
5. Monte Carlo integration

One of the main applications of MC is integrating functions.

At the simplest, this takes the form of integrating an ordinary 1- or multidimensional analytical

function. But very often nowadays the function itself is a set of values returned by a simulation (e.g.

MC or MD), and the actual function form need not be known at all. Most of the same principles of

MC integration hold regardless of whether we are integrating an analytical function or a simulation.

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 1

5.1. MC integration

[Gould and Tobochnik ch. 11, Numerical Recipes 7.6]

To get the idea behind MC integration, it is instructive to recall how ordinary numerical integration

works. If we consider a 1-D case, the problem can be stated in the form that we want to find the

area A below an arbitrary curve in some interval [a, b].

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 2

In the simplest possible approach, this is achieved by a direct summation over N points occurring

at a regular interval ∆x in x:

A =

NX
i=1

f(xi)∆x (1)

where

xi = a + (i− 0.5)∆x and ∆x =
b− a

N
(2)

i.e.

A =
b− a

N

NX
i=1

f(xi)

This takes the value of f from the midpoint of each interval. Of course this can be made more

accurate by using e.g. the trapezoidal or Simpson’s method. But for the present purpose of linking

this to MC integration, we need not concern ourselves with that.

In M dimensions, the generalization of this is for an interval ([a1, b1], [a2, b2], . . . , [aM , bM])

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 3

giving an (M+1)-dimensional volume V (M+1)

V
(M+1)

=
(b1 − a1)(b2 − a2) · · · (bM − aM)

N1N2 · · ·NM

N1X
i1=1

N2X
i2=1

· · ·
NMX

iM=1

f(xi)

where

xi = (xi1
, xi2

, . . . , xiM
)

is the M-dimensional vector and each xi is defined as above in Eq. (2). This can be rewritten as

V
(M+1)

=
V (M)

N

N1X
i1=1

N2X
i1=1

· · ·
NMX

iM=1

f(xi) = V
(M)

PN1
i1=1

PN2
i2=1 · · ·

PNM
iM=1 f(xi)

N
(3)

where V (M) is the M -dimensional volume defining the integration “area”, and N the total number

of points. The latter form shows that this can be interpreted simply as taking the average over f

in the interval in question, i.e. this can be written also as

V
(M+1)

= V
(M)〈f〉 (4)

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 4

where 〈〉 denotes the average,

〈f〉 =

NX
i=1

f(xi)

N

5.1.1. Sampling method

The sampling method for MC integration is very similar to the simple summing rules 1 and 3 given

above. Instead of sampling at regular intervals ∆x, we now sample at random points, and then

take the average over these.

Say we pick N points xi in the interval [a, b] in 1D. The integral then becomes

A =
b− a

N

NX
i=1

f(xi)

which is identical to Eq. 1.

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 5

More generally, in M dimensions we have to pick vectors

xi = (x1, x2, . . . xM)

at random in the interval ([a1, b1], [a2, b2], . . . , [aM , bM]) which can be done very easily using

uniform random numbers for each dimension at a time. Having N such points, the MC estimate of

the (M + 1)-dimensional volume below the M -dimensional function f(x) is then

V
(M+1) ≈ V

(M)

NX
i=1

f(xi)

N
= V

(M)〈f〉 (5)

where the latter form emphasizes the similarity to the numerical integration.

How does the MC integration work in practice? Let us consider getting the volume of a sphere of

radius r. In this case, our region of integration is a circular area of radius r in the xy plane, and

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 6

the function is easily derived from

r
2
= x

2
+ y

2
+ z

2
=⇒ z =

q
r2 − (x2 + y2)

i.e.

f(x, y) =
q

r2 − (x2 + y2)

Integrating this will give half the volume of the sphere. We will do this by selecting points randomly

in a square with the range ([−r, r], [−r, r]), reject those which are outside the circle of radius r,

then do the MC sum for the points inside.

In this 2-dimensional case, we could also make a routine which generates points directly within

the circle, with no need for a rejection step. But this becomes increasingly complicated in higher

dimensions, and will hence not be done.

Here is a code which does the integration. The random number generator is ran2 identically copied

from Numerical Recipes, and hence not written out here. The code is pretty much self-explanatory.

#include <math.h>
#include <stdio.h>

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 7

main()
{
int seed=45629;
float pi=3.141592653589793238;

int npoints=100000;
int n,npointsinside;
float x,y,r,sq,f,fsum,fmean,I;

float ran2(); /* Random number generator provided */

r=1.0;
fsum=0.0;
npointsinside=0;
for(n=0;n<npoints;n++) {
x=r*(2.0*ran2(&seed)-1.0);
y=r*(2.0*ran2(&seed)-1.0);
/*

Evaluate function i.e. calculate sqrt(r^2-(x1^2+x2^2+...+xn^2))

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 8

but only for points inside the 2D circle
*/
sq=x*x+y*y;
if (sq < r*r) {

f=sqrt(r*r-sq);
fsum+=f;
npointsinside++;

}
}
if (npointsinside==0) {

printf("No points inside. Increase npoints\n");
exit(0);

}
/* MC estimate of <f> */
fmean=fsum/npointsinside;

/* Actual integral: 2 V <f> ; volume is now pi r^2 */
I=2*pi*r*r*fmean;

printf("Sphere volume is %.6f hits %d\n",I,npointsinside);

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 9

}

Running the code gives

beam.helsinki.fi tests> cc 3Dsphere.c -lm
beam.helsinki.fi tests> a.out
Sphere volume is 4.182319 hits 78575

so the answer is quite close to the correct one, 4π/3 = 4.18879020. We will below see how the

uncertainty can be estimated.

5.1.1.1. When and why is MC better than numerical integration

Comparison of the sums in Eqs. 3 and 5,

V
(M+1)

=
V (M)

N

N1X
i1=1

N2X
i2=1

· · ·
NMX

iM=1

f(xi) (6)

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 10

vs.

V
(M+1) ≈

V (M)

N

NX
i=1

f(xi) (7)

illustrates a crucial difference: in numerical integration, we need M different sums, but in MC

integration only one is enough! This leads us to understand why MC integration is so important in

many dimensions. In 1D there really is no major difference, and indeed using methods like Simpson’s

the conventional numerical integration can easily be made quite accurate and much more efficient

than MC integration. But with increasing numbers of dimensions M , doing the M sums becomes

increasingly cumbersome, and eventually using the MC approach which only needs one sum will

clearly be simpler.

To be more specific about the cumbersomeness, for numerical integration we will always need at

least a few points Ni per dimension to get a sensible answer, so the number of summing steps

increases as NM
i . If e.g. Ni = 5 for all i (a very low value!), then in 10 dimensions we need

510 ≈ 10 million points to get any kind of sensible answer. But for MC integration we can use the

same number of points N for any number of dimensions.

To illustrate this, I did the following test. I calculated the volume of a sphere in M dimensions

with direct numerical integration (using the midpoint method) and MC integration. The number

of intervals was 20 in the numerical integration in each dimension, and the number of attempts in

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 11

the MC simulation was always 105. This happened to give results of comparable, about ∼ 0.5 %

accuracy. I timed the result simply with the Unix time command.

The results are as follows. The first column gives the number of dimensions M , the next two the

numerical execution time, the next two the MC results in the same way, and the last column the

correct answer (known analytically). The times are in seconds.

numerical MC
M time result time result Correct
---- ---- ------ ---- ------ -------
2 0.00 3.1524 0.01 3.1435 3.1415
3 0.00 4.1737 0.07 4.1896 4.1887
4 0.00 4.9023 0.08 4.9330 4.9348
5 0.02 5.2381 0.10 5.2787 5.2637
6 0.30 5.1451 0.13 5.1748 5.1677
7 5.02 4.6704 0.15 4.7098 4.7247
8 89.9 3.9595 0.17 4.0479 4.0587
9 1320 3.3998 0.20 3.3191 3.2985

So we see that for M < 6 the numerical method is faster, but after that becomes terribly

much slower. What is most interesting is that the time required by the MC method is not rising

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 12

almost at all, even though the accuracy stays the same. This is what makes it so interesting for

high-dimensional integration.

5.1.2. Hit and miss method

There is another approach to MC integration, which is even simpler than the sampling approach.

It is essentially the same as the hit-and-miss method used to generate random numbers in a

nonuniform distribution. The idea is that we find some region in space of known volume, which

encloses the volume we want to integrate, then generate random points everywhere in this region,

and count the points which actually do hit the volume we want to handle:

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 13

Say the volume of the external region is Ve and the fraction of hits is fh. Then the volume of the

region to be integrated is simply

V = Vefh

This method is actually equivalent to the previous one. This can be understood as follows. Say we

are working in M dimensions, the number of trial points is N , and the number of hits is Nh. Then

the above equation can be rewritten as follows:

V = Vef = Ve

Nh

N
= Ve

NhX
i=1

1

N

If we further define an M-dimensional function

f(x) =

1 if x is inside the volume

0 elsewhere

we can write this as

V = Ve

NX
i=1

f(xi)

N

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 14

Now we see that this is identical to eq. (5) ! In fact since the average of f is just the fraction of

hits fh, we can simply write this as

V = Vefh = Ve〈f〉 (8)

The only difference is that because f now is dimensionless, V and Ve have the same dimension.

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 15

5.2. Error analysis of MC integration

In any scientific study where statistics is collected (which is most of experimental and computational

science), it is of utmost importance to be able to calculate not only the average of something, but

also the uncertainty of the average. For the MC simulation methods described above this can be

done as follows.

5.2.1. Sampling method

For the sampling method, the error can be obtained very simply. Remember that we consider the

volume calculations as a calculation of the average of the f function, 〈f〉. Then it is natural to

calculate the error as the error of the average over the sampled values of f , as this is usually

done. The general equation for the error of the average σx̄ of a set of points xi is [Pentikäinen]

σx̄ ≈
σ
√

N

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 16

where the variance σ2 is obtained from

σ
2
=

1

N − 1

"
NX

i=1

x
2
i

!
−N(x̄)

2

#

Combining these and assuming N >> 1

σx̄ ≈
1
√

N

sPN
i=1 x2

i

N
− (x̄)

2

Now for MC integration the points xi are actually the values of the function f ! Using the same

notation as above for the average,

〈f〉 =

NX
i=1

f(xi)

N
and 〈f2〉 =

NX
i=1

f
2
(xi)

N

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 17

we thus get that the error of the MC integration is

σV 〈f〉 ≈ V

s
〈f2〉 − 〈f〉2

N

and, to reiterate, the whole equation for the MC integration

Z
fdV ≈ V 〈f〉 ± V

s
〈f2〉 − 〈f〉2

N
(9)

Note that this gives the so called one sigma (1 σ) error. This means that if the data would

be distributed in a Gaussian distribution, the probability that the true value is within the one

sigma error is about 2/3 (68.3 % to be more precise). One can also correspondingly give broader

confidence intervals, 2 σ, 3 σ etc. with increasingly large probabilities that the true value is within

the measured value plus minus its error bar. (FIGURE DRAWN ON LECTURE)

From this we also see why MC integration is particularly useful in multidimensions - the accuracy

increases as
√

N , but there is no dependence on the number of dimensions here! So to get

comparable accuracy, one only needs to collect the same number of points N regardless of

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 18

dimension. This is in clear contrast to direct numerical integration, where the number of points

needed increases as

N
d
1

where d is the number of dimensions and N1 the number of points needed in one dimension.

5.2.1.1. Caution: this may not be right

But there are two possible problems with this error estimate.

The first is that there is absolutely no guarantee the f points do have a Gaussian distribution,

and hence the error given by the equation (9) should be understood as only a rough idea of what

level of uncertainty may be expected.

A better estimate of error can be obtained if it is possible to collect enough f(xi) points to see

what shape the distribution actually has, then analyze the error behaviour of this distribution. If it is

not some well-known distribution, it is always possible to use MC simulation of the data distribution

to deduce how the error should be calculated; this will be discussed in the next section.

The second problem is that even if the data does have a Gaussian distribution, Eq. 9 is not
right if N is very low! The correct error is obtained first by calculating the function averages

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 19

using N − 1 instead of N in the denominator,

〈f〉 =

NX
i=1

f(xi)

N − 1
and 〈f2〉 =

NX
i=1

f
2
(xi)

N − 1

then calculating the error of the average:

σV 〈f〉 ≈ V

s
〈f2〉 − 〈f〉2

N

then multiplying the error thus obtained with the so called Student’s dilatation factor. It is [Laurikainen’s

data analysis notes]

N : 2 3 4 6 11

Student’s dilatation factor: 1.84 1.32 1.20 1.11 1.05

We see that this correction is probably needed essentially only when N < 10 (an error of an error

of less than 5% is almost certainly not meaningful in most contexts). Since in most MC simulations

N certainly is larger than 10, this is not a problem. Note, however, that if you look at larger

confidence intervals (2σ, 3σ etc.) the correction becomes significantly larger even for larger N .

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 20

Unfortunately in many cases the shape of the f function is not known, and evaluating it is so slow

that it can be sampled at so few points (a few ten or even less) that it is not possible to deduce

what distribution it actually has. In such cases, the most common way to go is to simply use

equation (9) and hope it is in the right ballpark. Of course if the magnitude of the error bars is

crucial for supporting the conclusions you want to draw, this is not acceptable!

In published work, the general trend seems to be that if nothing is said about the way the error is

calculated, it is implicit that the errors given are 1 σ errors calculated assuming Gaussian statistics.

Most natural scientists probably are not even aware of the possible problems with this, so now that

you are, you already are doing better than the majority!

5.2.2. Hit and miss method

The hit-and-miss method gave the volume of an integrated area simply as

V = Vef = Ve

Nh

N

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 21

where Nh is the number of hits, and N the number of trials.

To find the error of the hit and miss method, we utilize our observation that the hit-and-miss

method is actually just a variety of the sampling method. Eq. (8):

V = Vefh = Ve〈f〉

where f was our artificial function:

f(x) =

1 if x is inside the volume

0 elsewhere

So the error is now as above,

σVe〈f〉 ≈ Ve

s
〈f2〉 − 〈f〉2

N
with

〈f〉 =

NX
i=1

f(xi)

N
and 〈f2〉 =

NX
i=1

f
2
(xi)

N
But taking into account the simple form of f we see that this can be simplified, 〈f〉 is just Nh/N ,

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 22

and so is 〈f2〉 ! Hence the error becomes

σVe〈f〉 ≈ Ve

s
(Nh/N)− (Nh/N)

2

N
= Ve

s
Nh −N

2
h/N

N2
= Ve

q
Nh −N

2
h/N

N

and we can write the equation for the integrated volume and its error in the hit-and-miss method as

V = Ve

Nh

N
± Ve

q
Nh −N

2
h/N

N
(10)

Finally, if Nh << N we can simplify further to get

V = Ve

Nh

N
± Ve

√
Nh

N
if Nh << N

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 23

5.3. Utilizing nonuniform random numbers

Above we assumed the random numbers are generated in a M-dimensional box. But in case

the volume to be integrated fills only a small fraction of that box, the fraction of misses can

be enormous. In that case it may be highly advantageous to find some other distribution which

better encloses the volume we are integrating over, and generate random numbers only in this. If

the enclosing function is such that we know how to generate random numbers in this distribution

analytically, the savings in time can be enormous.

This is actually exactly what was done in the previous section when we discussed the combined
analytical-rejection method to generate random numbers. The algorithm there was

1◦ Generate a uniformly distributed number u = Pu(0, 1)

2◦ Generate a number distributed as g(x): x = G−1(u)

3◦ Generate a uniformly distributed number y = Pu(0, ag(x))

4◦ If y > f(x) this is a miss: return to 1◦

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 24

5◦ Otherwise this is a hit: return x

In this case, if we would be integrating a function h(x, y) over a 2-dimensional volume bound by

the x axis and f(x), then we would just change step 5◦ to return both x and y, then evaluate h

in the point (x, y).

Of course, with increasing dimensions this becomes increasingly complicated.

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 25

5.4. Importance sampling

[Karimäki notes]

One approach to improving the MC accuracy is reducing the variance σ2 in the data. Remember

that σ2 for any non-constant data distribution is a quantity which goes towards some finite, non-zero

value when N →∞, whereas the error of course goes to 0 with increasing N . Since the MC error

is ∝ σ√
N

, it is clear that if we can reduce the variance σ2 the error will also go down for the same

N .

This is also simple to understand intuitively. Consider e.g. the following functional shape we would

want to integrate:

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 26

It is quite obvious that most of the integral comes from the region of the peak. But if we generate

points evenly in the interval [a, b], most points won’t be in the peak area, and their contribution to

the total will be relatively small.

In fact, some simply thought indicates that the least effort will be spent in case the distribution is

fairly flat. In that case the variance σ2 will become smaller.

The idea behind importance sampling is to transform f(x) into another, flatter function which is

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 27

then MC integrated. Of course there has to be a back-transformation to give the original integral

we really want.

So let’s say we have a function g(x) normalized over the integration interval [a, b] which gives the

property that
f(x)

g(x)

is fairly flat. g(x) has to be > 0 for all x in the interval. We now want to calculate

I =

Z b

a

f(x)dx =

Z b

a

f(x)

g(x)
g(x)dx =

Z b

a

f(x)

g(x)
dG(x)

where

G(x) =

Z x

a

g(x)dx

is the integral of g(x). If we now make a variable change r = G(x) we get

I =

Z G(b)

G(a)

f(G−1(r))

g(G−1(r))
dr

which gives the same integral, but more efficiently because the integrand is flatter than the original.

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 28

Evaluating this with MC is done in the same way as for any other function,

I =
1

N

NX
i=1

f(G−1(ri))

g(G−1(ri))

where the ri are uniform random numbers.

So we have to be able to determine G−1. But there is an alternative: it is actually enough that we

can generate random points distributed as g(x) by any means (not necessarily analytically). In this

case the MC sum is

I =
1

N

NX
i=1

f(x
(g)
i))

g(x
(g)
i)

where the x
(g)
i are random numbers distributed as g(x).

What is actually the advantage of this compared to using hit-and-miss MC integration with the

combined rejection method for some function ag(x) ? In that case, using g(x) reduces the number

of misses a lot, and since we integrate in one more dimension, all points have equal value (1), and

hence the variance should be low as well? As far as I can see, the main advantage is that now we

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 29

do not have to go up in dimensions, nor require that ag(x) > f(x), which may sometimes be

difficult or impossible to prove, especially in high dimensions.

Let us make this concrete with a simple example. Say we want to evaluate part of a Gaussian

function,

I =

Z 1

0

e
−x2

dx

In this region, the function decreases from 1 to 1/e. The simple exponential function e−x does the

same, so let’s use that for g(x). We first have to normalize g, so we calculateZ 1

0

e
−x

dx = −
1

e
+ 1 = 1−

1

e
=

e− 1

e

and see that our normalized weighting function is

g(x) =
e−xe

(e− 1)

Then

G(x) =

Z x

0

e−xe

e− 1
dx =

(1− e−x)e

e− 1

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 30

and

G
−1

(u) = − log

„
1− u

e− 1

e

«

Does this seem complicated? Well, it is not. An entire code to do all this is given here (awk/C):

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 31

gawk -v N=$1 ’BEGIN {
srand();
e=exp(1);
sum=0.0;
for(i=0;i<N;i++) {

r=-log(1-rand()*(e-1)/e);
foverg=exp(-r*r)/(exp(-r)*e/(e-1));
sum+=foverg;

}
print sum/N;
exit;

}’

Is this really advantageous, then? I did a comparison of this vs. direct MC integration of the same

function. The results are here:

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 32

Direct sampling Importance sampling
N result time result time
------ ------ ----- ------ -----
10000 0.743275 0.20 0.746915 0.06
100000 0.746407 0.20 0.746801 0.52
1000000 0.746966 2.21 0.746829 4.95
10000000 0.746771 21.72 0.746830 48.77

(Note that using the scripting language awk for this is of course hideously slow compared to C or

Fortran)

The correct answer is, to 6 decimals, 0.746824. So we see that although for the same N importance

sampling is about two times slower, it gets closer to the correct answer for a much smaller number

of iterations. At N = 10000000 the error in the direct method is 71/106, but only 10/106 in

the importance sampled method. So clearly it is worth using the importance sampling.

5.4.1. Control variates

The idea here is similar to importance sampling. We want to replace the function to be integrated

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 33

by something flatter to reduce the variance and thus the error of the data. But instead of division,

we use subtraction.

The operation is simply

I =

Z b

a

=

Z b

a

(f(x)− g(x))dx +

Z b

a

g(x)dx

and the idea is to find a g(x) such that

• Var(f − g) < Var(f)

•
Z b

a

g(x) dx is known.

The integral
R b

a
(f(x)− g(x))dx is evaluated with ordinary MC. This approach has the following

advantages compared to importance sampling:

- It does not matter if g(x) is zero somewhere in the interval

- We do not need to know how to distribute random numbers according to g(x)

- g can also be negative

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 34

The variance of f − g is

Var(f − g) = Var(f) + Var(g)− 2Cov(f, g)

where the last term is the covariance between f and g. In order that this be useful, we should thus

have

2Cov(f, g) > Var(g)

i.e. f and g are positively correlated (have similar shapes).

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 35

5.5. Stratified sampling

Importance sampling is a fine way to improve on MC integration, but has the disadvantage that

the function, or at least its overall shape, has to be known. However, often it is not. As mentioned

above, f may actually be a number returned by some other, hugely complicated simulation. This

could e.g. be an MD, electronic structure or another MC simulation.

In principle one could first do a set of simulations to determine the rough shape of f on a numeric

grid, then use this numeric data as the weighting function g (remember that it is possible to form

random numbers also for a function existing only in numeric form). This would probably work fine

in 1 or only a few dimensions. But in a high number of dimensions M , we would need memory

proportional to NM
points to store the numeric function.

Stratified sampling does not have these problems. It can be used for any function, even when

nothing is known about its shape, and does not require storage increasing with the dimensionality.

Generating random numbers in a stratified or quasi-random manner was already discussed in the

last section. Now we see why this may be important: as we derived above, the error of the ordinary

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 36

MC method decreases as
1
√

N
for true and pseudo-random numbers. But as mentioned in the last section, with stratified sampling

or quasi-random numbers one can achieve at best an error decreasing as

1

N

which may give an enormous saving in time.

5.5.0.1. Motivation of 1/N dependence [Numerical Recipes ch. 7.8.]

I will now explain the idea of why stratified sampling is (can be) more efficient than direct Monte

Carlo, although I will not derive the 1/N formula.

Recall that the error of MC integration normally is

σV 〈f〉 ≈ V

s
〈f2〉 − 〈f〉2

N
= V

s
σ2

N

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 37

where σ2 is the variance.

Let us now use the following notation: 〈〈f〉〉 is the true average of the integral in the region of

interest, 〈f〉 the basic MC integration estimate of this:

〈〈f〉〉 =
1

V

Z
fdV and 〈f〉 =

1

V

X
i

f(xi)

The variance of the MC integration, σ2
〈f〉 = Var(〈f〉) is related to the variance of the true function,

Var(f) = 〈〈f2〉〉 − 〈〈f〉〉2

by

Var(〈f〉) =
Var(f)

N
when N →∞.

The point of generating random numbers for stratified sampling was to divide V into a number of

boxes, then generate one or more random numbers in each box.

Let’s now consider the simplest possible case of dividing V into two equally large regions a and b,

both of which are sampled at N/2 points. Then the MC integration gives an alternative estimate

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 38

〈f〉′ of the true integral 〈〈f〉〉,

〈f〉′ =
1

2
(〈f〉a + 〈f〉b)

and the variance of this is now

Var(〈f〉′) =
1

4
[Var(〈f〉a) + Var(〈f〉b)]

=
1

4

»
Vara(〈〈f〉〉)

N/2
+

Varb(〈〈f〉〉)
N/2

–
=

1

2N
[Vara(〈〈f〉〉) + Varb(〈〈f〉〉)]

On the other hand, let us calculate the variance of the true function,

Var(f) = Var(〈〈f〉〉) = 〈〈f2〉〉 − 〈〈f〉〉2

=
1

V

„Z
a

f
2
dV +

Z
b

f
2
dV

«
−
„

1

V

„Z
a

fdV +

Z
b

fdV

««2

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 39

=
1

2

〈〈f2〉〉az }| {
2

V

Z
a

f
2
dV +

1

2

〈〈f2〉〉bz }| {
2

V

Z
b

f
2
dV

−

0BBB@1

2

〈〈f〉〉az }| {
2

V

Z
a

fdV

1CCCA
2

−

0BBB@1

2

〈〈f〉〉bz }| {
2

V

Z
b

fdV

1CCCA
2

−
1

2

〈〈f〉〉az }| {
2

V

Z
a

fdV

〈〈f〉〉bz }| {
2

V

Z
b

fdV

=
1

2
〈〈f2〉〉a +

1

2
〈〈f2〉〉b −

1

4
〈〈f〉〉2a −

1

4
〈〈f〉〉2b −

1

2
〈〈f〉〉a〈〈f〉〉b

=
1

2
〈〈f2〉〉a +

1

2
〈〈f2〉〉b −

1

2
〈〈f〉〉2a −

1

2
〈〈f〉〉2b| {z }+1

4
〈〈f〉〉2a +

1

4
〈〈f〉〉2b −

1

2
〈〈f〉〉a〈〈f〉〉b| {z }

=

1/2Vara(〈〈f〉〉)z }| {
1

2
〈〈f2〉〉a −

1

2
〈〈f〉〉2a

1/2Varb(〈〈f〉〉)z }| {
+

1

2
〈〈f2〉〉b −

1

2
〈〈f〉〉2b +

1

4
(〈〈f〉〉a − 〈〈f〉〉b)2

=
1

2
Vara(〈〈f〉〉) +

1

2
Varb(〈〈f〉〉) +

1

4
(〈〈f〉〉a − 〈〈f〉〉b)2

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 40

Comparison with the previous equations gives

Var(〈f〉′) =
1

N

„
Var(f)−

1

4
(〈〈f〉〉a − 〈〈f〉〉b)2

«
= Var(〈f〉)−

1

4N
(〈〈f〉〉a − 〈〈f〉〉b)2

Since the square has to be ≥ 0, we see that the variance (and hence accuracy of the MC simulation)

in the two intervals is at most the same as that for the single interval. And if there is large variation

between 〈〈f〉〉a and 〈〈f〉〉b, it can be considerably less!

A similar calculation for larger numbers of intervals will give a similar result: the stratified sampling

can considerably reduce the variance and error for the same number of samples N . And one does

not even have to require that each subregion has the same number of points. One can show that

the optimal allocation is achieved when the number of points in each subinterval i is proportional

to σi in that interval.

At best this can lead to a 1/N dependence.

Unfortunately there is no guarantee one can always achieve the 1/N dependence – it is very much

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 41

dependent on the application. In practice, for a new kind of MC integration it is probably best simply

to test whether an advantage over 1√
N

is achievable by some stratified sampling or quasi-random

number method.

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 42

5.6. Combined and advanced methods

[Numerical recipes]

It is perfectly possible, and sometimes quite useful, to combine the importance and stratified sampling

methods. Remember that importance sampling essentially focuses the effort on the regions which

contribute most to the integral, while stratified sampling improves on the convergence. Thus one

could e.g. do importance sampling first to flatten the distribution, then stratified sampling to reduce

the variance and further improve on the convergence.

Moreover, it is possible to make parts of the routine adaptive. For instance, in the VEGAS

routine used widely in elementary particle physics, a separable weight function is constructed for M

dimensions

g(x1, x2, ..., xM) = gx1
(x1)gx2

(x2) · · · gxM
(xM)

The idea of the separation is to avoid the need for NM
points storage space. Each gxj

can be stored

as a 1-dimensional numerical array with Npoints elements, reducing storage needs to NpointsM

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 43

Moreover, each subfunction gxj
can be shown to ideally have the shape

gx1
(x1) ∝

sZ
dx1

Z
dx2 · · ·

Z
dxM . . .

f2(x1, x2, ..., xM)

gx2
(x2) · · · gxM

(xM)

and correspondingly for the other xj. The idea is that while sampling f , also sample f2 and hence

calculate a new gxj
on every iteration step. Thus we have an adaptive importance sampling scheme!

Unless the function to be sampled has certain special shapes, this does improve on convergence a

lot.

In addition, the VEGAS routines also sometimes does stratified sampling. But we will not discuss

more here. If interested, you can read about this, and another advanced MC scheme in Numerical

Recipes ch. 7.8.

Basics of Monte Carlo simulations, Kai Nordlund 2005 JJ J � I II × 44

