16.xi.

1. compromise trees (continued...)
2. simultaneous analysis
3. search algorithms
4. traditional search strategies
5. new search strategies
6. summary

## COMPROMISE TREES

Adams, E. N. 1972. Consensus techniques and the comparison of taxonomic trees. Systematic Zoology 21: 390-397

## Adams compromise


(J) (IHGFEDCBA)
(JIH)(GFEDCBA)
search for non-empty intersections between groups, these marked at base of tree if they include $\leq 2$ terminals

## (J)(IH)(GFED (BA)

proceed to groups not yet on the compromise tree and treat them as above
(G)(F E D CBA)
(GFE)(D CBA)
(G)(F E)(D CB A)
(D)(CBA)
$(D \subset B)(A)$



## COMPROMISE TREES

## Adams compromise

terminals causing conflict on compromise tree placed on positions that is common to all original trees
highlights problematic terminals
wild card taxa
might lead to presentation of groups ABSENT from original trees!

## COMPROMISE TREES

## majority rule

Adams
combinable component (semistric


Bremer, K. 1990. Combinable component consensus. Cladistics 6: 369-372.

## COMPROMISE TREES

## combinable component (semistrict)

all groups presented that are NOT in conflict with the optimal tree
this kind of compromise tree might include groups that are impossible to be present SIMULTANEOUSLY





## "Super"trees

original optimal TREES combined aim to combine results of SEPARATE analyses
unlike in previous approaches trees with NON MATCHING terminals might be combined cut \& glue aiming for synthesis without proper analysis fast \& easy
originally presented for handling LARGE materials because they were considered as impossible to analyze
"super"trees can include groups ABSENT from ALL original trees \& lack those present in ALL original trees

Goloboff, P. A. 2005. Minority rule supertrees? MRP, compatibility, and minimum flip may display the least frequent groups. Cladistics 21: 282-294.

## "Super"trees suck



## SIMULTANEOUS ANALYSIS

000000000111111111122222222223333333333444444444455555555556 123456789012345678901234567890123456789012345678901234567890


## SIMULTANEOUS ANALYSIS

000000000111111111122222222223333333333444444444455555555556 123456789012345678901234567890123456789012345678901234567890

| 01000111 | bo101011010100 | 0111010001 | 1101111111000 | 11111110111101 |
| :---: | :---: | :---: | :---: | :---: |
| 01111100 | 010010010010 | 1001000110 | 11111111101100 | 11001010001000 |
| 01011010 | 0100011110100 | 1001111111 | 10001110110000 | 01111111001010 |
| 10111011 | 00000111010100 | 1100010100 | 1111100000001 | 01111001000010 |
| 01001010 | 0011011110000 | 0000100010 | 0010100100000 | 01101101111101 |
| 10001110 | 01010110001010 | 1110011010 | $1011001111011 \phi$ | 11001110101100 |
| spores | thallus | asci | secondary chemistry | DNA |

## SIMULTANEOUS ANALYSIS



## SIMULTANEOUS ANALYSIS



## CHARACTER CONGRUENCE

is the concrete reason for the fact that we find short tree(s)
on this kind of tree evolutionary changes are CONGRUENT, i.e. CONCENTRATED ON SAME BRANCHES of the tree (less homoplasy)

1. Is this accidental?
2. Or have we possibly find a hypothesis that is a good approximate about evolutionary history and this is why so MANY characters are congruent?

DESCENT WITH MODIFICATION

## TAXONOMIC CHARACTERS

characters used in phylogenetic analyses are assumed to be INDEPENDENT of other characters

NO genetic correlation
ALL these considered to be equally valuable = potentially useful for phylogenetic analyses

## SIMULTANEOUS ANALYSIS

ALL characters of ALL stages of life-cycle should be
combined into a same matrix for analysis

## WHY?

by including into our analysis characters simultaneously we "test" them against each other
the more characters we have in our analysis, the more severe is our "test" more chances for characters to be in conflict

## SIMULTANEOUS ANALYSIS

correlation between homoplastic characters that would overcome signal based on homologies is extremely undikely (practically impossible) especially when characters included are from different levels (from nucleotides to macromorphology), represent different phases of life-cycle etc.

```
..foibles of the individual sources of information are not generally shared. Since ubiquitin follows one set of rules and 185 another, the only source of shared information is history... Wheeler, W. C. ym. 1993. Arthropod phylogeny: combined approach. Cladistics 9:1-39.
```


## SIMULTANEOUS ANALYSIS



## SIMULTANEOUS ANALYSIS





## 16.xi.

## 1. compromise trees (continued...)

## 2. simultaneous analysis

3. search algorithms
4. traditional search strategies
5. new search strategies
6. summary
characters

|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| trees | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | $\sum$ |
| - | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 20 |
| 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 21 |
| 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 20 |
| 3 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 21 |
| 4 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 20 |
| 5 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 21 |
| 6 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 20 |
| 7 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 19 |
| 8 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 20 |
| 9 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 20 |
| 10 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 21 |
| 11 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 20 |
| 12 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 19 |
| 13 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 20 |
| 14 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 18 |
| 15 |  |  |  |  |  |  |  |  |  |  |  |  |  |

## T <br> $B(T)$

| 3 | 1 |
| :--- | :--- |
| 4 | 3 |
| 5 | 15 |
| 6 | 105 |
| 7 | 945 |
| 8 | 10395 |
| 9 | 135135 |
| 10 | $2 \times 10^{6}$ |
| enly lim |  |
| 15 | $8 \times 10^{12}$ |
| 15 | $2 \times 10^{20}$ |
| 20 | $3 \times 10^{74}$ |






Foulds, L.R. \& Graham, R.L. 1982. The Steiner problem in phylogeny is NP-complete. Advances in Applied Mathematics 3: 43-49.

## Traveling salesman retires

# NP complete/hard <br> X. Xxxxxxxxx, X. Xxxxxxx \& X. Xxxxxxx 

Xxxxxx, PO Box XX, XX-XXXXX University of XXXX, XXXXXX

THE search of all equally parsimonious trees has formerly been described as a NP complete problem without possibility to find all possible trees. We present a new way to ensure that all these trees will be found even during the heuristic search by estimation of the

## HEURISTIC SEARCH

## Wagner algorithm

Kluge, A. G. \& Farris, J. S. 1969. Quantitative phyletics and the evolution of anurans. Systematic Zoology18:1-32.

Farris, J. S. 1970. Methods for computing Wagner trees. Systematic Zoology 19:83-92.


the problem of Wagner algorithm is that the order where terminals are added to tree affects the tree finally obtained

```
CONCRETE reason for this?
```




## HEURISTIC SEARCH

RAS = random addition sequence

1. starting trees build by adding terminals one by one
matrix/random order
Wagner algorithm
phenetic clustering
all these can be combined to build starting trees

## HEURISTIC SEARCH

1. starting trees build by adding terminals one by one
2. after this branches of the tree(s) are moved
branch SWAPPING

Nearest-neighbor interchange


[^0]Subtree pruning regrafting
SPR

Survey.


## HEURISTIC SEARCH

1. starting trees build by adding terminals one by one
2. after this branches of the tree(s) are moved

> branch SWAPPING with NNI, SPR, TBR
3. current programs include algorithms that allow evaluation of tree length WITHOUT visiting ALL nodes of trees save processing time

Goloboff, P.A. 1993. Character optimization and calculation of tree lengths. Cladistics 9: 433-436.

## Search strategies

islands of trees in tree "space" (landscape)

```
problem especially in analyses of larger matrices (> 100-200 terminals)
```


greedy algorithms



$$
7 y "
$$



## TRADITIONAL SEARCH STRATEGIES

search repeated SEVERAL TIMES (10-10 000 x)
how many times is sufficient?
has optimal tree be found?
if first 100x give same result STOP
if only $1 / 100$ give optimal result CONTINUE
moving branches takes time, thus the number of trees saved at intermediate stages of search kept SMALL, e.g. $\leq$ 2-10 WHY?
when starting search potentially VERY DIFFERENT trees, after moving branches this is NOT anymore true, no reason to keep MANY SIMILAR trees most likely will lead finding same optimal tree

## TRADITIONAL SEARCH STRATEGIES

if > 10\% of random searches give same result ---> search should be extended by expanding the number of trees saved in cache memory (50-100)
if < 10\% random searches give same results ---> continue with NUMEROUS (500-1 000) random search with saving only 2-10 trees in cache

5-10\% of trees saved in cache (50-200) analyzed in more detail

## TRADITIONAL SEARCH STRATEGIES

## NO NEED to find ALL optimal trees (Farris \& al. 1996)

for large matrices > $10^{6}$ equally parsimonious trees might exist
consensus tree based only on small sample of trees might be identical with the one based on ALL trees if those sampled originate from SEPARATE tree islands

```
can also be used to "guide" our search, i.e. if consensus
does not change, no need to continue
```


## NEW SEARCH STRATEGIES

```
required for analyses of LARGE (> 500-700 spp.) matrices
```

in large trees ALL parts should be in optimal arrangement in order to be optimal as a WHOLE


GOLOBOFF 2000: dice comparison

www.weld-re1.k12.co.us/webclass/students/reamj/web/dice.gif

## NEW SEARCH STRATEGIES

Moilanen, A. 1999. Searching for most parsimonious trees with simulated evolutionary optimization. Cladistics 15: 39-50.

Nixon, K.C. 1999. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15: 407-414.

Goloboff. P.A. 1999. Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15: 415-428.

## Nixon, K. Parsimony ratchet

1a. starting tree (e.g. Wagner algorithm) 1b. continued using fast \& simple branch swapping
2. weight randomly e.g. 10-30\% of characters
3. try to find shortest tree of this NEW matrix (as in 1b)
4. return original weights
5. search for shortest tree (as in 1b)
6. return to 2 . and repeat


## SUMMARY

in order to find best hypotheses we should include into our analyses ALL characters simultaneously
exhaustive \& branch and bound searches can be used only for analyses of SMALL matrices only these two ENSURE finding the optimal tree
heuristic search is based on rearrangement of branches of tree(s) branch SWAPPING
searches should be planned carefully BEFORE starting them in order to avoid unnecessary analyses of large number of similar trees \& use of CPU time


[^0]:    Swofford, D.L. 1996. PAUP:
    Phylogenetic Analysis Using
    Parsimony, version 3.1. Programme
    manual. Illinois Natural History
    Survey.

