HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

RADIATION DAMAGE IN MATERIALS

A COURSE IN MODERN KNOWLEDGE OF THE FUNDAMENTALS OF RADIATION DAMAGE IN ALL CLASSES OF MATERIALS

2020 VERSION

Kai nordlund Flyura Djurabekova Antti Kuronen

1. Introduction

1.0. Background of course

The course was first made for the Swedish-speaking physics teaching at the University of Helsinki, Finland in 2014.

- The file names of the lecture notes derive from this (radiation damage = strålningsskador in Swedish)
- It is still used as a specialist MSc-level course at this university. Since the University is trilingual (Finnish-Swedish-English), all specialist terminology is given translations in *Finnish/Swedish* in blue italic font)
- The course setup and contents are based on the about 30 years experience of the key people behind the course in the field of Radiation damage
 - Literature references are given to more specialist results and topics on the course
- The course authors do not bear any responsibility for possible damage caused by learning the materials, whether due to errors in the lecture notes or due to any other means.

Expertise of course lecturers

- Prof. Kai Nordlund (<u>http://www.acclab.helsinki.fi/~knordlun/</u>) has worked
 30 years on radiation damage in all classes of materials except biological
 materials, and published more than 500 papers in the field. He has written
 3 MD codes and 1 KMC code
- Prof. Flyura Djurabekova (<u>http://www.acclab.helsinki.fi/~djurabek/</u>) has worked 25 years on radiation damage and materials in extreme environments, and published more than 200 papers in the field . She has written a BCA code and developed new KMC varieties.
- Docent Antti Kuronen (<u>https://researchportal.helsinki.fi/fi/persons/antti-kuronen</u>) has worked more than 30 years on radiation damage in materials, including medical physics dosimetry. He has published more than 100 papers in the field.
- Prof. William J. Weber (University of Tennessee) also provided several valuable comments to the lecture notes

1.1. Practical matters Aims of the course for the student

- To understand what radiation damage (strålningsskador, säteilyvauriot) is
- To understand how it is created
- To have an idea how they can affect different kinds of materials properties
 - Comprehensive knowledge not possible nobody knows this yet!
- To have a basic idea how it is studied experimentally and by computer simulations
- Course home page:

http://www.acclab.helsinki.fi/~knordlun/rad_dam_course/

- Courses at the Department of Physics:
 - Termophysics
 - i.e. Thermodynamics, statistical physics basics
 - Structure of matter I-II
 - Basics of quantum mechanics, the nature of chemical bonding
 - Materials physics I or Solid State Physics I
 - Atomic structure of matter: crystals, amorphous state, etc.
- Or equivalent knowledge from elsewhere

- The main material of the course are the lecture notes, and possible other material given on the course web page
- A good book, serving as partial inspiration to this course, is the one by Gary Was: Fundamentals of Radiation Materials Science, Springer 2012
 - £89.99+shipping on amazon.co.uk 23.3.2014
 - Not mandatory to purchase

Good wide-range review articles (available on course web page):

- R. S. Averback and T. Diaz de la Rubia. *Displacement damage in irradiated metals and semiconductors*. In H. Ehrenfest and F. Spaepen, editors, Solid State Physics, volume 51, pages 281--402. Academic Press, New York, 1998.
- K. Nordlund, S. J. Zinkle, A. E. Sand, F. Granberg, R. S. Averback, R. Stoller, T. Suzudo, L. Malerba, F. Banhart, W. J. Weber, F. Willaime, S. Dudarev, and D. Simeone, http://www.acclab.helsinki.fi/~knordlun/pub/Nor18.pdf Primary radiation damage: a review of current understanding and models, J. Nucl. Mater. **512**, 450 (2018).
- A. V. Krasheninnikov and K. Nordlund. *Ion and electron irradiation-induced effects in nanostructured materials*. J. Appl. Phys. (Applied Physics Reviews), 107:071301, 2010.
- K. Nordlund, <u>http://www.acclab.helsinki.fi/~knordlun/pub/Nor18b.pdf</u> Historical review of computer simulation of radiation effects in materials, J. Nucl. Mater. **520**, 273 (2019), Invited review in Diamond Anniversary issue.

1.2. Radiation What is radiation?

- To understand what radiation damage means, one first needs to know what radiation (strålning, säteily) means
- In general, in all three languages the word radiation has a very general meaning of some sort of transfer of a physical quantity for far distances
 - In electrodynamics, Maxwells equations imply that a moving charged particle induces an electromagnetic field, but not energy transport. An accelerated particle induces an electromagnetic field that transports energy to infinity = electromagnetic radiation (elektromagnetisk strålning, sähkömagneettinen säteily).
 - E.g. radiowaves
- Photon energy in electromagnetic radiation can be anything
 Of course also radioactive decay causes radiation, the sun, the stars, the headlights of a car, …

Definition of ionizing radiation

- For this course we are specifically interested in the kinds of radiation that can damage materials or living beings
- This kind of radiation is defined to be "ionizing radiation" (joniserande strålning, ionisoiva säteily)
- This is also a legal term, defined in the radiation protection legislation
- Unfortunately, in common language the terms often get confused: physicists tend to drop the preword "ionizing", and much of the common public believes all radiation is dangerous
 - There is also a minor misleading physical feature in this terminology: there are types of high/energy radiation that cause damage in materials, even though they don't cause practically any ionization of atoms (e.g. cluster ion bombardment)...
 - But this is fairly uncommon, and don't tell this to the lawyers, it would just confuse them

Radiation damage 2020 - Kai Nordlund

- The same terminology problem exists in many other languages
- E.g.
 - German: Strahlung und Ionisierender Strahlung
 - Russian: облучение, ионизирующее облучение

- There is a fairly definite physics explanation for the border of what damaging / ionizing radiation is:
- The strength of chemical bonds is of the order of ~ 2-5 eV
- Hence radiation where the particles have an energy high enough to break chemical bonds well enough to leave them permanently broken, damages a material
- I.e. particle energy > 5 eV or so (since a single bond break is seldom stable) may be ionising
 - But the exact limit is fuzzy and depends a lot on case; in many cases fundamental physics is not known
- Hence laser irradiation in the visible range is not ionizing even though if the intensity is high enough, it can sure damage a material

The Finnish law [http://plus.edilex.fi/stuklex/en/]

Radiation Act Chapter 3 Definitions Section 8

Radiation

For the purposes of this Act, the term:

1. Radiation shall denote ionizing and non-ionizing radiation,

2. *Ionizing radiation* shall denote radiation capable of producing ions in a medium,

3. *Non-ionizing radiation* shall denote ultraviolet radiation, visible light, infrared radiation, radio-frequency radiation, and low-frequency and static electric and magnetic fields,

4. *Natural radiation* shall denote ionizing radiation originating in space, or from radioactive substances occurring in nature and not used as radiation sources.

Note that the law states that ultraviolet is non-ionizing, even though physically this is not well motivated!

Strålskyddslagen 27.3.1991/592 3 kap Definitioner 8 § Strålning I denna lag avses med 1) *strålning* både joniserande och icke-joniserande strålning,

2) *joniserande strålning* sådan strålning som bildar joner i mediet,

3) *icke-joniserande strålning* ultraviolett strålning, synligt ljus, infraröd strålning, radiofrekvent strålning samt lågfrekventa och statiska elektriska och magnetiska fält,

4) *naturlig strålning* joniserande strålning som härstammar från rymden eller från naturliga radioaktiva ämnen då dessa inte används som strålkällor.

Säteilylaki 27.3.1991/592 3 LUKU Määritelmiä 8 §

Säteily

Tässä laissa tarkoitetaan:

1) säteilyllä ionisoivaa ja ionisoimatonta säteilyä;

2) *ionisoivalla säteilyllä* säteilyä, joka muodostaa väliaineessa ioneja;

 3) ionisoimattomalla säteilyllä ultraviolettisäteilyä, näkyvää valoa, infrapunasäteilyä, radiotaajuista säteilyä sekä pientaajuisia ja staattisia sähkö- ja magneettikenttiä;
 4) luonnonsäteilyllä ionisoivaa säteilyä, joka on peräisin avaruudesta tai luonnon radioaktiivisista aineista silloin, kun niitä ei käytetä säteilylähteinä.

1.3. Types of particles that can cause radiation 1.3.1. Photons

Electromagnetic waves, whose quantum is the photon, are of course extremely central in physics

The electromagnetic spectrum by photon energy:

- Upper Ultraviolet, X-ray and gamma radiation are ionizing
- Terminology note:
 - X-rays photons (röntgenfotoner, röntgenfotoni) come by definition from transitions in atoms
 - Gamma photons come by definition from nuclei
 - Synchrotron radiation (synkrotron-strålning, synkrotronisäteily tai syvävalo) comes from bremsstrahlung in high-energy accelerators and overlaps completely with the X-ray energies

- Electrons can be accelerated to high energies with electromagnetic fields, and in that case become a source of ionizing radiation
- Classical examples: x-ray tubes (electrons accelerated and hit a metal to produce x-rays), cathode-ray (*katodstråle, katodisäe*) tubes (also known as the old-fashioned non-flat <<TV's)...</p>
- Electron-microscopes, high-energy electron accelerators
- Certain natural radioactive decays also produce MeV electrons
- Electron beam welding (elektronstrål-svetsning, elektronisuihkuhitsaus)

- Typical old TV's worked with a 25 kV electron accelerator
- The electron beam was deflected by magnets in a rastered manner over fluorescent elements to produce the picture!
- The electrons were ionizing, and did produce a little bit of xrays when hitting the screen
 - Hence all the warnings not to be too close to the TV!

Radiation damage 2020 – Kai Nordlund

[wikipedia: cathode ray tube]

1.3.3 Neutrons

- The neutron is not a stable elementary particle, but has a halflife of about 11 minutes
- But free neutrons still exist in man situations of practical interest:
 - Natural radioactive decay
 - Produces neutrons with energies of a few MeV, which can cause additional nuclear reactions, but usually slow down in matter down to meV energies before being absorbed or decaying into a proton+electron+neutrino
 - Nuclear fission reactors (and nuclear fission bombs)
 - Operation relies on chain reaction among U or Pu isotopes mediated by neutrons.
 - Initially MeV, but need to be thermalized (termaliserad, termalisoitu) down to sub-eV energies for efficient absorption into other atoms
 - Nuclear fusion reactors (and the hydrogen bombs)
 - Produce 14 MeV neutrons

Neutrons can be classified by their energy:

Category	Energy
Cold neutrons	<0.003 eV
Slow (thermal) neutrons	0.003 - 0.4 eV
Slow (epithermal) neutrons	0.4 – 100 eV
Intermediate neutrons	100 eV – 200 keV
Fast neutrons	200 keV – 10 MeV
High energy (relativistic) neutrons	>10 MeV

[https://www.msm.cam.ac.uk/teaching/partIII/courseM17/M17H.pdf]

1.3.4 lons

- Any charged atom or molecule can be called an ion
- Any ion can be accelerated with electromagnetic fields to high energies with various accelerator (accelerator, kiihdytin) technologies
 - Accelerator energy range: from about 10 eV (small ion guns plus decelerator) to 7 TeV (the Large Hadron Collider at CERN)
 - Accelerator technologies are in wide practical use in silicon chip manufacturing (multibillion-\$ industry), thin film synthesis, materials analysis
 - Also wide research use for ion beam analysis (jonstrålanalys, ionisuihkuanalyysi) and ion beam modification (jonstrålmodifiering, ionisuihkumuokkaus) of materials
- Ions can also be produced naturally by radioactive decay
- The solar wind (solvinden, aurinkotuuli) actually mainly consists of energetic (keV, Mev and GeV) protons

1.3.5. More exotic cases

- Energetic neutral atoms can exist, but are
 - very rare (since they cannot be accelerated
 - directly). Behave much like energetic ions with same energy.
- Any elementary particle can at least in principle have an energy > 5 eV and hence cause damage
- Muons, antiprotons, positrons, neutrinos, …
 - Serious issue at particle physics labs like CERN
 - But also some everyday natural effects: cosmic muons (kosmiska myoner, kosmiset myonit) formed in the uppermost atmosphere) irradiate us every minute and cause upset events in modern electronics
 - Speculatively: due to the earths rotation around the center of the galaxy, we may be hitting dark matter particles in a radiation-like Way [Phys. Rev. Lett. 120, 111301 (2018)]
- Composite particles:
 - Molecules, Nanoclusters
 - Crucial quantity usually for this energy/atom, not total energy

- Radiation damage is closely linked to nuclear physics, but not entirely part of it
 - Radioactivity is a nuclear physics process: nuclei decay into other particles
 - Neutron interactions with materials is generally considered a nuclear physics process: they interact only with other nuclei

- But ion or electron irradiation at energies < 100 keV does usually not involve any nuclear reactions at all, and the nuclei don't even meet each other (electron cloud shielding) => often considered a materials but not nuclear physics method
- The final damage is in any case a materials physics issue, not one of nuclear physics

1.3.6. Historically important definitions: α , β , γ , δ

- When radiation was initially found stepwise in the latter 19'th century and early 20'th century, there was not a good understanding of what the observed particles were in origin
- Without going into a science history lesson, we can now just in retrospect state what the observed particles are in modern terminology:
- α particles = Helium nuclei (two protons + two electrons)
 Widely used still
- β particles = Electrons (free electrons)
 - Nowadays pretty rarely used except in nuclear physics
- \sim γ rays = high-energy photons from nuclei
 - Widely used still
- δ electrons = Secondary electrons produced when another energetic particle interacts with matter

Nowadays still used in certain branches of solid state physics Radiation damage 2020 – Kai Nordlund

1.4 Damage and dose terminology

- Ionizing radiation does usually damage materials
- Some central damage terminology:
 - Radiation damage (strålningsskador, säteilyvauriot): any kind of damage to a material produced by radiation
 - Defects (defekt, kidevirhe): atoms that deviate from the reqular equilibrium order in a crystal or amorphous material
- Not all radiation damage is in the kind of defects: for instance, irradiation can amorphize a material into a stable phase. In this case the material may not have any defects, but the amorphized region is still radiation damage
- Defects produced by irradiation have sometimes beneficial properties. In this case it is misleading to call it damage

Dose terminology

- **Exposure** (*exponering* , *altistus*) is the process when a material is exposed to some kind of radiation
- Measures for the amount of exposure
 - Dose (dos, annos): amount of energy deposited by radiation per mass or volume (units of Energy/mass or Energy/volume)
 - Dose rate (dosrat, annosnopeus): Dose/time (units of Energy/(mass x time) or Energy/(volume x time))
 - Fluence: amount of energetic particle deposited per area (units of particles/area i.e. 1/area)
 - Problematic to translate to Swedish/Finnish, totalflöde or kokonaisvuo could be used
 - Flux (*flöde, vuo*): Fluence/time (units of particles/(area x xtime) i.e. 1/(area x time)
- Activity ((strålnings)aktivitet, (säteily)aktiivisuus): amount of radiation produced by a radioactive sample

Dose units: some common ones

- Dose D:
 - SI unit Gray (J of radiation / kg of material)
 - Many historical units also exist...
 - Common units in physics research: eV/atom, eV/Å³
 - Special unit: displacements-per-atom (dpa) widely used in nuclear engineering and ion beam physics. This will be returned to later on during the course
 - For damage in living tissue special unit that include an estimate of how sensitive human tissue is to difference kinds of radiation:

rem = radiation-equivalent-man. Not part of this course.

Dose rate:

Gray/s

Fluence:

```
particles/cm<sup>2</sup>, particles/m<sup>2</sup> = 1/cm<sup>2</sup>, 1/m<sup>2</sup>
```

Flux:

particles/(cm² s), particles/(m² s) = 1/(cm² s), 1/(m² s)

- Equivalent dose H (*ekvivalent dos, ekvivalenttiannos*) (used only for living humans): Dose multiplied with a quality factor depending on kind of irradiation Q: H = QD
 - Unit: Sievert (Sv)
 - Q = 1 for 200 keV photons (per definition)
 - Q = 2 for protons > 2 MeV
 - Q = 20 for few MeV alphas
 - Function of linear energy transfer (LET) i.e. radiation energy loss per length travelled, a.k.a. stopping power, e.g. keV/µm or eV/Å
- Older unit: rem (radiation equivalent man); 1 Sv = 100 rem
- Nice list of different doses and their effects:

http://en.wikipedia.org/wiki/Sievert

- Annual average natural dose in Finland: 3.7 mSv
- About 5 Sv lethal dose

What should you have learned from this section?

- You understand the difference between ionizing and nonionizing radiation
- You know the basic terminology in the field: what kind of particles can have a high energy, meaning of α, β, γ, δ radiation
- You know that legal laws and physical laws do not always exactly match [©]
- You have a basic idea of how energetic particles are produced in nature and by humans
- You know the basic exposure nomenclature and units for radiation damage