

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

RADIATION DAMAGE IN MATERIALS

3. Electronic stopping, SRIM, and swift heavy ion effects on materials

Recall from previous section the definition of stopping power

detail, especially its physical origins

- A more accurate description of the electronic stopping over energy regimes.
 - These are marked as A, B, C and D in the figure
 - These are described next in order of good understanding:

Regime D: Bethe-Bloch

The highest-energy regime can be well understood based on the Bethe-Bloch theory,

derived already in the 1930's

- At these high energies, the moving ion is fully or highly charged and does not change charge state
- The Bethe-Bloch equations derive the stopping power quantum mechanically for a charged particle moving in a homogeneous electron gas
 - I.e. consisting of all electrons of the material as if they were evenly distributed
 - Atomic structure of the sample ignored in these equations!
 - This is not accurate, but for high enough energy works as a good 1st approximation

The basic equation is relatively simple [Was]

$$\left(-\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{e}} = \frac{N2\pi Z_1^2 Z_2 \varepsilon^4}{E_\mathrm{i}} \frac{M}{m_\mathrm{e}} \ln\left(\frac{\gamma_\mathrm{e}E_\mathrm{i}}{\bar{I}}\right) = \frac{2\pi N Z_1^2 M \varepsilon^4}{m_\mathrm{e}E_\mathrm{i}} B$$

where

$$B = Z_2 \ln\left(\frac{\gamma_{\rm e} E_{\rm i}}{\bar{I}}\right)$$

is known as the stopping number, Z_1 is the atomic number of the ion, Z_2 of the material, N is the atomic density of the material, ε is the electron charge e, I is the mean excitation energy level which to a first approximation is 11.5 eV Z_2 , and

$$\gamma_{\rm e} = \frac{4m_{\rm e}M}{\left(m_{\rm e} + M\right)^2}$$

For relativistic velocities

$$B = Z_2 \left\{ \ln \left(\frac{\gamma_e E_i}{\bar{I}} \right) - \ln \left(1 - \beta^2 \right) - \beta^2 \right\}$$

Regime B: velocity-proportional regime

In regime B the stopping is almost exactly linearly proportional to ion velocity,

 $S_e \propto v$

This regime has an upper limit at the Fermi velocity of the slowest (outermost) electron of the material

The direct proportionality to velocity agrees well with experiments, and

has been derived in several different ways

- By Fermi and Teller using Fermi velocity [Phys. Rev. 72 (1947) 399]
- By the Lindhard-Sharff-Schiott (LSS) theory [Mat. Fys. Medd. Dan. Vid. Selsk. 33 (1963) This reference gives analytical equations for the stopping power in this "Lindhard regime"
- Quantum mechanically by Echenique-Nieminen-Ritchie [Solid State Comm. 37 (1981) 779].

Also the most modern electronic-structure calculations give about the

same result (some give $S_e \propto v^{0.9}$)

Regime B: Fermis explanation to low-E stopping power

The paper by Fermi and Teller provides an intuitively clear explanation for why low-E electronic stopping is directly proportional to the ion velocity v:

The following texts are direct quotes from the paper:

Consider an ion with velocity v moving in a degenerate (0 K) Fermi gas. If any single electron transfers momentum to it in a collision (slowing the ion down), its own momentum/velocity of course also should change. "

Metal with free electrons

Ion and its electrons moving with velocity v

Since v is very high, electrons in solid are effectively at rest and in equilibrium when the ion and its electrons collide with them

[E. Fermi and E. Teller, The capture of negative mesotrons in matter, Phys. Rev. 72 (1947) 399]

Regime B: Fermis explanation to low-E stopping power

The crucial idea is: "Only electrons with a velocity within v of the Fermi velocity v_F in one dimension (the moving direction of the ion) can contribute to the stopping. This is because electrons below v_F -v in velocity could only gain [at most] v in velocity and hence be excited to an already filled state. The latter is of course forbidden by the Pauli principle. "

- ^{\bullet} "Electrons within *v* of *v_F*, on the other hand, can be excited above the Fermi level to unoccupied states. Hence the higher *v* is, the more electrons can contribute to the stopping."
 - "More specifically, the amount of electrons in a unit volume with velocity within v of v_F is proportional to v simply because the density of states in 1D is $2\pi/L$ so an integral from v_F to $v_F v$ is proportional to v. "

[E. Fermi and E. Teller, The capture of negative mesotrons in matter, Phys. Rev. 72 (1947) 399]

The maximum region in the stopping power is a regime where the moving ion is partly ionized, and its charge state fluctuates

- I.e. it undergoes stochastic charge exchange processes with the atoms of the material
- There is no simple analytical equation that can describe this region fully reliably

[If interested in the existing models, see chapter 4 in the "SRIM

book" described in section 3.3.

- The best way to treat the stopping in regime C is to try to find experimental data for it, and if available, use that directly
 - This energy regime is one of the easiest to measure experimentally and hence plenty of data does exist

http://www.srim.org/SRIM/SRIMPICS/STOP-TGTS/STOPxx74.gif

Regime C: modelling

- The SRIM semi-empirical model does give data for this regime, but it is not so reliably (~20% deviations common)
- There are modern simulation codes that can handle the regime C stopping fairly well theoretically
- The best developed is probably CaSP by Gregor Schiwietz and P. L. Grande, <u>http://www.casp-program.org/</u>, reference e.g. [Phys.Rev. A58, 3796 (1998)]

Sample CaSP results compared to experiment:

Radiation damage 2020 - Kai Nordlund

[Gregor Schiwietz and P. L. Grande, PHYSICAL REVIEW A 84, 052703 (2011)]

- The lowest-energy regime is actually the least well known
- The simple theories predict that $S_e \propto v$ for all energies, but this is absurd when the atom velocity

becomes thermal: atoms in equilibrium do not experience any electronic stopping

If S_e ∝ v would be true also near equilibrium, all atom systems would be quenched down to 0 K in nanoseconds, which is obviously not true.

Regime A: experimental and simulation data

- Experiments show that indeed the electronic stopping becomes weaker than the direct proportionality to velocity at low velocities
- Plotted in the adjacent figures is Q , which is defined by S = Q v => constant Q means velocity proportionality.
- Advanced quantum mechanical
 (so called time dependent density
 functional theory) calculations can
 reproduce this

- Not all metals show this behaviour, however.
- The reason to the lowering can be qualitatively understood based on the electron density of states near the Fermi level:
 - In insulators there are no electrons, and the stopping will indeed have a threshold
 - Metals have electrons, but if the density of states is low near the Fermi energy, the stopping will be reduced compared to that at higher velocities
- However, there are extremely few experiments in this regime, and none for projectiles heavier than He. Hence for heavy ions/recoils it is not really known what the low-energy limit is
 Also very difficult to model theoretically

Regime A and the electron-phonon coupling

- In general, in non-equilibrium thermodynamic systems, the ions (atom cores) and electrons can sometimes be decoupled from each other such that they have different temperatures, T_i and T_e
 - This can be achieved with some external disturbance, e.g. laser or ion irradiation
- Electron-phonon coupling (*elektron-fonon-koppling*, *elektroni-fononi-kytkentä*) means quite generally in physics how strongly the ionic and electronic subsystems are coupled to each other by a coupling constant G

Electron-phonon coupling equation

This can be mathematically described with two coupled differential equations:

$$C_e(T_e)\frac{\partial T_e}{\partial t} = \nabla [K_e(T_e, T_l)\nabla T_e] + G(T_e)(T_e - T_l) + S_e(\vec{r}, t)$$

$$C_l(T_l)\frac{\partial T_l}{\partial t} = \nabla [K_l(T_l)\nabla T_l] + G(T_l)(T_e - T_l) + S_l(\vec{r}, t)$$

Here *C* and *K* are the thermal capacity and conductivities of each subsystem *e* and *l* separately, T_e and T_l are the temperatures and *G* is the electron-phonon coupling (which may depend on the local temperature)

S are source terms of the disturbance putting the two subsystems out of balance: S_e is the source from electronic stopping, S_l is the source in case the lattice is heated before electron-phonon coupling e.g. from ballistic collisions

Radiation damage 2020 – Kai Nordlund [Lin and Zhigilei, Phys. Rev. B 77, 075133 2008]

Regime A: the lowest energy limit

Some serious thought of the physics involved in stopping makes it clear that the whole concept of electronic stopping makes sense only when the ion/atom moves more rapidly than the thermal velocities

When the electronic and atomic $E \sim \frac{1}{2} \kappa_B T_0$ Log Energy subsystems start to behave like a thermodynamic system, electron-phonon coupling starts to occur (the electronic stopping acts as the source term *S*

• When finally $T_e = T_l$, there is no longer any electronic stopping

• This is indicated as the lower-limit of $E \sim \frac{3}{2} k_B T_0$ in the graph

There is some very recent work to link the two regimes:

[A. Tamm et al, Phys. Rev. Lett. 120, 185501 (2018)]

If the stopping power would be constant = S_0 , its use would be very simple:

$$\frac{\Delta E}{\Delta x} = -S_0 \Rightarrow \Delta E = -S_0 \Delta x$$

i.e. for a path length Δx travelled in a material, the ion loses ΔE of energy.

Now that in reality S is not really constant in any wider energy range but is S=S(E), one needs to integrate to get the energy loss over a finite energy range:

$$\frac{dE}{dx} = -S(E) \Rightarrow \Delta E = \int_0^x -S(E)dx$$

The ion penetration depth (mean range) can, if an ion with initial energy E_0 would travel fully straight, calculated directly from the stopping using

$$\frac{dE}{dx} = -S(E) \Rightarrow dx = -\frac{dE}{S(E)} \Rightarrow R = \int_0^R dx = \int_0^{E_0} \frac{dE}{S(E)}$$

As an example, for protons electronic stopping dominates over nuclear for all energies, and one could use the linear velocity dependence model $S(E) = k E^{1/2}$. In this case the integral can be done analytically and one obtains

$$R = \int_0^R dx = \int_0^{E_0} \frac{dE}{kE^{1/2}} = \frac{2}{k}\sqrt{E_0}$$

Range concepts

- However, this calculation has a major weakness: the stopping power is always along the ion, path length *R* and the ion due to nuclear collisions almost certainly does not move in a straight path
- In fact one can distinguish between different range concepts:
- R_Z = depth coordinate of final ion position
- $R_p = \text{projected range}$
 - (for perpendicular impacts
 - = penetration depth R_Z)
- R_c = chord range
- R = total path length
- R_{\perp} = range perpendicular
 - to initial direction (lateral range)

[Picture from Was book]

Radiation damage 2020 – Kai Nordlund

[These concepts date back to Lindhard, Scharff, Schiott 1963]

Illustration of difference of range concepts

The following figure gives actual ion trajectories for 10 keV Si ions impacting on Si at 20 degrees off-normal

- 100 distinct trajectories
- Projection of 3D ion paths to xy plane
- Colors give kinetic
 - energy of ions
- Note how the path

ranges are much longer than any of the others

[These was obtained with a molecular dynamics range calculation (MDRANGE) that can simulates the ion movement stepwise and hence can also sum up the path range. Kai Nordlund 12.4.2020]

Due to this, the simple equation

$$\frac{dE}{dx} = -S(E) \Rightarrow dx = -\frac{dE}{S(E)} \Rightarrow R = \int_0^R dx = \int_0^{E_0} \frac{dE}{S(E)}$$

is useful **only as an estimation of the maximum range**, i.e. the range of those ions that happen to travel in a completely straight path

In most cases, due to scattering, the mean range is much less

[Data from MDRANGE with zbl96 electronic stopping power. Kai Nordlund 12.4.2020]

Radiation damage 2020 - Kai Nordlund

Range calculation: distributions

For the case of 10 keV Si ions in Si (20 degrees off-normal) the range profiles defined with the different range concepts differ in a natural way:

Radiation damage 2020 – Kai Nordlund [Data from MDRANGE with zbl96 electronic stopping power. Kai Nordlund 12.4.2020]

Range concepts translated to Finnish/Swedish

- $R_p = \text{projected range (projicerad räckvidd / projisoitu kantama)}$
- R_c = chord range (*strängräckvidd / jännekantama*)
- *R* = total path length (*total väglängd / kuljettu kokonaismatka*)
- R_⊥ = range perpendicular to initial direction (lateral range) (räckvidd vinkelrät mot inkommande riktningen, lateral räckvidd / kantama kohtisuoraan sisääntulosuuntaa vastaan / lateraalinen kantama)

Analytical range calculations

- Out of these, the standard one in use is the (mean) projected range $\overline{R_p}$
- But for non-perpendicular irradiation
 - also the mean penetration depth \overline{Z} is for
 - practical reasons often used

- Difference a factor of $cos(\theta)$
- Lindhard-Sharff-Schiott (LSS) theory [Mat. Fys. Medd. Dan. Vid. Selsk. 33 (1963) 1] developed ways to estimate the $\overline{R_p}$ from the stopping
 - But nowadays most people use BCA simulations to calculate range distributions, so these are no particularly important anymore

- The models as described above were presented as if the electron density would be constant everywhere in a solid.
- In reality this is of course not true: the density is orders of

magnitude higher around the atom cores

- Some models do take this into account: so called **local models** for electronic stopping describe it as a sequence of atomic collisions,
 - where the stopping is atom-specific

FIG. 1. Electron distribution of silicon in a (110) plane. [Sillanpää, Nordlund, Keinonen, Phys. Rev. B 62, 3109 (2000)]

- For instance the Firsov model [Kishinevskii, Bull. Acad. Sci. USSR, Phys. Ser. 26 (1962) 1433]
- Others, like LSS and SRIM, use a homogeneous density

Local models and ion channeling

- For ions moving in a 'random' direction the nonlocal models generally work well
- However, an ion moving in a well-defined crystal direction with low electron density will obviously never experience the higher density around the atom cores, and using the average

density can give badly wrong results

[Sillanpää, Nordlund, Keinonen, Phys. Rev. B **62**, 3109 (2000)]

- This kind of an ion is called channeled (kanaliserad / kanavoitunut) as it moves in a crystal 'channel'
- For these cases using a local model is crucial

Local models can be atom-specific, or take into account the full 3D electronic structure of the material
Implementing the latter kind of model based on the Echenique-Nieminen-Ritchie stopping theory, Sillanpää, et al. obtained very good agreement with ion ranges for both random and channeled directions in Si:

[Sillanpää, Peltola, Nordlund, Keinonen, Puska, papers e.g. Phys. Rev. B **62**, 3109 (2000) and Phys. Rev. B **63**, 134113 (2000)] Radiation damage 2020 – Kai Nordlund

3.3. Ion channeling from nuclear collisions

- The channeling is also a nuclear collision effect
 - Ions in a channel are focused by the nuclear collisions
 - This has a well-established theory that describes the channeling via so called continuum potentials
 - Good review: Gemmell, Rev. Mod.
 Phys. 46 (1974) 129
- Both the nuclear and electronic effects for channeling lead to enhancements of the ion range in channeled direction

An about 12 nm thick silicon crystal viewed down the 110 crystal direction

Same Si crystal as above viewed from a randomly rotated direction [Wikipedia by me]

Channeling illustration

Ions in channeling direction

Ions in non-channeling direction

30 individual 1 keV Si in Si ion trajectories, theta=45, phi=0 30 individual 1 keV

30 individual 1 keV Si in Si ion trajectories, theta=30, phi=0

Channeling illustration (trajectory animation)

Ions in channeling direction

Ions in non-channeling direction

Ion channeling from nuclear collisions

The magnitude over different crystal direction can be easily seen from so called "channeling maps"

 These plot as a color scale the ion mean range as a function of the incoming ion beam direction (θ, φ) over all crystallographically nonequivalent directions

RED regions: Strong channeling PURPLE regions: No channeling or blocking

 $\theta = polar angle$

010

 φ = azimuthal angle

Surface normal 001

Rmean(Å)

0-75-225-300-375-525-600-675-750-825-900-975-1050-1130θ

Radiation damage 2020 - Kai Nordlund

[More maps: K. Nordlund, F. Djurabekova, and G. Hobler. Phys. Rev. B, 94:214109, 2016]

Analysis of fraction of channeling directions

- From the channeling maps simulations or channeling theory, the fraction of channeling directions can be systematically analyzed
 - Result: huge fraction of all incoming ion directions are channeling.

This implies that in polycrystalline materials, ranges are enhanced

Radiation damage 2020 – Kai Nord [K. Nordlund, F. Djurabekova, and G. Hobler. Phys. Rev. B, 94:214109, 2016]

3.4. SRIM and electronic stopping databases

There are two major sources of electronic stopping:

The one by the SRIM organization, <u>www.srim.org</u>.

- SRIM stands for "The Stopping and Range of Ions in Matter" and is also the name of an ion stopping software
- SRIM is (as of this writing in 2020) still run by Jim Ziegler, who worked earlier at IBM research and spent much of his career developing electronic and nuclear stopping models
- A major collection of stopping data is freely available at the SRIM web pages
- Documentation: several publications, material on the web site,

and the two books:

- "The ZBL book"; J. F. Ziegler, J. P. Biersack, and U. Littmark. The Stopping and Range of Ions in Matter. Pergamon, New York, 1985.
- "The SRIM book", SRIM The Stopping and Range of Ions in Matter, J. F. Ziegler, J. P. Biersack and M. D. Ziegler, SRIM Co, <u>www.SRIM.org</u>

The International Atomic Energy Agency IAEA maintains another database: <u>https://www-nds.iaea.org/stopping/</u>

Examples of data from SRIM

- Normalized
 - data for stopping
 - of all ions in
 - Carbon
- Each atom name
 - is a data point is
 - a measurement!
- Lower part
 shows deviation
 from SRIM
 semi-empirical
 model

Examples of data from SRIM

Same for

Copper

[http://www.srim.org/SRIM/SRIMPICS/STOP-TGTS/STOPxx29.gif]

And for Sm Just to show not all elements have as much data as C and Cu

The SRIM software

The SRIM software is freely available at the SRIM web pages

- Often also called TRIM due to the earlier name "Transport and Range of lons in Matter"
- It can calculate any stopping power (electronic or nuclear) in any material, including compounds and multilayer one
- It can also simulate the ion ranges based on the so called binary collision approximation (BCA) described later on the course

Includes electronic stopping in all calculations

Downsides:

- Only amorphous materials modelled => no channeling
- It only works on Windows computers, is not open source, and is programmed in a quite old-fashioned way with Visual Basic
- Because of this, installing it on modern Windows is a hassle
- Tip: for it to work at all, one needs to set Regional settings to US English in Windows...

Step 1: select either the Stopping calculation table or "TRIM calculation"

SRIM demonstration

- Setup screen for TRIM simulations
 - Select Ion Data and Target Atom element, or make a compound

When done, select "Save Input & Run TRIM"

TRIM Setup Window	- • 💌
Read Me TYCLIVI (Setup Window) Type of TRIM Calculation TRIM Demo ? DAMAGE Ion Distribution and Quick Calculation of Damage Restore Last TRIM Data ? Basic Plots Ion Distribution with Recoils projected on Y-Plane ION DATA ? PT H Hydrogen 1 1.008 10 ? 0	B ? ? cidence
TARGET DATA ? Input Elements to La Target Layers Add New Layer Add New Layer Pensity Compound Layer Name Width (g/cm3) Corr Gas Symbol Name Auger 1 10000 Amg v 0 1 Target atom atomic name	AVER d Dictionary or % Disp Latt Surf ? 100 20 3 2
Special Parameters ? Output Disk Files Resume saved Name of Calculation Stopping Power Version ? Ion Ranges Image: SRIM-2008 ? Backscattered Ions Image: SRIM calc. ? ? AutoSave at Ion # 10000 Plotting Window Depths ? ? Transmitted Ions/Recoils ? Sputtered Atoms ? Total Number of Ions 99999 Max 10000 Å ? Collision Details ? Random Number Seed Max 10000 Å ? © Special "EXYZ File" Increment (eV	Save Input & Run TRIM Clear All Calculate Quick Range Table Main Menu Quit

Example plot of trajectories from SRIM: 200 trajectories of 10 keV protons in Si.

SRIM demonstration

In the running window, click "Ion distribution"

Video of using SRIM

- SRIM can be somewhat speeded up by closing all the output windows, and can be well ran in the background on modern multi-core processors
- Several output options exist: ion ranges, nuclear and electronic deposited energy, sputtering yield
- For detailed analyses output of file COLLISON.DAT outputs data on all ions and recoils created during the whole simulation
- Do not use SRIM blindly: there are major caveats and pitfalls in using it, and not knowing them can lead to too much trust in accuracy of results or even outright wrong physics
 - More on the physics behind the collisional part of SRIM later during this course

3.5. Damage from electronic stopping

- The electronic stopping does not produce damage in metals
- In ionic insulating materials it may by (at least) two mechanisms:
- 1. Single electron-excitations
 - Electrons excited by the ion can travel far from the ion path (delta electrons) and become trapped there, changing the charge state of a lattice ion
 - Since the material is an insulator, the electrons cannot travel freely to recombine with a hole
 - The changed charge state can induce a motion of the ion (as it then is in a non-equilibrium charge state) which may damage the lattice
- 2. Multiple strong excitations by swift heavy ions

3.5.1. Single electron excitations

- The most fundamental mechanism by which electrons can cause damage is the excitation of a single chemical bond from a bonding to an antibonding state
 - This is repulsive, and hence the atoms can be pushed apart
 - Compare basic quantum mechanics, e.g. the H₂ molecules
 - Also photons can do the same thing
- Very important mechanism in molecules, organic matter
 - But poorly understood since molecules have huge numbers of possible excited bonding and antibonding states

Other electronic mechanisms

- Naturally the fact that the passing ion kicks away the electrons weakens the bonds and can also put them in antibonding states
- Moreover, a heavy ion can kick out many electrons at the same time => the ion path becomes positively charged => Coulomb repulsion of positive cores, "Coulomb explosion"
 However, it is not very clear whether Coulomb explosions really occur inside solids neutralization may often be too rapid

3.5.2. Swift heavy ion damage

- The swift heavy ion damage was already described to some extent in the previous section
- Reminder: it requires a high electronic stopping power, and hence has a threshold

Log Energy

Ion path in swift heavy ion regime

In the swift heavy ion regime, where nuclear stopping is negligible, the ion travels essentially straight in the material Near the ion path, very much electronic excitations => high electronic temperature

High electronic temperature

- Although the exact mechanism by which the electronic heating is not known, it appears that a two-temperature model (TTM) of lattice and electronic temperatures can be used to model it well
- Idea: swift heavy ion is the source term for the electronic system, which then via electron-phonon coupling transfers heat to the lattice (atom) subsystem)
- Same basic equations as before for EPC:

$$C_e(T_e)\frac{\partial T_e}{\partial t} = \nabla [K_e(T_e, T_l) \nabla T_e] - G(T_e)(T_e - T_l) + S(\vec{r}, t)$$

$$C_l(T_l)\frac{\partial T_l}{\partial t} = \nabla [K_l(T_l) \nabla T_l] + G(T_e)(T_e - T_l)$$

Illustration with rough time scale

The electronic processes occur very rapidly, < 1 ps</p>

After that the lattice heating and subsequent cooling can take a much longer time

[Georg Wachter et al 2012 J. Phys.: Conf. Ser. 388 132012]

- Along the ion travel path, the material may be damaged if the lattice temperature exceeds the melting temperature
- The damage is visible as long ion tracks in a microscopy experiments
- Almost as long as ion range, can be microns easily

HREM experiment

A. Meftah et al. Phys. Rev. B 49, 12457 (1994)

Radiation damage [B. Afra et al, J. Phys.: Condens. Matter 25 (2013) 045006]

MD simulation with **TTM** model energy input

Ion track in quartz generated by 5.8 keV/nm energy deposition

time 0.00041 ps

Radiation damage 2020 - Kai Nordlund

[Animation quartztrack2.avi]

The results agree well with experiments

* O. H. Pakarinen, F. Djurabekova, K. Nordlund, P. Kluth and M. Ridgway, Nucl. Instr. Meth. Phys. Res. B 267, 1456 (2009)

The experiments and simulations also show that at least in some materials, the track core is actually underdense

* O. H. Pakarinen, F. Djurabekova, K. Nordlund, P. Kluth and M. Ridgway, Nucl. Instr. Meth. Phys. Res. B 267, 1456 (2009)

Applications of ion tracks, 1

- The ion tracks have actually industrial applications
- Since the track core has a different structure from the surrounding material, it may be etched away with a suitable chemical that affects only the disordered region
- This can leave a pore behind => one can make nanoporous filters
- Already a standard technique for polymer foils

R. Spohr, Radiation Measurements (2005)

Radiation damage 2020 [More recent review: Maria E. Toimil-Molares, Beilstein Journal of Nanotechnology 3 (2012) 860.

- The ion track irradiation can also be used as a tool in lithography
 - Since they travel in long straight paths, they can make highaspect ratio structures in materials

G. Thornell *et al.* Sensors and Actuators (1999)

What should you have learned from this section?

You understand the physical origin of electronic stopping power at all experimentally accessible energies

You know the basic range concepts

You understand ion channeling in crystalline materials

You know about SRIM and the basics of how to use the code

You know about swift heavy ion tracks and the basics of how they are created