Inverse problems for non-linear hyperbolic and elliptic equations

Matti Lassas University of Helsinki Finland

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Slides available at www.mv.helsinki.fi/home/lassas/

Outline:

- ► Inverse problem for linear wave equation
- Inverse problems for non-linear wave equations
- ► Inverse problems for non-linear wave equations with low resolution observations
- Inverse problems for non-linear elliptic equations

Inverse problem for an anisotropic wave operator

Let $M \subset \mathbb{R}^n$, $n \ge 2$ and ν be the unit normal of the boundary ∂M . Let g(x) be a matrix valued function and $u(x, t) = u^f(x, t)$ solve

$$(\partial_t^2 - \nabla \cdot g(x) \nabla) u(x, t) = 0 \quad \text{on } (x, t) \in M \times \mathbb{R}_+,$$

 $\nu \cdot g \nabla u(x, t)|_{\partial M \times \mathbb{R}_+} = f(x, t),$
 $u|_{t=0} = 0, \quad \partial_t u|_{t=0} = 0.$

The Neumann-to-Dirichlet map is defined by

$$\Lambda: f \to u^f(x,t)|_{(x,t) \in \partial M \times \mathbb{R}_+}.$$

Inverse problem: Assume that Λ is given. Can we determine g on local coordinate charts? To study this problem, we consider (M, g) as a manifold.

(Image credit Xiaolei Qu)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへぐ

Let (M,g) be a Riemannian manifold, dim $(M) = n \ge 2$, $g = (g_{jk}(x))_{j,k=1}^n$ Let $u(x,t) = u^f(x,t)$ solve the wave equation

$$(\partial_t^2 - \Delta_g)u(x, t) = 0 \quad \text{on } (x, t) \in M \times \mathbb{R}_+,$$

 $\partial_{\nu}u(x, t)|_{\partial M \times \mathbb{R}_+} = f(x, t),$
 $u|_{t=0} = 0, \quad \partial_t u|_{t=0} = 0,$

where u is the unit normal vector of the boundary, $(g^{jk}) = (g_{jk})^{-1}$, $|g| = \det(g)$, and

$$\Delta_g u = \sum_{j,k=1}^n |g(x)|^{-1/2} \frac{\partial}{\partial x^j} (|g(x)|^{1/2} g^{jk}(x) \frac{\partial}{\partial x^k} u(x)) = \sum_{j,k=1}^n g^{jk} \frac{\partial^2 u}{\partial x^j \partial x^k} + l.o.t.$$

The Neumann-to-Dirichlet map is $\Lambda f = u^f(x,t)|_{(x,t)\in\partial M\times\mathbb{R}_+}$. For $(\partial_t^2 - c(x)^2\Delta)u = 0$ the metric is $g_{jk}(x) = c(x)^{-2}\delta_{jk}$.

Inverse problem:

Assume that ∂M and Λ are given. Can we determine (M, g) up to an isometry?

Some results on inverse problems for linear hyperbolic equations

- Uniqueness for inverse problem for (∂²_t − c(x)²Δ)u = 0 in Ω ⊂ ℝⁿ by combining the Boundary Control method by Belishev '87, Belishev-Kurylev '87 and Tataru's unique continuation result '95.
- ▶ Belishev-Kurylev 1992: Spectral problem for Δ_g on manifold.
- Bingham-Kurylev-L.-Siltanen 2008: Solution for the inverse problem for the wave equation by focusing of waves.
- ► de Hoop-Kepley-Oksanen 2016: Numerical methods for focusing of waves.

All these results are based on Tataru's unique continuation result and require that the metric is time-independent, or real-analytic in the time variable [Alinhac 1983].

Outline:

- Inverse problem for linear wave equation
- Inverse problems for non-linear wave equations
- Inverse problems for non-linear wave equations with low resolution observations
- Inverse problems for non-linear elliptic equations

Imaging in non-linear elasticity: Quantitative elastography

Figures: Doyley (Phys. Med. Biol. 2012) and Tzschätzsch (Phys. Med. Biol. 2014) Inverse problems for non-linear elastic medium: de Hoop-Uhlmann-Wang (2018).

イロト (周) (日) (日) (日) (日)

Non-linear wave equation in space-time

Let $M = \mathbb{R} \times N$ be a Lorentzian manifold with time-depending metric g, $\dim(M) = 1 + n$, $n \ge 2$. Let $m \ge 2$ and

$$\Box_g u(x) + u(x)^m = f(x), \quad (x^0, x^1, \dots, x^n) \in (-\infty, T] \times N,$$

$$u(x) = 0 \quad \text{for } t = x^0 < 0,$$

where

$$\Box_g u = \sum_{j,k=0}^n |\det(g(x))|^{-\frac{1}{2}} \frac{\partial}{\partial x^j} \left(|\det(g(x))|^{\frac{1}{2}} g^{jk}(x) \frac{\partial}{\partial x^k} u(x) \right).$$

An alternative model is

$$rac{\partial^2}{\partial t^2}u(t,y)-c(t,y)^2\Delta u(t,y)+\mathsf{a}(t,y)u(t,y)^m=f(t,y),\quad x=(t,y)\in\mathbb{R}^{1+3}.$$

This corresponds to the metric $g = (-1, c^{-2}, c^{-2}, c^{-2})$, c = c(t, y).

Definitions

Let (M, g) be a Lorentzian manifold, where the metric $g = (g_{jk})_{i,k=0}^{n}$ is semi-definite. $T_x M$ is the space of tangent vectors at x. $\xi \in T_x M$ is light-like if $g(\xi, \xi) = 0, \ \xi \neq 0.$ $\xi \in T_{\star}M$ is time-like if $g(\xi,\xi) < 0$. A curve $\mu(s)$ is time-like if $\dot{\mu}(s)$ is time-like. $L^+_{\times}M = \{\xi \in T_{\times}M \setminus 0; g(\xi,\xi) = 0, \xi \text{ future pointing}\},\$

Example: Minkowski space \mathbb{R}^{1+3} . Coordinates $(x^0, x^1, x^2, x^3) \in \mathbb{R}^{1+3}$, $x^0 = t$ g = diag (-1, 1, 1, 1).

Definitions

 $\gamma_{x,\xi}(t)$ is a geodesic with the initial point (x,ξ) ,

$$J^+(p) = \{x \in M; x \text{ is in causal future of } p\},$$
$$J^-(p) = \{x \in M; x \text{ is in causal past of } p\},$$

(M,g) is globally hyperbolic if

there are no closed causal curves and the set

 $J^+(p_1)\cap J^-(p_2)$ is compact for all $p_1, p_2\in M$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Then *M* can be represented as $M = \mathbb{R} \times N$.

Theorem (Kurylev-L.-Uhlmann 2018 and L.-Uhlmann-Wang 2017) Let (M,g) be a globally hyperbolic Lorentzian manifold, dim(M) = 4, $\mu \subset M$ be a time-like curve, $p_1, p_2 \in \mu$ and V be a neighbourhood of μ . Let $L_V : f \mapsto u|_V$ be the source-to-solution map for

$$\Box_g u + u^2 = f \quad in (-\infty, T) \times N \subset M,$$
$$u = 0 \quad in \ t = x^0 < 0.$$

 L_V is defined for small sources f, $supp(f) \subset V$. Then V and L_V determine $J^+(p_1) \cap J^-(p_2)$ and the metric g on it (up to change of coordinates).

For the equation $\Box_g u + u^2 = f$ in a 4-dimensional space-time, the fourth order non-linear interaction produces artificial microlocal point sources in space-time.

-The non-linear interaction

of distorted plane waves creates artificial microlocal point sources.

-Observations of waves from the point sources determine the metric g in the causal diamond $J^+(p_1) \cap J^-(p_2)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

For the equation $\Box_g u + u^2 = f$ in a 4-dimensional space-time, the fourth order non-linear interaction produces artificial microlocal point sources in space-time.

-The non-linear interaction of distorted plane waves creates artificial microlocal point sources.

-Observations of waves from the point sources determine the metric g in the causal diamond $J^+(p_1) \cap J^-(p_2)$.

Movie

For the equation $\Box_g u + u^2 = f$ in a 4-dimensional space-time, the fourth order non-linear interaction produces artificial microlocal point sources in space-time.

-The non-linear interaction

of distorted plane waves creates artificial microlocal point sources.

-Observations of waves from the point sources determine the metric g in the causal diamond $J^+(p_1) \cap J^-(p_2)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

New results based on interaction of three waves in 1 + n dimensions

Theorem (Feizmohammadi-L.-Oksanen 2020)

Let (M, g) be a globally hyperbolic Lorentzian manifold of dimension 1 + n, $n \ge 2$. Let μ be a time-like curve from p_1 to p_2 and V be a neighborhood of μ and $m \ge 2$. Consider the non-linear wave equation

$$\Box_g u + u^m = f \quad in \ N \times (-\infty, T)$$
$$u(x, t) = 0 \quad in \ t < 0,$$

where $supp(f) \subset V$ is sufficiently small.

Assume that V and the source-to-solution operator $L_V : f \mapsto u|_V$ are given. If $(n, m) \neq (3, 3)$, these data determine the manifold $J^+(p_1) \cap J^-(p_2)$ and the metric $g_{jk}(x)$ on it. If (n, m) = (3, 3), the conformal class of metric of g is determined.

A similar result are valid for separated sources and observations: Assume that sources are supported in Ω_{in} and the waves are observed in Ω_{out} . When $(n, m) \neq (3, 3)$, the metric is determined in the set R enclosed by the black rectangle.

Theorem (Feizmohammadi-L.-Oksanen 2020)

Let G(x, s) be a Lorentzian metric tensor depending on s and $\partial_s^2 G(x, s)|_{s=0} > 0$. In the above geometric setting, the source-to-solution map $L_G : C_0^{\infty}(\Omega_{in}) \to C^{\infty}(\Omega_{out})$ for

$$\sum_{j,k=0}^{n} G^{jk}(x,u(x)) \frac{\partial^2 u}{\partial x^j \partial x^k}(x) = f$$

determines the conformal class of g = G(x, 0) in R

Inverse problem for the connection A in the Higgs field equation

Let $\nabla_A = d + A$ be a connection on the trivial vector bundle \mathbb{C}^n over the Minkowski space \mathbb{R}^{1+3} .

Let V be a cylinder in \mathbb{R}^{1+3} , and let \mathbb{D} be the optimal causal diamond associated to V.

Theorem (Chen-L.-Oksanen-Paternain 2019)

For any $\kappa \in \mathbb{R}_+$, $b \in \mathbb{R}$, and sufficiently small $\rho > 0$ the map

$$L_A: f o u|_V; \quad (
abla_A)^*
abla_A u + \kappa (|u|^2 - b) u = f, \, \, u|_{t < 0} = 0, \, \, \|f\|_{C_0^4(V)} <
ho,$$

determines A in \mathbb{D} up to the natural gauge transformation. The linear case $\kappa = 0$ is open as coefficients $A_j(x^0, x')$ are time-depending functions.

Idea of the proof with a non-linear equation $\Box_g u + u^3 = f$ in \mathbb{R}^{1+3} .

Consider in Minkowski space \mathbb{R}^{1+3} the solutions $u_{\overline{\varepsilon}}(x)$ of

$$\Box u_{\vec{\varepsilon}} + (u_{\vec{\varepsilon}})^3 = 0,$$

that depend on parameters $\vec{\varepsilon} = (\varepsilon_1, \varepsilon_2, \varepsilon_3) \in \mathbb{R}^3$. When $u_{\vec{\varepsilon}}|_{\vec{\varepsilon}=0} = 0$, the linearized waves

$$u_j(x) = \partial_{\varepsilon_j} u_{ec{\varepsilon}} |_{ec{\varepsilon}=0}, \quad j=1,2,3$$

satisfy $\Box u_j = 0$. Then, $w = \partial_{\varepsilon_1} \partial_{\varepsilon_2} \partial_{\varepsilon_3} u_{\vec{\varepsilon}}(x) \big|_{\vec{\varepsilon}=0}$ satisfies

 $\Box w = -6u_1u_2u_3.$

The function $6u_1u_2u_3$ can be considered as an artificial source produced by the non-linear interaction.

We use coordinates $x = (t, y_1, y_2, y_3) \in \mathbb{R}^{1+3}$. As a motivation, consider we linearized waves

$$\begin{array}{rcl} u_1(t,y) &=& \delta(t-y_1), \\ u_2(t,y) &=& \delta(t-y_2), \\ u_3(t,y) &=& \delta(t-y_3). \end{array}$$

Then

$$u_1 u_2 u_3 = \frac{1}{2} \delta_L(t, y),$$

$$L = \{(t, y_1, y_2, y_3): y_1 = y_2 = y_3 = t\} \subset \mathbb{R}^{1+3}$$

Let w be the solution of the wave equation

$$\Box w = S, \quad S = -6u_1u_2u_3$$

Physically, S is a moving point source that at the time t is located at the point $y(t) = (t, t, t) \in \mathbb{R}^3$. The line L is the path of the point source in the space-time.

Three plane waves with directions ξ_1, ξ_2, ξ_3 interact and produce a conic wave. By varying the directions ξ_1 and ξ_2 of the incoming waves near ξ_3 , the interaction can produce a wave front to an arbitrary direction [Chen-L.-Oksanen-Paternain 2019]. (Loading talkmovie1.mp4)

Three plane waves with directions ξ_1, ξ_2, ξ_3 interact and produce a conic wave. By varying the directions ξ_1 and ξ_2 of the incoming waves near ξ_3 , the interaction can produce a wave front to an arbitrary direction [Chen-L.-Oksanen-Paternain 2019].

Three plane waves with directions ξ_1, ξ_2, ξ_3 interact and produce a conic wave. By varying the directions ξ_1 and ξ_2 of the incoming waves near ξ_3 , the interaction can produce a wave front to an arbitrary direction [Chen-L.-Oksanen-Paternain 2019].

Interaction of three spherical waves in the Euclidean space

When 3 spherical waves (blue) interact they produce a new wave front (red) that propagates to the direction where the spherical waves came from. The figure shows the wave fronts at four times t_1, t_2, t_3, t_4 . [Chen-L.-Oksanen-Paternain 2019].

Next we return to consider general Lorentzian manifolds.

Reconstruction of a space-time with conjugate points [Feiz.-L.-O. 2020]

Consider wave fronts that are sent from the points $x_1, x_2, x_3 \in V$ along the light-like geodesics $\gamma_1, \gamma_2, \gamma_3$. For $\Box_g u + u^3 = f$ the following conditions are true:

(A) If $\gamma_1, \gamma_2, \gamma_3$ do not intersect, then we do not observe wave fronts at *z*.

(B) If y is the first intersection point of geodesics and

$$\begin{split} \gamma_1(s_1) &= \gamma_2(s_2) = \gamma_3(s_3) = y, \\ \xi &\in \operatorname{span}\{\dot{\gamma}_j(s_j), \ j = 1, 2, 3\} \cap L_y^+ M, \\ z &= \gamma_{y,\xi}(s) \in V, \end{split}$$

then we observe a wave front at z.

Lemma for 3-to-1 scattering relation: We say that a 4-tuple $(\gamma_1, \gamma_2, \gamma_3, z)$ satisfies relation R if we observe a wave front at z. When (A) and (B) are valid, the relation R determines the conformal class of (\mathbb{D}, g) .

This lemma can be applied for any non-linear hyperbolic equation of 2nd order.

Outline:

- Inverse problem for linear wave equation
- Inverse problems for non-linear wave equations
- ► Inverse problems for non-linear wave equations with low resolution observations

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - つく⊙

Inverse problems for non-linear elliptic equations

Inverse problem in Minkowski space with a 1-dimensional measurement

Theorem (L., Liimatainen, Potenciano-Machado, Tyni (2020)) Let $\Omega \subset \mathbb{R}^n$, diam (Ω) < D, and $m \ge 2$. Let $t_2 > t_1 > D$ and $T > t_2 + D$. There is a measurement function $\psi \in C_0^{\infty}(\partial \Omega \times [0, T])$ such that the following is true: Let supp (q) $\subset \Omega \times [t_1, t_2]$. For f small enough, let $u = u^f$ satisfy

$$(\partial_t^2 - \Delta)u(x, t) + q(x, t)u(x, t)^m = 0$$
 in $\Omega \times [0, T],$
 $u|_{\partial\Omega \times [0, T]} = f, \quad u|_{t=0} = 0, \quad \partial_t u|_{t=0} = 0.$

Then the real-valued non-linear map

$$\lambda_{\psi}: f \to \langle \psi, \partial_{\nu} u^{f} \big|_{\partial \Omega \times [0, T]} \rangle_{L^{2}(\partial \Omega \times [0, T])} \in \mathbb{R}$$

determines q(x, t) uniquely. Moreover, when $||q||_{C^{n+1}} < C_0$, the reconstruction is Hölder stable.

This means that, q(x, t) can be stably reconstructed from low resolution observations if we can control the source f.

Idea of the proof with one-dimensional measurement.

The *m*:th Frechet derivative of $\lambda_{\psi}(f) = \langle \psi, \partial_{\nu} u^f |_{\partial\Omega \times [0,T]} \rangle_{L^2(\partial\Omega \times [0,T])}$ at f = 0 is

$$(D^m\lambda_{\psi})_0[f_1,f_2,\ldots,f_m]=-m!\int_{\Omega\times[0,T]}v_{\psi}\cdot qv_1v_2\ldots v_mdxdt,$$

where v_j are solutions of the linear wave equation

$$\begin{aligned} (\partial_t^2 - \Delta) v_j(x, t) &= 0 \quad \text{in } \Omega \times [0, T], \\ v_j|_{\partial\Omega \times [0, T]} &= f_j, \quad v_j|_{t=0} = 0, \quad \partial_t v_j|_{t=0} = 0 \end{aligned}$$

and $(\partial_t^2 - \Delta)v_{\psi} = 0$, $v_{\psi}|_{\partial\Omega \times [0,T]} = \psi$ is such that $v_{\psi} = 1$ in the set $\Omega \times [t_1, t_2]$. By varying boundary values f_j we find the partial Radon transform of q(x, t). This determines the function q(x, t).

Related inverse problem with a varying wave speed is studied in Hintz-Uhlmann-Zhai 2020 using the Dirichlet-to-Neumann map.

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⊙

Outline:

- Inverse problem for linear wave equation
- Inverse problems for non-linear wave equations
- ► Inverse problems for non-linear wave equations with low resolution observations

Inverse problems for non-linear elliptic equations

Higher order linearization and non-linear interaction of solutions can be applied also for elliptic equations.

Theorem (L.,Liimatainen,Yi-Hsuan Lin, Salo 2019)

Let (M, g) be a compact connected Riemannian manifold with boundary, dim(M) = 2and $m \ge 2$. For the equation

$$\Delta_g u(x) + q(x)u(x)^m = 0$$
 in M , $u|_{\partial M} = f$,

we define the Dirichlet-to-Neumann map

$$\Lambda_{g,q}: f \to \partial_{\nu} u|_{\partial M},$$

for small $f \in C^3(\partial M)$. Then ∂M and $\Lambda_{g,q}$ determine the conformal class of (M,g) and the potential q up to a gauge transformation.

Related results in dimensions $n \ge 3$ are studied in L.-Liimatainen-Lin-Salo 2019, Feizmohammadi-Oksanen 2019, Krupchyk-Uhlmann 2019

The idea of the proof

The Frechet derivative $(D\Lambda_{g,q})_0$ determines the Dirichlet-to-Neumann map for the linear equation $\Delta_g u = 0$. By L.-Uhlmann 2001, this determines the conformal class of the two-dimensional manifold (M, g). Let us choose $\hat{g} = hg$, $h: M \to \mathbb{R}_+$ that is conformal to g.

The higher order derivatives of $\Lambda_{\hat{g},q}$ are

$$\int_{\partial M} (D^m \Lambda_{\hat{g},q})_0 [f_1, f_2, f_3, \dots, f_m] \cdot f_{m+1} \, dS = -(m!) \int_M q v_1 v_2 v_3 \cdots v_{m+1} \, dV$$

where v_k , k = 1, ..., m + 1, satisfy $\Delta_{\hat{g}} v_k = 0$ with boundary value f_k . Let $v_3 = v_4 = \cdots = v_{m+1} = 1$. By Guillarmou-Tzou 2011, the inner products $\langle q, v_1 v_2 \rangle$ determine q. Note that it is enough to study only the solutions satisfying $\Delta_{\hat{g}} v = 0$, that is we can consider the case when q = 0. Roughly speaking, we need to analyze only the linearized inverse problem à la Calderon and do not require Sylverster-Uhlmann type analysis.

Thank you for your attention!

References:

- Y. Kurylev, M. Lassas, G. Uhlmann: Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations. Inventiones Mathematicae 212 (2018), 781-857.
- M. Lassas: Inverse problems for linear and non-linear hyperbolic equations. Proceedings of International Congress of Mathematicians ICM 2018, Rio de Janeiro, Brazil. 2018, Vol III, pp. 3739-3760.
- M. Lassas, G. Uhlmann, Y. Wang: Inverse problems for semilinear wave equations on Lorentzian manifolds. Communications in Mathematical Physics 360 (2018), 555-609.
- X. Chen, M. Lassas, L. Oksanen, G. Paternain: Detection of Hermitian connections in wave equations with cubic non-linearity, arXiv:1902.05711 (2019).
- M. de Hoop, G. Uhlmann, Y. Wang: Nonlinear interaction of waves in elastodynamics and an inverse problem. Math. Ann., to appear.
- M. Lassas, T. Liimatainen, Y.-H. Lin, M. Salo: Inverse problems for elliptic equations with power type nonlinearities, arXiv:1905.02764 (2019)
- A. Feizmohammadi, L. Oksanen: An inverse problem for a semi-linear elliptic equation in Riemannian geometries. arXiv:1903.12636 (2019)
- K. Krupchyk, G. Uhlmann: A remark on partial data inverse problems for semilinear elliptic equations. Proc. Amer. Math. Soc., to appear; Preprint arXiv:1905.01561 (2019)
- P. Hintz, G. Uhlmann, J. Zhai: An inverse boundary value problem for a semilinear wave equation on Lorentzian manifolds, arXiv:2005.10447 (2020).
- A. Feizmohammadi, M. Lassas, L. Oksanen: Inverse problems for non-linear hyperbolic equations with disjoint sources and receivers. arXiv:2006.12158 (2020)
- M. Lassas, T. Liimatainen, L. Potenciano-Machado, T. Tyni: Uniqueness and stability of an inverse problem for a semi-linear wave equation. arXiv:2006.13193 (2020)