Inverse problems for non-linear hyperbolic equations and an inverse problem for the Einstein equation

Matti Lassas

in collaboration with

Yaroslav Kurylev, UCL Gunther Uhlmann, UW and UH

Some results for hyperbolic inverse problems for linear equations:

- Belishev-Kurylev 1992 and Tataru 1995: Reconstruction of a Riemannian manifold with time-indepedent metric.
 The used unique continuation fails for non-real-analytic time-depending coefficients (Alinhac 1983).
- Eskin 2008: Wave equation with time-depending (real-analytic) lower order terms.
- ► Helin-Lassas-Oksanen 2012: Combining several measurements for together for the wave equation.

Outline:

- ► Inverse problems in space-time for passive measurements
- ▶ Inverse problem for non-linear wave equation
- ► Einstein-scalar field equations

Inverse problems in space-time: Passive measurements

Can we determine structure of the space-time when we see light coming from many point sources that vary in time?

Definitions

Let (M,g) be a Lorentzian manifold, where the metric g is semi-definite. $\xi\in T_xM \text{ is light-like if } g(\xi,\xi)=0,\ \xi\neq0.$ $\xi\in T_xM \text{ is time-like if } g(\xi,\xi)<0.$ A curve $\mu(s)$ is time-like if $\dot{\mu}(s)$ is time-like.

Example: the Minkowski metric in \mathbb{R}^4 is

$$ds^2 = -(dx^0)^2 + (dx^1)^2 + (dx^2)^2 + (dx^3)^2.$$

Let (M, g) be a Lorentzian manifold.

$$L_qM = \{ \xi \in T_qM \setminus 0; \ g(\xi,\xi) = 0 \},$$

 $L_q^+M\subset L_qM$ is the future light cone,

$$J^+(q) = \{x \in M; x \text{ is in causal future of } q\},$$

$$J^{-}(q) = \{x \in M; x \text{ is in causal past of } q\},$$

 $\gamma_{x,\xi}(t)$ is a geodesic with the initial point (x,ξ) .

(M,g) is globally hyperbolic if

there are no closed causal curves and the set

$$J^-(p_1)\cap J^+(p_2)$$
 is compact for all $p_1,p_2\in M$.

Then M can be represented as $M = \mathbb{R} \times N$.

More definitions

Let $\mu = \mu((-1,1)) \subset M$ be a time-like geodesics, $p^-, p^+ \in \mu$. We consider observations in a neighborhood $V \subset M$ of μ .

Let $U \subset J^-(p^+) \setminus J^-(p^-)$ be an open, relatively compact set.

The light observation set $P_V(q)$ for $q \in U$ is the intersection of the future light cone of q and V,

$$P_V(q) = \exp_q(\overline{L_q^+ M}) \cap V = \{\gamma_{q,\xi}(r) \in V; \ \xi \in L_q^+ M, \ r \ge 0\}.$$

Theorem

Let (M,g) be an open, globally hyperbolic Lorentzian manifold of dimension $n \geq 3$. Assume that μ is a time-like geodesic containing points p^- and p^+ , and $V \subset M$ is a neighborhood of μ . Let $U \subset J^-(p^+) \setminus J^-(p^-)$ be a relatively compact open set. Then $(V,g|_V)$ and the collection of the light observation sets,

$$P_V(U) := \Big\{ P_V(q) \subset V \mid q \in U \Big\},$$

determine the set *U*, up to a change of coordinates, and the conformal class of the metric *g* in *U*.

Reconstruction of the topological structure of U

Assume that $q_1, q_2 \in U$ are such that $P_V(q_1) = P_V(q_2)$. Then all light-like geodesics from q_1 to V go through q_2 .

Let x_1 be the earliest point of $\mu \cap P_V(q_1)$.

Reconstruction of the topological structure of U

Assume that $q_1, q_2 \in U$ are such that $P_V(q_1) = P_V(q_2)$. Then all light-like geodesics from q_1 to V go through q_2 .

Let x_1 be the earliest point of $\mu \cap P_V(q_1)$. Using a short cut argument we see that there is a causal curve from q_1 to x_1 that is not a geodesic.

Reconstruction of the topological structure of U

Assume that $q_1, q_2 \in U$ are such that $P_V(q_1) = P_V(q_2)$. Then all light-like geodesics from q_1 to V go through q_2 .

Let x_1 be the earliest point of $\mu \cap P_V(q_1)$. Using a short cut argument we see that there is a causal curve from q_1 to x_1 that is not a geodesic.

This implies that q_1 can be observed on μ before x_1 .

The map $P_V: \overline{U} \mapsto 2^{TV}$ is continuous and one-to-one.

As \overline{U} is compact, the map $P_V: \overline{U} \to P_V(\overline{U})$ is a homeomorphism.

Possible applications of the theorem

Left: Variable stars in Hertzsprung-Russell diagram on star types. Right: Galaxy Arp 220 (Hubble Space Telescope)

Artistic impressions on matter falling into a black hole and Pan-STARRS1 telescope picture.

The Bicep2 observed gravitational waves in the cosmic microwave background that are produced in the inflation period.

Outline:

- ▶ Inverse problems in space-time for passive measurements
- ► Inverse problem for non-linear wave equation
- ► Einstein-scalar field equations

"Can we image a wave using other waves?"

Inverse problem for non-linear wave equation

Let $M = \mathbb{R} \times N$, dim(M) = 4. Consider the equation

$$\Box_g u(x) + a(x) u(x)^2 = f(x) \quad \text{on } M_1 = (-\infty, T) \times N,$$

$$u(x) = 0 \quad \text{for } x = (x^0, x^1, x^2, x^3) \in (-\infty, 0) \times N,$$

where supp $(f) \subset V$, $V \subset M_1$ is open,

$$\Box_g u = \sum_{p,q=0}^3 |\det(g(x))|^{-\frac{1}{2}} \frac{\partial}{\partial x^p} \left(|\det(g(x))|^{\frac{1}{2}} g^{pq}(x) \frac{\partial}{\partial x^q} u(x) \right),$$

 $f \in C_0^6(V)$ is a source, and a(x) is a non-vanishing C^∞ -smooth function.

In a neighborhood $\mathcal{W} \subset C_0^6(V)$ of the zero-function, define the measurement operator (source-to-solution operator) by

$$L_V: f \mapsto u|_V, \quad f \in \mathcal{W} \subset C_0^6(V).$$

Theorem

Let (M,g) be a globally hyperbolic Lorentzian manifold of dimension (1+3). Let μ be a time-like path containing p^- and p^+ , $V \subset M$ be a neighborhood of μ , and a(x) be a non-vanishing function. Consider the non-linear wave equation

$$\Box_g u(x) + a(x) u(x)^2 = f(x) \quad \text{on } M_1 = (-\infty, T) \times N,$$

$$u = 0 \quad \text{in } (-\infty, 0) \times N,$$

where $supp(f) \subset V$. Then $(V, g|_V)$ and the measurement operator $L_V : f \mapsto u|_V$ determine the set $J^+(p^-) \cap J^-(p^+) \subset M$, up to a change of coordinates, and the conformal class of g in the set $J^+(p^-) \cap J^-(p^+)$.

Idea of the proof.

The non-linearity helps in solving the inverse problem.

Let
$$u=\varepsilon w_1+\varepsilon^2 w_2+\varepsilon^3 w_3+\varepsilon^4 w_4+E_\varepsilon$$
 satisfy
$$\Box_g u+au^2=f,\quad \text{on }M_1=(-\infty,T)\times N,$$

$$u|_{(-\infty,0)\times N}=0$$
 with $f=\varepsilon f_1,\ \varepsilon>0.$ When $Q=\Box_g^{-1}$, we have
$$w_1=Qf_1,$$

$$w_2=-Q(a\,w_1\,w_1),$$

$$w_3=2Q(a\,w_1\,Q(a\,w_1\,w_1)),$$

$$w_4=-Q(a\,Q(a\,w_1\,w_1)\,Q(a\,w_1\,w_1)),$$

$$-4Q(a\,w_1\,Q(a\,w_1\,Q(a\,w_1\,w_1))),$$

$$\|E_\varepsilon\|\leq C\varepsilon^5.$$

Interaction of waves in Minkowski space \mathbb{R}^4

Let $x^j,\,j=1,2,3,4$ be coordinates such that $\{x^j=0\}$ are light-like. We consider waves

$$u_j(x) = v \cdot (x^j)_+^m$$
, $(s)_+^m = |s|^m H(s)$, $v \in \mathbb{R}$, $j = 1, 2, 3, 4$.

Waves u_j are conormal distributions, $u_j \in I^{m+1}(K_j)$, where

$$K_j = \{x^j = 0\} \subset \mathbb{R}^4, \quad j = 1, 2, 3, 4.$$

The interaction of the waves $u_j(x)$ produce new sources on

$$K_{12} = K_1 \cap K_2,$$

$$K_{123} = K_1 \cap K_2 \cap K_3 = line,$$

$$K_{1234} = K_1 \cap K_2 \cap K_3 \cap K_3 = \{q\} =$$
one point.

Interaction of two waves

If we consider sources $f_{\vec{\varepsilon}}(x) = \varepsilon_1 f_{(1)}(x) + \varepsilon_2 f_{(2)}(x)$, $\vec{\varepsilon} = (\varepsilon_1, \varepsilon_2)$, and the corresponding solution $u_{\vec{\varepsilon}}$ of the wave equation, we have

$$W_2(x) = \frac{\partial}{\partial \varepsilon_1} \frac{\partial}{\partial \varepsilon_2} u_{\vec{\varepsilon}}(x) \Big|_{\vec{\varepsilon}=0}$$

= $Q(a u_{(1)} \cdot u_{(2)}),$

where $Q = \square_g^{-1}$ and

$$u_{(j)}=Qf_{(j)}.$$

Recall that $K_{12} = K_1 \cap K_2 = \{x^1 = x^2 = 0\}$. Since light-like co-vectors in the normal bundle N^*K_{12} are in $N^*K_1 \cup N^*K_2$,

$$singsupp(W_2) \subset K_1 \cup K_2$$
.

Thus no interesting singularities are produced by the interaction of two waves.

Interaction of three waves

If we consider sources $f_{\vec{\varepsilon}}(x) = \sum_{j=1}^{3} \varepsilon_{j} f_{(j)}(x)$, $\vec{\varepsilon} = (\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3})$, and the corresponding solution $u_{\vec{\varepsilon}}$, we have

$$W_3 = \partial_{\varepsilon_1} \partial_{\varepsilon_2} \partial_{\varepsilon_3} u_{\vec{\varepsilon}} \big|_{\vec{\varepsilon}=0}$$

= $Q(a u_{(1)} \cdot Q(a u_{(2)} \cdot u_{(3)})) + \dots,$

where $Q = \square_g^{-1}$. The interaction of the three waves happens on the line $K_{123} = K_1 \cap K_2 \cap K_2$.

The normal bundle N^*K_{123} contains light-like directions that are not in $N^*K_1 \cup N^*K_2 \cup N^*K_3$ and hence new singularities appear.

Interaction of waves:

The non-linearity helps in solving the inverse problem.

Artificial sources can be created by interaction of waves using the non-linearity of the wave equation.

The interaction of 3 waves creates a point source in space that seems to move at a higher speed than light, that is, it appears like a tachyonic point source, and produces a new "shock wave" type singularity.

(Loading talkmovie1.mp4)

Three plane waves interact and produce a conic wave.

Interaction of four waves

Consider sources $f_{\vec{\varepsilon}}(x) = \sum_{j=1}^4 \varepsilon_j f_{(j)}(x)$, $\vec{\varepsilon} = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$, the corresponding solution $u_{\vec{\varepsilon}}$, and

$$W_4 = \partial_{\varepsilon_1} \partial_{\varepsilon_2} \partial_{\varepsilon_3} \partial_{\varepsilon_4} u_{\vec{\varepsilon}}(x) \Big|_{\vec{\varepsilon}=0}.$$

Since $K_{1234} = \{q\}$ we have $N^*K_{1234} = T_q^*M$. Thus, when the conic waves intersect, an artificial point source appears. We have

$$\mathsf{singsupp}(W_4) \subset (\cup_{j=1}^4 K_j) \cup \Sigma \cup \mathcal{L}_q^+ M,$$

where Σ is the union of conic waves produced by 3-interactions. Above, $\mathcal{L}_q^+ M = \exp_q(\mathcal{L}_q^+ M)$ is the union of future going light-like geodesics starting from the point q.

Interaction of four waves.

The 3-interaction produces conic waves (only one is shown below).

The 4-interaction produces a spherical wave from the point q that determines the light observation set $P_V(q)$.

(Loading talkmovie2.mp4)

Outline:

- ▶ Inverse problems in space-time for passive measurements
- Inverse problem for non-linear wave equation
- ► Einstein-scalar field equations

Einstein equations

The Einstein equation for the (-,+,+,+)-type Lorentzian metric g_{jk} of the space time is

$$\operatorname{Ein}_{jk}(g) = T_{jk},$$

where

$$\mathsf{Ein}_{jk}(g) = \mathsf{Ric}_{jk}(g) - \frac{1}{2}(g^{pq}\,\mathsf{Ric}_{pq}(g))g_{jk}.$$

In vacuum, T=0. In wave map coordinates, the Einstein equation yields a quasilinear hyperbolic equation and a conservation law,

$$g^{pq}(x)\frac{\partial^2}{\partial x^p \partial x^q}g_{jk}(x) + B_{jk}(g(x), \partial g(x)) = T_{jk}(x),$$

$$\nabla_p(g^{pj}T_{jk}) = 0.$$

One can not do measurements in vacuum, so matter fields need to be added. We can consider the coupled Einstein and scalar field equations with sources,

$$\begin{aligned} & \mathsf{Ein}(g) = T, \quad T = \mathsf{T}(\phi, g) + \mathcal{F}_1, \quad \mathsf{on} \ (-\infty, T) \times N, \\ & \Box_g \phi_\ell - m^2 \phi_\ell = \mathcal{F}_2^\ell, \quad \ell = 1, 2, \dots, L, \\ & g|_{t < 0} = \widehat{g}, \quad \phi|_{t < 0} = \widehat{\phi}. \end{aligned} \tag{1}$$

Here, \widehat{g} and $\widehat{\phi}$ are C^{∞} -smooth and satisfy equations (1) with the zero sources and

$$\mathsf{T}_{jk}(\mathsf{g},\phi) = \sum_{\ell=1}^L \partial_j \phi_\ell \, \partial_k \phi_\ell - \frac{1}{2} \mathsf{g}_{jk} \mathsf{g}^{pq} \partial_p \phi_\ell \, \partial_q \phi_\ell - \frac{1}{2} \mathsf{m}^2 \phi_\ell^2 \mathsf{g}_{jk}.$$

To obtain a physically meaningful model, the stress-energy tensor $\mathcal T$ needs to satisfy the conservation law

$$\nabla_{p}(g^{pj}T_{ik}) = 0, \quad k = 1, 2, 3, 4.$$

Definition

Linearization stability (Choquet-Bruhat, Deser, Fischer, Marsden) Let $f=(f^1,f^2)$ satisfy the linearized conservation law

$$\sum_{\ell=1}^{L} f_{\ell}^{2} \, \partial_{j} \widehat{\phi}_{\ell} + \frac{1}{2} \widehat{g}^{pk} \widehat{\nabla}_{p} f_{kj}^{1} = 0, \quad j = 1, 2, 3, 4$$
 (2)

and let $(\dot{g},\dot{\phi})$ be the corresponding solution of the linearized Einstein equation. We say that f has the Linearization Stability (LS) property if there is $\varepsilon_0>0$ and families

$$\begin{split} \mathcal{F}_{\varepsilon} &= (\mathcal{F}_{\varepsilon}^{1}, \mathcal{F}_{\varepsilon}^{2}) = \varepsilon f + O(\varepsilon^{2}), \\ g_{\varepsilon} &= \widehat{g} + \varepsilon \dot{g} + O(\varepsilon^{2}), \\ \phi_{\varepsilon} &= \widehat{\phi} + \varepsilon \dot{\phi} + O(\varepsilon^{2}), \end{split}$$

where $\varepsilon \in [0, \varepsilon_0)$, such that $(g_{\varepsilon}, \phi_{\varepsilon})$ solves the non-linear Einstein equations and the conservation law

$$abla_i^{\mathbf{g}_{\varepsilon}}(\mathbf{T}^{jk}(\mathbf{g}_{\varepsilon},\phi_{\varepsilon})+(\mathcal{F}_{\varepsilon}^1)^{jk})=0, \quad k=1,2,3,4.$$

Let $V_{\widehat{g}} \subset M$ be a open set that is a union of freely falling geodesics that are near μ , L > 5.

Condition A: Assume that at any $x \in V_{\widehat{g}}$ the 5×5 matrix

Condition A: Assume that at any
$$x \in V_{\widehat{g}}$$
 the 5×5 m
$$[A_{j\ell}(x)]_{j,\ell \leq 5} = \begin{bmatrix} (\partial_j \widehat{\phi}_\ell(x))_{\ell \leq 5, \ j \leq 4} \\ (\widehat{\phi}_\ell(x))_{\ell \leq 5} \end{bmatrix}$$
 is invertible.

Let $I^k(Y)$ be the space of conormal distributions for $Y \subset M$.

Theorem

Let condition A be valid, $W \subset V_{\widehat{g}}$ be open, and $Y \subset W$ be a 2-dimensional space-like surface. Assume that $f = (f^1, f^2) \in I^k(Y)$ satisfies the linearized conservation law and f is supported in W. Then there is a smoother correction term $f_{cor} \in I^{k-1}(Y)$ supported in W such that $f + f_{cor}$ has a linearization stability property with a family $\mathcal{F}_{\varepsilon}$ supported in W.

Idea of proof: We formulate the direct problem with adaptive source functions,

$$\begin{split} & \mathsf{Ein}_{jk}(g) = P_{jk} - \sum_{\ell=1}^{L} (S_{\ell}\phi_{\ell} + \frac{1}{2}S_{\ell}^2)g_{jk} + \mathsf{T}_{jk}(g,\phi), \\ & \Box_g \phi_{\ell} - m^2 \phi_{\ell} = S_{\ell}, \quad \text{in } M_0, \quad \ell = 1, 2, 3, \dots, L, \\ & S_{\ell} = Q_{\ell} + S_{\ell}^{2nd}(g,\phi,\nabla\phi,Q,\nabla Q,P,\nabla P), \\ & g = \widehat{g}, \quad \phi_{\ell} = \widehat{\phi}_{\ell}, \quad \text{in } (-\infty,0) \times N. \end{split}$$

Here Q and P_{jk} are considered as the primary sources. The functions S_{ℓ}^{2nd} are constructed so that the conservation law is satisfied for all solutions (g, ϕ) . Let $V_{\widehat{g}} \subset M$ be a neighborhood of the geodesic μ and $p^-, p^+ \in \mu$.

Theorem

Assume that the condition A is valid. Let

$$\mathcal{D} = \{ (V_g, g|_{V_g}, \phi|_{V_g}, \mathcal{F}|_{V_g}); \ g \ \text{and} \ \phi \ \text{satisfy Einstein equations}$$
 with a source $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2)$, supp $(\mathcal{F}) \subset V_g$, and
$$\nabla_j(\mathbf{T}^{jk}(g, \phi) + \mathcal{F}_1^{jk}) = 0 \}.$$

The data set \mathcal{D} determines uniquely the conformal type of the double cone $(J^+(p^-) \cap J^-(p^+), \widehat{g})$.

Thank you for your attention!