y(\underset{z \in \partial M}{\operatorname{argmin}} r), \min _{z \in \partial M} r\right)
$$

are well defined. The

$$
x \mapsto\left(Y\left(r_{x}\right), T\left(r_{x}\right)\right)
$$

coincides with the boundary normal coordinates $x \mapsto(y(x), t(x))$ on (M, g).
These coordinate determine the differential structure on $R(M \backslash \omega)$.

Construction of the metric g_{R} on $R(M)$.
Let $r^{0} \in R(M \backslash \omega), V \subset R(M)$ be its neighbourhood, and $Y: V \rightarrow U \subset \mathbb{R}^{m}$ be local coordinates, $Y\left(r^{0}\right)=0$
For $z \in \partial M$ we define an evaluation function

$$
K_{z}: V \rightarrow \mathbb{R}, \quad K_{z}(r)=r(z) .
$$

The function $E_{z}=K_{z} \circ Y^{-1}: U \rightarrow \mathbb{R}$ satisfies

$$
E_{z}(y):=d\left(z, Y^{-1}(y)\right), \quad y \in U .
$$

Consider the function $E_{z}(y)$ as a function of y with a fixed z. The differential $d E_{z}$ at point 0 is a covector in $T_{0}^{*} U$. Since the gradient of a distance function has length one, we see that

$$
\left\|d E_{z}\right\|_{g_{R}}^{2}:=\left(g_{R}\right)^{j k} \frac{\partial E_{z}}{\partial y^{j}} \frac{\partial E_{z}}{\partial y^{k}}=1, \quad j, k=1, \ldots, m .
$$

Varying $z \in \partial M$ we obtain a set of covectors $d E_{z}(0)$ in the unit ball of $\left(T_{0}^{*} U, g_{R}\right)$ which contains an open set.
This determines uniquely the tensor g_{R}.

Hence we have proven
Theorem 5 The boundary data $(\partial M, \Lambda)$ determine the manifold (M, g) upto isometry.
Also the potential $q(x)$ of the operator $-\Delta_{g}+q$ can be uniquely determined.

2.16 New results: Time reversal

On formal level, the the previous algorithm is based on the following task: Let f be given. Can we find h such that

$$
u^{h}(x, T)=\chi_{M(\Gamma, \tau)}(x) u^{f}(x, T) .
$$

This is equivalent of the minimization of

$$
\left\|u^{f}(T)-u^{h}(T)\right\|_{L^{2}(M)}: \quad h \in C_{0}^{\infty}(\Gamma \times[0, \tau]) .
$$

Generally, the minimization problem has no solution and is ill-posed. We consider the regularized minimization problem

$$
\min _{h \in L^{2}(\partial M \times[0,2 T])} F(h, \alpha)
$$

where $\alpha \in(0,1)$ and

$$
F(h, \alpha)=\langle K(P h-f), P h-f\rangle_{L^{2}\left(\partial M \times[0,2 T], d S_{g}\right)}+\alpha\|h\|_{L^{2}}^{2} .
$$

Let us recall the Blagovestchenskii identity

$$
\begin{aligned}
& \int_{M} u^{f}(x, T) u^{h}(x, T) d V_{\mu}(x) \\
= & \int_{[0,2 T]^{2}} \int_{\partial M} J(t, s)\left[f(t)\left(\Lambda_{2 T} h\right)(s)-\left(\Lambda_{2 T} f\right)(t) h(s)\right] d S_{g} d t d s \\
= & \int_{\partial M \times[0,2 T]}(K f)(x, t) h(x, t) d S_{g}(x) d t,
\end{aligned}
$$

where $J(t, s)=\frac{1}{2} \chi_{L}(s, t)$ and

$$
L=\left\{(s, t) \in \mathbb{R}_{+} \times \mathbb{R}_{+}: t+s \leq 2 T, \quad s>t\right\} .
$$

Here

$$
K=R_{2 T} \Lambda_{2 T} R_{2 T} J-J \Lambda_{2 T},
$$

where

$$
R f(x, t)=f(x, 2 T-t),
$$

is the time reversal operator and

$$
J f(x, t)=\frac{1}{2} \int_{0}^{\min (2 T-t, t)} f(x, s) d s,
$$

is the time filter. Note that
$\Lambda_{2 T}^{*}=R_{2 T} \Lambda_{2 T} R_{2 T} \quad$ as $\quad G\left(x, x^{\prime}, t^{\prime}-t\right)=G\left(x^{\prime}, x,-(t)-\left(-t^{\prime}\right)\right)$.
We also use the restriction operator

$$
P_{B} f(x, t)=\chi_{B}(x, t) u(x, t),
$$

The processed time reversal iteration is

$$
\begin{aligned}
F & :=\frac{1}{\omega} P\left(R \Lambda_{2 T} R J-J \Lambda_{2 T}\right) f, \\
a_{n} & :=\Lambda_{2 T}\left(h_{n}\right), \\
b_{n} & :=\Lambda_{2 T}\left(R J h_{n}\right), \\
h_{n+1} & :=\left(1-\frac{\alpha}{\omega}\right) h_{n}-\frac{1}{\omega}\left(P R b_{n}-P J a_{n}\right)+F,
\end{aligned}
$$

where $f \in L^{2}(\partial M \times[0,2 T])$ and $\alpha, \omega>0$ are parameters. Iteration starts at $h_{0}=0$.

Theorem 6 (Bingham-Kurylev-L.-Siltanen 2007) Let $\Gamma_{1} \subset \partial M, 0 \leq T_{1} \leq T$, and $B=\Gamma_{1} \times\left[T-T_{1}, T\right]$. Let $f \in L^{2}\left(\partial M \times \mathbb{R}_{+}\right)$and $h_{n}=h_{n}(\alpha)$ be defined by the processed time reversal iteration. Then

$$
h(\alpha)=\lim _{n \rightarrow \infty} h_{n}(\alpha)
$$

and the limits satisfy in $L^{2}(M)$

$$
\lim _{\alpha \rightarrow 0} u^{h(\alpha)}(x, T)=\chi_{M\left(\Gamma_{1}, T_{1}\right)}(x) u^{f}(x, T) .
$$

$$
M(\Gamma, \tau)=\{x \in M: d(x, \Gamma) \leq \tau\} .
$$

Proof. The minimization problem

$$
\min _{h \in L^{2}(\partial M \times[0,2 T])} F(h, \alpha)
$$

with $\alpha \in(0,1)$ and

$$
\begin{aligned}
F(h, \alpha)= & \langle K(P h-f), P h-f\rangle_{L^{2}\left(\partial M \times[0,2 T], d S_{g}\right)} \\
& +\alpha\|h\|_{L^{2}}^{2}
\end{aligned}
$$

leads to a linear equation

$$
(P K P+\alpha) h=P K f
$$

This can be solved using iteration.

Corollary 2.17 Assume we are given the boundary ∂M and the response operator Λ. Then using the the processed time reversal iteration we can find constructively the manifold (M, g) upto an isometry and on it the operator A uniquely.

Let $x=\gamma_{z, \nu}(s)$.
The distance dist (x, z) is the infimum of all τ that satisfy the condition
(A) The set

$$
(M(z, s) \cap M(y, \tau)) \backslash M(\partial M, s-\epsilon)
$$

is non-empty for all $\epsilon>0$.

References:

1. M. Belishev: An approach to multidimensional inverse problems for the wave equation. (Russian) Dokl. Akad. Nauk SSSR 297 (1987), no. 3, 524-527.
2. M. Belishev, Y. Kurylev: A nonstationary inverse problem for the multidimensional wave equation 'in the large." (Russian) Zap. Nauchn. Sem. LOMI 165 (1987), 21-30.
3. K. Bingham, Y. Kurylev, M. Lassas, S. Siltanen: Time reversal methods in unknown medium and inverse problems, preprint, 2007.
4. A. Katchalov, Y. Kurylev, M. Lassas: Inverse Boundary Spectral Problems, Monographs and Surveys in Pure and Applied Mathematics 123, Chapman Hall/CRC-press, 2001, xi+290 pp.
5. A. Katchalov, Y. Kurylev, M. Lassas, N. Mandache: Equivalence of time-domain inverse problems and boundary spectral problem, Inverse problems. 20 (2004), 419-436
6. A. Katchalov, Y. Kurylev, M. Lassas Energy measurements and equivalence of boundary data for inverse problems on non-compact manifolds. IMA volumes in Mathematics and Applications (Springer Verlag) 'Geometric Methods in Inverse Problems and PDE Control" Ed. C. Croke, I. Lasiecka, G. Uhlmann, M. Vogelius, 2004, pp. 183-214.
7. Y. Kurylev, M. Lassas: Multidimensional Gel'fand Inverse Boundary Spectral Problem: Uniqueness and Stability, CUBO Mathematical Journal 8 (2006), no. 1, 41-59
8. Y. Kurylev, M. Lassas, E. Somersalo: Maxwell's equations with a polarization independent wave velocity: Direct and inverse problems, Journal de Mathmatique Pures et Appliques 86 (2006), no. 3, 237-270.
9. Y. Kurylev, M. Lassas: Inverse Problems and Index Formulae for Dirac Operators, preprint 2006.
10. J. Sylvester, G. Uhlmann: A global uniqueness theorem for an inverse boundary value problem. Ann. of Math. (2) 125 (1987), no. 1, 153-169.
