
12. Repetition and final comments

Terminology: to all purposes known to the lecturer, the terms “stochastic simulations” and “Monte

Carlo simulations” can be considered identical. Usage should conform to common usage in the

particular subfield.
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12.1. Where have we been in science methodology?

Let’s repeat the schematic figure from the beginning of the course. But now I have marked in green

on which parts of this graph we have been during this course. The darker the green shade in the

box, the more we have dealt with that part.
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Basically, we have taken as given basic physics theories, spent most of the time showing how these

can be simulated, and a bit on how they can be compared to experiments and analytical theory.

We have also dealt a lot with topics which are not really on this graph, such as random number
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generation and MC integration. These can be considered to be computer science and mathematics

topics which serve as input to the “simulation” box.
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12.4. Overview of random number generation

[From chapters 4-5 on the course.]

In physics applications repeatability is usually desired. Hence in this summary we only consider

deterministic random numbers.
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12.4.1. The linear congruential-based generators

One of the simplest decent generators:

Ij+1 = aIj + c (mod m) (1)

Here “mod” is the modulus (remainder of division) operation.

For well-chosen a, c and m this can be pretty good. The Park-Miller minimal generator has

a = 7
5
= 16807 c = 0 m = 2

31 − 1

The main problem with this is that it produces stripes on a fine scale in 2D. This can be circumvented

pretty well by adding a shuffle operation.

Two Park-Miller generators with a shuffle can be combined to form a really nice generator,

implemented as ran2 in Numerical Recipes. It has a period of ≈ 2.3×1019.

These generators can be modified to become non-linear. The simplest trick is to rewrite the generator

as

yn+1 = aȳn + b (mod M)
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where ȳ signifies solving the equation

ynȳn = 1 (mod M)
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12.4.2. Other approaches to random number generators

12.4.2.1. The GFSR generator

In the GFSR family of generators, XOR operations are used on a set of previous random numbers

to generate new numbers.

In the original generator, one starts with p random integer numbers ai, i = 0, 1, . . . , p generated

somehow in advance. Then the new elements k, with k ≥ p, can be generated as

ak = ak−p+q ⊕ ak−p

where p and q are constants, p > q, and ⊕ is the XOR logical operation.

For small p these generators can be terrible, but for p > 1000 they pass even very advanced tests.

The disadvantage here is only that we need memory proportional to p.

12.4.2.2. Combined generators

Many of the generators considered among the best combine some of the simpler generator.

The RANMAR generator has a period of 2144.
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The Mersenne twister generator has a period of 219937 − 1

Both are also quite fast.

12.4.2.3. Which generator should be used

As of the writing of this (May 2004), the ran2, and Mersenne twister generators had not been

known to fail in any test. RANMAR has failed in some theoretical tests, but is in very wide use and

apparently most users are happy with it. Hence one can feel fairly much on the safe side with any

of them.

However, if you write code which may be used 10 or 20 years from now, ran2 may start to fail

because of exhaustion of the period of only 2×1019.
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12.4.3. Generating non-uniform distributions

12.4.3.1. Analytical approach

Given a function for which

f(x) > 0 for all x and

Z ∞

−∞
f(x)dx = 1

we can generate random numbers as follows.

Calculate the cumulative function

F (x) =

Z x

−∞
f(t)dt

and its inverse function F−1(s),

s = F (x) ⇐⇒ x = F
−1

(s)

We can then get random numbers r distributed as f(x) as follows:
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1◦ Generate a uniformly distributed number u = Pu(0, 1)

2◦ Calculate x = F−1(u)

For a discrete distribution, the same thing can be easily done numerically. For good accuracy,

parabolic or cubic spline interpolation may be desirable. However, if f(x) = 0 anywhere in the

interval, one has to take care to prevent numerical errors.

For an analytical function f , in case it is not possible to find F (x) or F−1(s), one can tabulate f

numerically, then use the discrete approach.

12.4.3.2. von Neumann rejection method

Consider a function f(x) defined in some finite interval x ∈ [a, b]. It has to be normalized to give

probabilities. Let M be an number which is ≥ f(x) for any x in the interval:
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Now we can generate random numbers in this distribution as

1◦ Generate a uniformly distributed number x = Pu(a, b)

2◦ Generate a uniformly distributed number y = Pu(0, M)

3◦ If y > f(x) this is a miss: return to 1◦

4◦ Otherwise this is a hit: return x
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This way we obtain random numbers x which are distributed according to the given distribution

f(x).

This works fine, but in case the area under f is small compared to the box, it will be very inefficient.

In this case the combined analytical-rejection approach may work better:

Assume we can find a function g(x) for which a constant a exists such that

ag(x) ≥ f(x) for all x ∈ [a, b].

It is important to include the constant a here because both g(x) and f(x) are probabilities

normalized to one. We further demand that it is possible to form the inverse of the cumulative

function G−1(x) of g(x).
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Then the algorithm becomes:

1◦ Generate a uniformly distributed number u = Pu(0, 1)

2◦ Generate a number distributed as g(x): x = G−1(u)

3◦ Generate a uniformly distributed number y = Pu(0, ag(x))

4◦ If y > f(x) this is a miss: return to 1◦
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5◦ Otherwise this is a hit: return x

This also has the advantage that the interval limits a and b can be infinite.

12.4.3.3. Gaussian random numbers

For the very important special case of Gaussian random numbers, the following approach is the

most efficient exact method:

1◦ Obtain v1 = Pu(−1, 1) and v2 = Pu(−1, 1) and w = v2
1 + v2

2

2◦ If w ≥ 1 return to step 1◦

3◦ Calculate r =
√
−2 log w

4◦ Calculate 
x = rv1/

√
w

y = rv2/
√

w

This gives a pair of Gaussian deviates (x, y). On the first call the subroutine should return x, on

the second call y.

12.4.3.4. Generating points uniformly on a sphere
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The correct way to generate points uniformly on a sphere in 3D is:
θ = cos−1 (1− 2Pu(0, 1))

φ = 2πPu(0, 1)

with the spherical coordinates (θ, φ) specifying the location of the point. This also is the correct

way of selecting a random direction in 3D.
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12.4.4. Stratified sampling and quasi-random distributions

• Stratified sampling: divide the space into a grid, select exactly 1 point randomly in each grid

interval.

• Partially stratified sampling: divide the space into a grid, select N > 1 points randomly in each

grid interval.

These have the disadvantage that the simulation can only be stopped when a loop over the grid

regions has been completed, unless a shuffle operation is used to select the boxes in random order.

• Sobol sequences: generates a sequence of quasi-random numbers which fill space evenly.

All of these methods may give much better convergence in MC integration than ordinary random

numbers.
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12.5. MC integration
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12.5.1. Sampling method

The recipe is simply to pick points x randomly in the interval of interest, calculate the function

value f(x) for each point, and get the average. The integral and its (Gaussian 1 σ) uncertainty is

Z
fdV ≈ V 〈f〉 ± V

s
〈f2〉 − 〈f〉2

N
(2)
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One can also use non-rectangular integration areas, by using random numbers generated in non-

uniform distributions to generate the points.
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12.5.2. Hit-and-miss (shotgun) method

Here we “shoot with a shotgun” everywhere in an interval completely enclosing the area to be

integrated. The answer is just the volume of the enclosing area times the fraction of hits:

V = Ve

Nh

N
± Ve

q
Nh −N

2
h/N

N
(3)
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One can also use non-rectangular enclosing areas, by using random numbers generated in non-uniform

distributions to generate the points.
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12.5.3. Ways to speed up MC integration

12.5.3.1. Importance sampling

If we want to integrate a function f , and have a function g for which G−1 can be calculated, such

that
f(x)

g(x)
is fairly flat, then the convergence of the integral can probably be improved on by calculating the

integral as

I =
1

N

NX
i=1

f(G−1(ri))

g(G−1(ri))

An alternative tool, control variates, is to use a g for which the integral is known, and for which

f(x)− g(x) is fairly flat. Then the convergence might be speeded up by MC integrating

I =

Z b

a

=

Z b

a

(f(x)− g(x))dx +

Z b

a

g(x)dx.

12.5.3.2. Stratified sampling
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The ways to generate random numbers in a stratified manner can possibly speed up convergence of

MC integration dramatically.
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12.6. MC simulation of experimental data

If we only have one original data distribution, but want to deduce the error (and possibly other

properties as well), we can use MC to generate hypothetical or synthetic data sets. Then comparing
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the real and hypothetical data sets, one can validly deduce some additional information from the

data.

The “original” data set may either be a distribution of known shape, or a single measured set of

data. The latter case is called the bootstrap method, and should be used with caution.

MC can also be used to simulate the actual process which produces the data. This requires good

knowledge of both the physical process, and the measurement which gives out the data.
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12.7. Random walks

A “pure” random walk is simply an object moving in random directions, and possibly random

distances, either in an M-dimensional lattice or an M-dimensional continuum.

In case the step distance is constant l, then for both continuum and lattice walks, the mean square

distance traveled after N >> 1 steps is

〈R2
(N)〉 = l

2
N

This can be written into a physically more familiar form by saying that the time between steps is a

constant ∆t, in which case the time after N steps is

t = N∆t

and if we identify the diffusion coefficient as

D =
l2

2M∆t
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we get the Einstein relation

〈R2
(N)〉 = 2MDt.
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12.7.1. Other random walks

- biased random walks: the probability to move in different directions are not equal

- persistent random walks: the jump probability depends on previous history

- restricted random walks: the system has special positions where a walker e.g. gets trapped,

created or which it can not enter (a block)

- a lattice gas is a variety of restricted walks: there the walkers themselves act as blocks for other

walkers.

- self-avoiding walks: this can also be considered a special kind of restricted walk. Here each

walkers is restricted from entering a space where it has previously been.
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12.8. Kinetic Monte Carlo

Kinetic Monte Carlo is a random walk either on a lattice or continuum which works for activated

processes, and where the real time scale can be calculated.

A simple general form of the KMC algorithm is
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0◦ Set the time t = 0

1◦ Form a list of all the rates ri of all possible transitions Wi in the system

2◦ Calculate the cumulative function Ri =

iX
j=1

rj for i = 1, . . . , N where N is the total

number of transitions. Denote R = RN

3◦ Get a uniform random number u ∈ [0, 1]

4◦ Find the event to carry out i by finding the i for which

Ri−1 < uR ≤ Ri

5◦ Carry out event i

6◦ Find all Wi and recalculate all ri which may have changed due to the transition

7◦ Get a new uniform random number u ∈ [0, 1]

8◦ Update the time with t = t + ∆t where:

∆t = −
log u

R
(4)

9◦ Return to step 1
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This is O(N). It can in many cases be modified to be below O(N) using data structures and

algorithms.
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12.9. Thermodynamic MC

The idea of all thermodynamic MC methods discussed on this course is that we do a random walk

over phase space points Γ , which produces states with a distribution which equals to the probability

distribution of the given ensemble

ρens(Γ)

When we have such an algorithm, we can calculate a thermodynamic average for a given quantity

A using

〈A〉ens =

X
Γ

chosen from
weight function ρ

A(Γ)

NMCsteps

This is a variety of importance sampling.

In all MC methods, particle velocities are not treated explicitly. The velocity-dependent contribution

to the desired quantities can (if needed) be added afterwards from the known ideal gas properties.
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12.9.1. NV T ensemble

The Metropolis algorithm produces points in phase space distributed according to the canonical

ensemble (NV T ) weight function, which is just a Boltzmann distribution

ρ ∝ e
−V/kT

The algorithm for N particles at positions ri is, given a potential energy function V (r):
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0 a◦ Place the particles in some initial configuration ri.

0 b◦ Choose a maximum displacement vector (dx, dy, dz)

0 c◦ Set the number of Monte Carlo steps nMCS = 0 and Asum = 0

1◦ Choose a particle i at random among the N particles

2◦ Calculate the energy of the system before the transition Eb = V (r)
3◦ Generate three uniform random numbers u1, u2, u3 between -1 and 1

4◦ Displace atom i by ∆r = (u1dx, u2dy, u3dz): ri = ri + ∆r
5◦ Calculate the energy of the system after the transition Ea = V (r)
6◦ Calculate ∆E = Ea − Eb, then :

7◦ If ∆E ≤ 0 accept the state

8◦ If ∆E > 0 :

8 a◦ Generate a random number u between 0 and 1

8 b◦ Accept the state only if u < e
−∆E/kT

9◦ If the state is rejected, return to the previous state: ri = ri −∆r
10◦ Sum up the desired physical property A for positions r: Asum = Asum + A(r)
11◦ Set nMCS = nMCS + 1

12◦ If nMCS < nmax return to step 1

13◦ Calculate and print out the desired average
Asum
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12.9.2. NV E ensemble

The constant-energy microcanonical ensemble can be simulated with the demon algorithm, which

produces states with constant potential energy V except for a minor fluctuation which is of the

order 1/N .

The algorithm is almost identical to Metropolis. Hence here only the parts which differ from

Metropolis are written out.
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0 a-c◦ As Metropolis.

0 d◦ Set the demon energy ED = 0.

1-6◦ As Metropolis

7◦ If ∆E ≤ 0 accept the state and give the energy ∆E to the demon, ED =

ED −∆E

8◦ If ∆E > 0 :

8 a◦ If ED ≥ ∆E let the demon give the necessary energy to the system,
ED = ED −∆E, and accept the configuration

8 b◦ Otherwise the configuration is rejected.

9-13◦ As Metropolis
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12.10. Simulated annealing

Simulated annealing means using the Metropolis method starting from a high temperature and

gradually lowering it, to minimize the energy of a system.

Simulated annealing can be used to minimize the value of any function f returning a scalar value

for a multidimensional configuration space x. The generalized temperature T is just a scalar with

the same dimensions as f .

The simulated annealing algorithm can be written as follows; here we include the temperature

lowering scheme, and the numbering is different from the main text.
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0 a◦ Select the initial configuration x.

0 b◦ Set the number of Monte Carlo steps nMCS = 0

1◦ Set T = T (nMCS)

2◦ Choose a transition ∆x at random

3◦ Calculate the function value before the transition fb = f(x)

4◦ Do the trial transition as x = x + ∆x

5◦ Calculate the function value after the transition fa = f(x)

6◦ Calculate ∆f = fa − fb, then :

7◦ If ∆f ≤ 0 accept the state

8◦ If ∆f > 0 :

8 a◦ Generate a random number u between 0 and 1

8 b◦ Accept the state only if u < e
−∆f/T

9◦ If the state is rejected, return to the previous state: x = x−∆x

10◦ Set nMCS = nMCS + 1

11◦ If nMCS < nmax return to step 112.39 Monte Carlo simulations, Kai Nordlund 2002, 2004



T (nMCS) should be a function which goes slowly, but not necessarily monotonically, from a high

T0 at nMCS = 0 to 0 at nmax.
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12.11. Cellular automata

Cellular automata work in a discrete “universe” with its own (discrete) set of rules and time which

determine how it behaves. Following the evolution of this, often highly simplified, universe, hopefully

enables better understanding of our own.

A formal definition can be stated as follows.

1◦ There is a discrete, finite site space G

2◦ There is a discrete number of states each site can have Q

3◦ Time is discrete, and each new site state at time t + 1 is determined from the system

state G (t)

4◦ The new state at t + 1 for each site depends only on the state at t of sites in a local

neighbourhood of sites V

5◦ There is a rule f which determines the new state based on the old one

Cellular automata can be used to study a wide range of problems in science, ranging from stock

market behaviour, evolution and forest fires to fluid flow.
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Cellular automata or often not counted as part of MC simulations, but considered a simulation

variety of their own. But they are often at least initialized with random numbers, in which case they

can be considered MC.
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12.12. Overview of important dependencies

The main interrelations between the simulation types describe on this course can be summarized as

follows.
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12.13. Final comments

We have seen during this course how a multitude of computational physics methods can be used

to treat the same problem. For instance, both the KMC, Metropolis MC, demon MC, and cellular

automaton approach can be used to study the Ising model. Similarly, we saw that amazingly simple

cellular automata can produce complex fractal shapes, which clearly resemble shapes in nature.

This brings us to an important caveat. We must keep in mind that what we see in simulation may

not necessarily teach us anything about nature. In an extreme case, the fact that we can reproduce

something in nature may be pure coincidence. In this case, it is of no use for us physicists (although

it may still be of interest to mathematicians and computer scientists).

As an example of an intermediate case, think about the cellular automata we discussed during the

course. Even the 1D automata can produce very nice patterns, like the one on the left for rule 110.

This pattern, and other CS patterns, clearly resemble some of those found on mollusc shells in

nature, right side:
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The crucial question is, does this teach us anything?

The observation of complex patterns arising from simple rules in CA’s certainly demonstrates one

very important qualitative feature: there is no need for a complex design scheme to achieve the

beautiful shapes on the molluscs. They can arise from just a few very simple “rules” determining

how the living cells (or whatever) interact during the shell growth.

But this may be all we can learn about the real system. It might be that the rule which gives

the outcome actually is related in some way to the interactions between the real cells. But since

many different rules can give the same shapes, this is not all that likely. Hence we need better

12.46 Monte Carlo simulations, Kai Nordlund 2002, 2004



understanding of the biological interactions before we can use CA’s to deduce anything more about

the real system.

As another example, consider the case of the annealing of Cu we dealt with on the course. We

saw that the Metropolis method is a valid tool for simulating the NVT ensemble. This means in

practice that if we from the NVT simulations derive e.g. the heat capacity, we can indeed obtain a

value from the simulations which can be compared with experiments. So here the simulations are

definitely useful.

But consider then the case were we used Metropolis-based simulated annealing to find the ground

state of Cu. Such a simulation (if applied to a less well understood system) could indeed be useful

if one wants to find the energy ground state and compare this with experiments. But say we would

also want to understand how the actual annealing proceeds in reality. We could from the MC runs

derive the system average energy and typical structure at any temperature, and follow their time

evolution.

The temperature-dependent energy and structure should in principle be comparable to experiments

as well. But if we want to look at the time evolution of how the system evolves, we are in trouble.

This is because the Metropolis trial jumps do not correspond directly to any real motion, and there

is no time scale. Hence the “Metropolis dynamics” may not have any relation to the real atom

dynamics.
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Hence being computational scientists, we must keep in mind that we have to understand

the basic physics of a system in nature well, before we can be sure whether a computer

simulation really can teach us anything about the system studied.
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