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Inverse problem for an anisotropic wave operator

Let M ⊂ Rn, n ≥ 2 and ν be the unit normal of the boundary ∂M.
Let g(x) be a matrix valued function and u(x , t) = uf (x , t) solve

(∂2
t −∇ · g(x)∇)u(x , t) = 0 on (x , t) ∈ M × R+,

ν · g∇u(x , t)|∂M×R+ = f (x , t),

u|t=0 = 0, ∂tu|t=0 = 0.

(Image credit Xiaolei Qu)

The Neumann-to-Dirichlet map is defined by

Λ : f → uf (x , t)|(x ,t)∈∂M×R+
.

Inverse problem:
Assume that Λ is given.
Can we determine g on local coordinate charts?

To study this problem, we consider (M, g) as a manifold.



Let (M, g) be a Riemannian manifold, dim(M) = n ≥ 2, g = (gjk(x))nj ,k=1
Let u(x , t) = uf (x , t) solve the wave equation

(∂2
t −∆g )u(x , t) = 0 on (x , t) ∈ M × R+,

∂νu(x , t)|∂M×R+ = f (x , t),

u|t=0 = 0, ∂tu|t=0 = 0,

where ν is the unit normal vector of the boundary, (g jk) = (gjk)−1, |g | = det (g), and

∆gu =
n∑

j ,k=1

|g(x)|−1/2 ∂

∂x j
(|g(x)|1/2g jk(x)

∂

∂xk
u(x)) =

n∑
j ,k=1

g jk ∂2u

∂x j∂xk
+ l .o.t.

The Neumann-to-Dirichlet map is Λf = uf (x , t)
∣∣
(x ,t)∈∂M×R+

.

For (∂2
t − c(x)2∆)u = 0 the metric is gjk(x) = c(x)−2δjk

Inverse problem:
Assume that ∂M and Λ are given. Can we determine (M, g) up to an isometry?



Some results on inverse problems for linear hyperbolic equations

I Uniqueness for inverse problem for (∂2
t − c(x)2∆)u = 0 in Ω ⊂ Rn

by combining the Boundary Control method by Belishev ’87, Belishev-Kurylev ’87
and Tataru’s unique continuation result ’95.

I Belishev-Kurylev 1992: Spectral problem for ∆g on manifold.
I Bingham-Kurylev-L.-Siltanen 2008: Solution for the inverse problem for the wave

equation by focusing of waves.
I de Hoop-Kepley-Oksanen 2016: Numerical methods for focusing of waves.

All these results are based on Tataru’s unique continuation result and require that the
metric is time-independent, or real-analytic in the time variable [Alinhac 1983].
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Imaging in non-linear elasticity: Quantitative elastography

Figures: Doyley (Phys. Med. Biol. 2012) and Tzschätzsch (Phys. Med. Biol. 2014)

Inverse problems for non-linear elastic medium: de Hoop-Uhlmann-Wang (2018).



Non-linear wave equation in space-time
Let M = R× N be a Lorentzian manifold with time-depending metric g ,
dim(M) = 1 + n, n ≥ 2. Let m ≥ 2 and

�gu(x) + u(x)m = f (x), (x0, x1, . . . , xn) ∈ (−∞,T ]× N,

u(x) = 0 for t = x0 < 0,

where

�gu =
n∑

j ,k=0

|det (g(x))|− 1
2
∂

∂x j

(
|det (g(x))| 12 g jk(x)

∂

∂xk
u(x)

)
.

An alternative model is

∂2

∂t2
u(t, y)− c(t, y)2∆u(t, y) + a(t, y)u(t, y)m = f (t, y), x = (t, y) ∈ R1+3.

This corresponds to the metric g = (−1, c−2, c−2, c−2), c = c(t, y).



Definitions
Let (M, g) be a Lorentzian manifold,

where the metric g = (gjk)nj ,k=0 is semi-definite.

TxM is the space of tangent vectors at x .

ξ ∈ TxM is light-like if g(ξ, ξ) = 0, ξ 6= 0.

ξ ∈ TxM is time-like if g(ξ, ξ) < 0.

A curve µ(s) is time-like if µ̇(s) is time-like.

L+
x M = {ξ ∈ TxM\0; g(ξ, ξ) = 0, ξ future pointing},

Example: Minkowski space R1+3.

Coordinates (x0, x1, x2, x3) ∈ R1+3, x0 = t

g = diag (−1, 1, 1, 1).



Definitions
γx ,ξ(t) is a geodesic with the initial point (x , ξ),

J+(p) = {x ∈ M; x is in causal future of p},
J−(p) = {x ∈ M; x is in causal past of p},

(M, g) is globally hyperbolic if

there are no closed causal curves and the set

J+(p1) ∩ J−(p2) is compact for all p1, p2 ∈ M.

Then M can be represented as M = R× N.



Theorem (Kurylev-L.-Uhlmann 2018 and L.-Uhlmann-Wang 2017)
Let (M, g) be a globally hyperbolic Lorentzian manifold, dim(M) = 4,
µ ⊂ M be a time-like curve, p1, p2 ∈ µ and V be a neighbourhood of µ.
Let LV : f 7→ u|V be the source-to-solution map for

�gu + u2 = f in (−∞,T )× N ⊂ M,

u = 0 in t = x0 < 0.

LV is defined for small sources f , supp(f ) ⊂ V . Then V and LV determine
J+(p1) ∩ J−(p2) and the metric g on it (up to change of coordinates).

Theorem (Kurylev-L.-Uhlmann 2015)
Let (M, g) be a globally hyperbolic Lorentzian manifold of
dimension (1 + 3). Let µ be a time-like path containing p− and
p+, V ⊂ M be a neighborhood of µ, and a(x) be a nowhere
vanishing function. Consider the non-linear wave equation

!gu(x) + a(x) u(x)2 = f (x) on M1 = (−∞,T ) × N,

u = 0 in (−∞, 0) × N,

where supp(f ) ⊂ V . Then (V , g |V ) and the measurement operator
LV : f %→ u|V determine the set J+(p−) ∩ J−(p+) ⊂ M, up to a
change of coordinates, and the conformal class of g in the set
J+(p−) ∩ J−(p+).

p2

p1
µ

V



For the equation �gu + u2 = f in a 4-dimensional space-time, the fourth order non-linear

interaction produces artificial microlocal point sources in space-time.

-The non-linear interaction
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-Observations of waves from the point sources

determine the metric g in the causal diamond

J+(p1) ∩ J−(p2).
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New results based on interaction of three waves in 1+ n dimensions

Theorem (Feizmohammadi-L.-Oksanen 2020)
Let (M, g) be a globally hyperbolic Lorentzian manifold of dimension 1 + n, n ≥ 2.
Let µ be a time-like curve from p1 to p2 and V be a neighborhood of µ and m ≥ 2.
Consider the non-linear wave equation

�gu + um = f in N × (−∞,T ),

u(x , t) = 0 in t < 0,

where supp(f ) ⊂ V is sufficiently small.
Assume that V and the source-to-solution operator LV : f 7→ u|V are given.
If (n,m) 6= (3, 3), these data determine the manifold J+(p1) ∩ J−(p2) and the metric
gjk(x) on it.
If (n,m) = (3, 3), the conformal class of metric of g is determined.



Ωout

Ωin

A similar result are valid for separated sources and observations:

Assume that sources are supported in Ωin and
the waves are observed in Ωout .
When (n,m) 6= (3, 3), the metric is determined in
the set R enclosed by the black rectangle.

Theorem (Feizmohammadi-L.-Oksanen 2020)
Let G (x , s) be a Lorentzian metric tensor depending on s and ∂2

sG (x , s)|s=0 > 0. In the
above geometric setting, the source-to-solution map LG : C∞0 (Ωin)→ C∞(Ωout) for

n∑
j ,k=0

G jk(x , u(x))
∂2u

∂x j∂xk
(x) = f

determines the conformal class of g = G (x , 0) in R



Inverse problem for the connection A in the Higgs field equation

Let ∇A = d + A be a connection on the trivial
vector bundle Cn over the Minkowski space R1+3.

Let V be a cylinder in R1+3, and let D be the
optimal causal diamond associated to V .

V

D

Theorem (Chen-L.-Oksanen-Paternain 2019)
For any κ ∈ R+, b ∈ R, and sufficiently small ρ > 0 the map

LA : f → u|V ; (∇A)∗∇Au + κ(|u|2 − b)u = f , u|t<0 = 0, ‖f ‖C4
0 (V ) < ρ,

determines A in D up to the natural gauge transformation.
The linear case κ = 0 is open as coefficients Aj(x

0, x ′) are time-depending functions.



Idea of the proof with a non-linear equation �gu + u3 = f in R1+3.

Consider in Minkowski space R1+3 the solutions u~ε(x) of

�u~ε + (u~ε)
3 = 0,

that depend on parameters ~ε = (ε1, ε2, ε3) ∈ R3.
When u~ε|~ε=0 = 0, the linearized waves

uj(x) = ∂εju~ε
∣∣
~ε=0, j = 1, 2, 3

satisfy �uj = 0. Then, w = ∂ε1∂ε2∂ε3u~ε(x)
∣∣
~ε=0 satisfies

�w = −6u1u2u3.

The function 6u1u2u3 can be considered as an artificial source produced by the
non-linear interaction.



We use coordinates x = (t, y1, y2, y3) ∈ R1+3.
As a motivation, consider we linearized waves

u1(t, y) = δ(t − y1),

u2(t, y) = δ(t − y2),

u3(t, y) = δ(t − y3).

Then

u1u2u3 = 1
2 δL(t, y),

L = {(t, y1, y2, y3) : y1 = y2 = y3 = t} ⊂ R1+3

Let w be the solution of the wave equation

�w = S , S = −6u1u2u3

Physically, S is a moving point source that at the time t is located at the point
y(t) = (t, t, t) ∈ R3. The line L is the path of the point source in the space-time.



Three plane waves with directions ξ1, ξ2, ξ3 interact and produce a conic wave.
By varying the directions ξ1 and ξ2 of the incoming waves near ξ3, the interaction can
produce a wave front to an arbitrary direction [Chen-L.-Oksanen-Paternain 2019].
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Three plane waves with directions ξ1, ξ2, ξ3 interact and produce a conic wave.
By varying the directions ξ1 and ξ2 of the incoming waves near ξ3, the interaction can
produce a wave front to an arbitrary direction [Chen-L.-Oksanen-Paternain 2019].



Interaction of three spherical waves in the Euclidean space

When 3 spherical waves (blue) interact they produce a new wave front (red) that
propagates to the direction where the spherical waves came from.
The figure shows the wave fronts at four times t1, t2, t3, t4.
[Chen-L.-Oksanen-Paternain 2019].

Next we return to consider general Lorentzian manifolds.



Reconstruction of a space-time with conjugate points [Feiz.-L.-O. 2020]
Consider wave fronts that are sent from the points x1, x2, x3 ∈ V along the light-like
geodesics γ1, γ2, γ3. For �gu + u3 = f the following conditions are true:

(A) If γ1, γ2, γ3 do not intersect, then we do not observe
wave fronts at z .

(B) If y is the first intersection point of geodesics and

γ1(s1) = γ2(s2) = γ3(s3) = y ,

ξ ∈ span{γ̇j(sj), j = 1, 2, 3} ∩ L+
y M,

z = γy ,ξ(s) ∈ V ,

then we observe a wave front at z .
xj

y

γj

@
@

@
@

zD

V

Lemma for 3-to-1 scattering relation: We say that a 4-tuple (γ1, γ2, γ3, z) satisfies
relation R if we observe a wave front at z . When (A) and (B) are valid, the relation R
determines the conformal class of (D, g).

This lemma can be applied for any non-linear hyperbolic equation of 2nd order.
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Inverse problem in Minkowski space with a 1-dimensional measurement

Theorem (L., Liimatainen, Potenciano-Machado, Tyni (2020))
Let Ω ⊂ Rn, diam (Ω) < D, and m ≥ 2. Let t2 > t1 > D and T > t2 + D.
There is a measurement function ψ ∈ C∞0 (∂Ω× [0,T ]) such that the following is true:
Let supp (q) ⊂ Ω× [t1, t2]. For f small enough, let u = uf satisfy

(∂2
t −∆)u(x , t) + q(x , t)u(x , t)m = 0 in Ω× [0,T ],

u|∂Ω×[0,T ] = f , u|t=0 = 0, ∂tu|t=0 = 0.

Then the real-valued non-linear map

λψ : f → 〈ψ, ∂νuf
∣∣
∂Ω×[0,T ]

〉L2(∂Ω×[0,T ]) ∈ R

determines q(x , t) uniquely. Moreover, when ‖q‖Cn+1 < C0, the reconstruction is
Hölder stable.
This means that, q(x , t) can be stably reconstructed from low resolution observations if
we can control the source f .



Idea of the proof with one-dimensional measurement.

The m:th Frechet derivative of λψ(f ) = 〈ψ, ∂νuf
∣∣
∂Ω×[0,T ]

〉L2(∂Ω×[0,T ]) at f = 0 is

(Dmλψ)0[f1, f2, . . . , fm] = −m!

∫
Ω×[0,T ]

vψ · qv1v2 . . . vmdxdt,

where vj are solutions of the linear wave equation

(∂2
t −∆)vj(x , t) = 0 in Ω× [0,T ],

vj |∂Ω×[0,T ] = fj , vj |t=0 = 0, ∂tvj |t=0 = 0

and (∂2
t −∆)vψ = 0, vψ|∂Ω×[0,T ] = ψ is such that vψ = 1 in the set Ω× [t1, t2].

By varying boundary values fj we find the partial Radon transform of q(x , t).
This determines the function q(x , t).

Related inverse problem with a varying wave speed is studied in Hintz-Uhlmann-Zhai
2020 using the Dirichlet-to-Neumann map.
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Higher order linearization and non-linear interaction of solutions can be applied also for
elliptic equations.

Theorem (L.,Liimatainen,Yi-Hsuan Lin, Salo 2019)
Let (M, g) be a compact connected Riemannian manifold with boundary, dim(M) = 2
and m ≥ 2. For the equation

∆gu(x) + q(x)u(x)m = 0 in M, u|∂M = f ,

we define the Dirichlet-to-Neumann map

Λg ,q : f → ∂νu|∂M ,

for small f ∈ C 3(∂M). Then ∂M and Λg ,q determine the conformal class of (M, g) and
the potential q up to a gauge transformation.
Related results in dimensions n ≥ 3 are studied in L.-Liimatainen-Lin-Salo 2019,
Feizmohammadi-Oksanen 2019, Krupchyk-Uhlmann 2019



The idea of the proof

The Frechet derivative (DΛg ,q)0 determines the Dirichlet-to-Neumann map for the
linear equation ∆gu = 0. By L.-Uhlmann 2001, this determines the conformal class of
the two-dimensional manifold (M, g).
Let us choose ĝ = hg , h : M → R+ that is conformal to g .
The higher order derivatives of Λĝ ,q are

∫
∂M

(DmΛĝ ,q)0[f1, f2, f3, . . . , fm] · fm+1 dS = −(m!)

∫
M
qv1v2v3 · · · vm+1 dV

where vk , k = 1, . . . ,m + 1, satisfy ∆ĝvk = 0 with boundary value fk .
Let v3 = v4 = · · · = vm+1 = 1.
By Guillarmou-Tzou 2011, the inner products 〈q, v1v2〉 determine q.
Note that it is enough to study only the solutions satisfying ∆ĝv = 0, that is we can
consider the case when q = 0. Roughly speaking, we need to analyze only the linearized
inverse problem à la Calderon and do not require Sylverster-Uhlmann type analysis.



Thank you for your attention!
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