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Radiation effects of electron and photon 
radiation – biological materials

● Contents
– Introduction

– Radiation effects in biological materials

– Monte Carlo simulation of radiation transport

– Characteristics of electron and photon radiation effects

– Interaction mechanisms of photons

– Interaction mechanisms of electrons

– MC simulation codes

– Examples

– Conclusions
radiation = ionizing radiation
i.e. no cell phone radiation or 
the like discussed
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Introduction

● Biological materials
– Electronic effects: ionization, free radicals etc. → mutations, cell death, cancer

– Cf. metals and semiconductors: atomic displacements

● Electron and photon radiation
– Medical physics, electron spectroscopy methods in physics

– Deeper penetration compared to ions

– Cascades with secondary particles

– Many interaction mechanisms

● Neutron irradiation
– BNCT

● Ions (protons and heavier)
– Hadron therapy
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Introduction

● Radiation uses in medical physics
– Imaging (low doses; hopefully)

– Radiation therapy

● External

– Gammas from active sources or accelerators
– Electrons from accelerators

● Nuclear medicine

– Active isotope attached to a biologically
active molecule
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Radiation effects in biological materials

● Basic macroscopic quantity: 
absorbed dose (deposited energy)      (J/kg=gray=Gy)
– Taking into account the biology:

equivalent dose                 (sievert=Sv)

● Different weight factors for 
different radiation species

● The higher the energy density the larger
the factor

– Damage–dose dependence

● Damage ~ cell death, mutations, 
genetic instability, ...

● LNT (linear, no threshold) model

– Based on atom bomb survivors' doses
– Questioned at low doses

?

?

D

H=WD

Radiation W

Photons 1

Protons 2

Heavy ions 20

~ 0.1 Sv

Annual dose A few mSv

Head CT scan 2 mSv

Lethal dose A few Sv

Radiotherapy Many Gy's

Macrodosimetry
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Radiation effects in biological materials

● Abrorbed dose: the most common quantity used in e.g. in radiotherapy
– Only an average quantity

– The weight factor reflects the energy deposition pattern of different radiation 
species

– Does not take into account the stochastic nature of energy deposition

● Sufficient for external irradiation
– Doses to organs

– Length scales of the order of cm

● In nuclear medicine inhomogeneous activity distribution
– Length scales may be in micrometers

– Macrodosimetry in microscale

Macrodosimetry
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Radiation effects in biological materials

● Microscopic picture: structure of the DNA
Chromosome

Chromatin
fiber

Nucleosomes

Double helix
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Radiation effects in biological materials

● Microscopic picture
– Irradiation-caused ionization events

● Cell damage       damage to DNA
– Direct damage

● Direct hit to the double helix structure

– Indirect damage

● Reactive chemical species

– Single or double strand breaks (SSB, DSB)

– DNA crosslinking

● Cells have many DNA repair mechanisms

⇔
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Radiation effects in biological materials

● Possible end points of the irradiation damage event

DNA damageDNA repair
Cell death,

senescence

Mutation,
chromosome

rearrangements

Heritable
effects

Cancer
Developmental

effects

Microdosimetry
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Radiation effects in biological materials

● Time scales of the irradiation events

Time (s) Event

10-18 Ionising particle traverses a molecule

10-15 Ionization

10-14 Excitation

10-12 Diffusion of free radicals

10-10 Free radical reactions with the solute

10-8 Formation of molecule products

10-5 Completion of chemical reactions

1 – 1 h Enzymatic reactions, repair process

1 h – 100 y Genomic instability, mutation, cell killing

days – months Stem cell killing, tissue damage, loss of cell proliferation

days – years Fibrosis, skin damage, spinal cord damage

many years Tumors
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According to H. Nikjoo, Iran. J. Radiat. Res. 1 (2003) 3.



21.04.2014 Strålningsskador i material: Biological 
materials – Electron and photon irradiation

10

Radiation effects in biological materials
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Survival fraction S (D)=e−αD−βD
2

● Experimental methods: in vitro

single hitαD  :

”double hit”βD2  :

Justification: at low 
dose-rates quadratic
term small

Joiner, van der Kogel: Basic Clinical radiobiology
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Radiation effects in biological materials

● An example of survival curves
– Demonstrates the dependence of 

the relative biological effectiviness 
(RBE) on the radiation linear energy
transfer (LTE)

Human kidney cells

Jo
in

er
, v

an
 d

er
 K

og
el

: B
as

ic
 C

lin
ic

al
 r

ad
io

bi
ol

o
gy

SF=survival
fraction



21.04.2014 Strålningsskador i material: Biological 
materials – Electron and photon irradiation

12

Radiation effects in biological materials

● Survival curves are not always
this simple
– E.g. the DNA repair mechanisms

and damage point interactions 
may change the behavior
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Survival of human glioma cells
irradiated with 240 kVp X-rays.
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Radiation effects in biological materials

● Experimental methods: macroscopic scale (clinical)
– Embedded detectors

● Ionization chambers, semiconductor and thermoluminescent detectors
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Radiation effects in biological materials

● Modeling of the radiation transport in biological materials
– Typical calculations: energy deposition by 

1) external photon or electron beam
2) radioactive substance in material

– Methods 

● Lookup tables (MIRD pamphlets): only standard geometries

● Analytical methods (pencil beam convolution): heterogeneity only approximately

● Monte Carlo! : the most accurate; may be slow
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Monte Carlo simulation of radiation transport

● Assume we have target material with the atomic density 
● A monoenergetic particle beam with current density       scatters from 

target T
– Direction and energy change:  

– The double differential cross section (DCS) is defined as 

– Integrating out the solid angle we get
the energy-loss DCS

– The total cross section is 

n

(d , E)→(d ' , E−W )

d , E

d ' ,  E−W

dΩ , dWx

z

y

φ

θJinc T

Jinc

d2σ

dΩdW
=

Ṅ count

|Jinc|dΩdW

dσ
dW

=∫
4 π

d2
σ

dΩdW
dΩ

σ=∫
0

E
dσ
dW

dW



21.04.2014 Strålningsskador i material: Biological 
materials – Electron and photon irradiation

16

Monte Carlo simulation of radiation transport

● In the MC algorithm we need the distribution of the distance    from the 
current position to the next interaction        
– Each scatterer has a cross section 

– Particle sees          spheres per unit surface

– Number of particles undergoing interaction is

– Interaction probability per unit path length

– The probability that a particle travels a path   
without interacting is 

p(s)
s

π rs
2
=σ

ds

σ

J−dJJ

dJ=J nσ ds

nds

dJ=J nσ ds

dJ
J ds

=nσ

s

F (s)=∫
s

∞

p (s ')ds '
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Monte Carlo simulation of radiation transport

– The probability                of having the next interaction in                   is 

– This is actually an integral equation with solution (bc:                )

– Mean free path is 

– Assume that we have two interaction mechanism A and B:

– Without azimuthal dependence we can write

p(s)=nσ∫
s

∞

p(s ')ds '

p(s)ds [s , s+ds]

p(∞)=0

p(s)=nσ e−s nσ

λ=∫
0

∞

s p(s)ds=
1
nσ

1
λ
=prob. of interaction per unit path=nσ

d2
σA(E;θ ,W )

dΩdW

d2
σB(E;θ ,W )

dΩdW

σA,B(E)=∫
0

E

dW∫
0

π

2π sinθd θ
d2
σA,B(E;θ ,W )

dΩdW
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Monte Carlo simulation of radiation transport

– The total cross section is 

– The total mean free path and the PDF of the path length are

– The kind of interaction taking place is a discrete random variable with values A 
and B and probabilities

– The PDF of the polar scattering angle and the energy loss in a single 
scattering event is 

σT(E)=σA(E)+σB(E)

λT=(λA
−1+λB

−1)−1=
1
nσT

p(s)=λT
−1 exp(−s /λT)

pA=
σA
σT

pB=
σB
σT

pA,B(E ;θ ,W )=
2π sinθ
σA,B(E)

d2
σA,B(E;θ ,W )

dΩdW
Note: p(φ)=

1
2π
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Monte Carlo simulation of radiation transport

● The quantities defined above allow us to generate random tracks of 
particles advancing from interaction to interaction
– Each particle has a state (after leaving the source or after interaction)

● Position 

● Direction of flight

● Energy

– Each track consists of series of states 

– To generate the next interaction we need to 

● generate the free path length

● generate the next interaction
interaction type 
scattering angle and energy loss 

r=(x y z)
d=(u vw)
E

(rn ,dn , En)

s=−λT ln ξ

ξ=uniform RN in [ 0,1[

rn+1=rn+sdn

{pA , pB}
pA,B(E ;θ ,W ) φ=2πξ
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Monte Carlo simulation of radiation transport

– In each scattering event the particle state is updated

dn+1=R(θ ,ϕ)dn
En+1=En−W
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Monte Carlo simulation of radiation transport

– Crossing the material boundary is simple: Stop there and resume simulation 
with new material parameters

smat1

smat2

⟨smat1⟩=λmat1

⟨smat2⟩=λmat2

Paradoxically

Try it with a simple 1D simulation
and with mat1 = mat2 !

Particle transport
is a Markov chain.
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Monte Carlo simulation of radiation transport

– In electron and positron transport the step length it is sometimes necessary to 
limit the step length to 

● Sample    normally

● If               advance only a distance     and do nothing in the end of the path

● Otherwise do the normal scattering

● Due to the Markovian character the addition of these delta interactions does not bias 
the results

– When the particle energy has dropped below some predefined threshold the 
simulation is stopped

● During the simulation of one history secondary particles may be created
– They are pushed into a stack

– When the energy of the current particle has dropped below the threshold a new 
particle is popped from the stack and its history is simulated

– When the stack is empty a new primary particle is started

smax

s
s> smax s
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Characteristics of electron and photon 
irradiation

● Penetration depths larger compared with ion irradiation
– Electron CSDA range

– Photon mass 
attenuation constant

– Ion mean range

● Many interaction 
mechanisms

● Generation of secondary
particles → 
electron – γ-cascade α

e-

γ
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Interaction mechanisms of photons

● Photons interact with matter with the following mechanisms (photonuclear 
reactions neglected)
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Interaction mechanisms of photons

● In photoelectric effect photon kicks out an electron from the atom
– If the atom originates from the inner shells → atom relaxation via X-ray and 

Auger emission

1 barn=10−24 cm 2
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Interaction mechanisms of photons

● In Rayleigh (coherent) scattering the photon scatters elastically from an 
atom
– Below are shown the cross sections for a couple of materials
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Interaction mechanisms of photons

● In Compton (incoherent) scattering the photon scatters inelastically from 
an atom 
– Examples of cross sections

● In pair production a photon near an
atom or an electron is absorbed
and an electron and positron 
pair is produced
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Interaction mechanisms of photons

● The photon inverse mean free path is called the attenuation coefficient
μph=nσph
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Interaction mechanisms of photons

● The photon inverse mean free path is called the attenuation coefficient
μph=nσph
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Interaction mechanisms of electrons

● Electrons and positrons interact with the following mechanisms
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Interaction mechanisms of electrons

● Elastic scattering is elastic from the point of view of the atom
– Scattering from the screened Coulomb potential

– Below an example of differential cross section in water

Coherent: Include molecular effects
Incoherent: Sum atomic contributions
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Interaction mechanisms of electrons

● Inelastic scattering is is the dominant energy loss mechanism of electrons 
 and positrons at low and intermediate energies
– Collisional excitations and ionizations of the electrons in the medium

– Cross section experssions complicated; MC needs fast sampling

– May be split into contributions from each electron shell 

– In close collisions corrections from the indistinguishability of electrons

– Positrons: annihilation–re-creations instead of direct scattering 



21.04.2014 Strålningsskador i material: Biological 
materials – Electron and photon irradiation

33

Interaction mechanisms of electrons

● Below a few examples of MFP's and stopping powers for electrons
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Interaction mechanisms of electrons

● Electrons (or positrons) accelerating 
in the electrostatic field of atoms 
emit photons (Bremsstrahlung)
– Electron with kinetic 

energy     may emit a 
photon with energy 

E

W∈[0,E ]

S(E)=n ∫
0

W max

W
dσ
dW

dW

Stopping power
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Interaction mechanisms of electrons

● In positron annihilation two photons are created
– The angular distribution of the photons depends on the positron energy
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Interaction mechanisms of electrons

● In principle the MC simulation can be done in a detailed fashion:
all interaction events are simulated in detail

● However, this is in most cases too time consuming → mixed simulation 
scheme
– Define threshold values for angular defelection     of energy     loss

– For example in the case of electron elastic scattering the effect of many soft 
events is calculated by so called multiple elastic scattering theory

– The mean free path between hard collisions (          ), its PDF and the 
scattering angle PDF can be calculated as

θ W
W≥W c  or θ≥θc⇒ hard event, simulate in detail

W<W c  or θ<θc⇒ soft event, condensed simulation

θ≥θc

1
λel

h
=n2π∫

θc

π dσel(θ)

dΩ
sin θd θ p(s)=

exp(−s /λel
h
)

λ el
h

ph (θ)=
dσel(θ)

dΩ
sin θΘ(θ−θc)

Θ(x)=step function

⟨θ
s
⟩ ⟨ z2

⟩ ⟨ x2
+ y2

⟩
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Interaction mechanisms of electrons

– The angular deflection and the lateral deflection in a multiple scattering event 
can be calculated by e.g. using the so called random hinge method

● First, the electron moves a random distance 

● A ”multiple scattering event” takes place

● The electron moves a distance            in the new direction

– In the case of inelastic collisions the soft events are often modeled using the 
continuous slowing down approximation (CSDA), possible with straggling 

z
θ

τ s

τ∈[0, s]

s−τ
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MC simulation codes

● EGS4, EGSnrc, EGS5
– Electron-Gamma Shower

– From a few keV up to several TeV

– Mortran (Modular/Morbid Fortran)

– Downloadable from 
http://www.nrc-cnrc.gc.ca/eng/solutions/advisory/egsnrc_index.html

● GEANT
– Electrons, positrons, gammas, and hadrons

– Downloadable from http://geant4.cern.ch/support/index.shtml

● PENELOPE
– Penetration and ENErgy LOss of Positrons and Electrons

– Electrons, positrons, gammas

– From 50 eV to 1 GeV

– Geometry described by homogeneous bodies limited by quadric surfaces

– Fortran77

● MCNP
– Neutrons, electrons, photons

● And many more...

Can be obtained from
OECD/NEA via the 
liaison officer.

http://www.nrc-cnrc.gc.ca/eng/solutions/advisory/egsnrc_index.html
http://geant4.cern.ch/support/index.shtml
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Examples 

● Probably the most common quantity is the energy 
deposition (or absorbed dose; in grays)
– Example: dose point kernel (DPK)

● Gives the energy deposition of a pointlike source

● Dose sphere 1 → sphere 2 by DPK convolution

K ' (r)δ r=energy left to a spherical shell ( r ,δ r ) by one particle
source

δ r
r

K (r)=
K ' (r)

4 π r2 δr

F (R1 , R2 ; r)=Eel∫
Ω1

dΩ1∫
Ω2

dΩ2K (r ')

=Eel∫∫ρ1(r1)ρ2(r2)K (|r+r1−r2|)d r1d r2
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Examples 
Electron DPK's in water. Calculated using EGS4. r

0
 = CSDA range
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Examples 

● Demo of PENELOPE/Shower code (Windows only, hope it works...)
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Conclusions

● Irradiation on biological materials
– Beneficial (imaging, therapy)

– Damage (radiation protection)

– On cellular level many open questions (low doses, bystander effect,...)

● MC simulations
– The most accurate method

– Uncertainties at low energies (cross sections)

– Used heavily in medical physics

– Even in clinical use (some treatment plannig systems use MC)
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