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character X
- r & c small, much homoplasy
- in conflict with other characters
- poor information about phylogeny

CHARACTER WEIGHT



CHARACTER WEIGHT

Character Y
- r & c large, only little homoplasy
- congruent with other characters
- informative about phylogeny



information from ch. Y is more reliable than from ch. X

in analysis more weight for Y than X

weighting made using rescaled consistency index (r x c)

CHARACTER WEIGHT



2-5 repeated until result stabilizes (tree length & ch. 
weights), i.e. in two analyses following each other same
result obtained

A POSTERIORI (after analysis)

3) characters weighted with the value of r x c

Farris, J.S. 1969. A successive approximations
approach to character weighting. Systematic
Zoology 18:374-385.5) back to 2)

4) re-analysis

1) cladistic analysis

2) r x c calculated for all characters on shortest tree

CHARACTER WEIGHT



central assumption in a posteriori weighting is that 
characters with lots of homoplasy (those WITHOUT 
reliable signal about evolutionary history) are not as 
reliable hypotheses of homology as characters with very 
little homoplasy (part of historical signal), i.e. congruent 
with other characters

CHARACTER WEIGHT



differential weighting is performed from the very start of 
the analysis

IMPLIED CHARACTER WEIGHTING

weighting performed during analysis using consistency 
related index c = m/s, CONCAVE weighting function

Goloboff, P.A. 1993. Estimating character weights during tree search. 
Cladistics 9:83-91.



fit

extra steps extra steps extra steps

CHARACTER WEIGHT

fit fit

linear concave

convex

concavity might be TOO severe, reduced
by using constant k (e.g. 3-20)

(k+1)/s + k+1 - m



differential weighting is performed from the very start of 
the analysis

IMPLIED CHARACTER WEIGHTING

this means that increase/decrease of ch. state changes in 
characters with less homoplasy (high index value) affect 
result more than same kind of changes in characters with 
much homoplasy (low index value) ---->

weighting performed during analysis using consistency 
related index (k+1)/s + k+1 - m



differential weighting is performed from the very start of 
the analysis

IMPLIED CHARACTER WEIGHTING

weighting performed during analysis using consistency 
related index

this means that increase/decrease of ch. state changes in 
characters with less homoplasy affect result more than 
same kind of changes in characters with much 
homoplasy (low index value) ---->preference of trees were 
CHARACTERS WITH LESS HOMOPLASY ARE MORE 
DECISIVE

instead of trying to find a tree with smallest number of 
ch. state changes this approach tries to find a TREE 
MAXIMIZING FIT 

(k+1)/s + k+1 - m
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nucleotide triplets coding for aminoacids

triplets for Prolin

CCT

CCC

CCA

CCG

Källersjö, M., V.A. Albert, & J.S. Farris 1999. Homoplasy
increases phylogenetic structure. Cladistics 15:91-95

synonymous vs. nonsynonymous
substitutions



m
c = ---

s

∑ m        
C =   ------

∑ s

g - s        
r = -------

g - m

∑ g - ∑ s        
R = -------------

∑ g - ∑ m

individual character ALL characters (ensemble indices

INDICES DESCRIBING TREES

ATTENTION!  it might be HIGHLY informative to calculate 
indices  also LOCALLY, i.e. for certain clades



38 evolutionary 
changes

58 evolutionary 
changes

TREE LENGTH (L) = number of ch. state changes in ALL characters

over the WHOLE TREE 



OPTIMIZATION

reconstruction of character states for internal nodes 
(HTU) of tree

HTU, Hypothetical Taxonomic Unit
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Farris, J.S. 1970. Methods for computing Wagner trees. 

Systematic Zoology 19: 83-92.

Fitch, W.M. 1971. Toward defining the course of evolution : minimal
change for a specific tree topology. 

Systematic Zoology 20: 406-416.

OPTIMIZATION



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

DOWNWARD
PASS = postorder

{2,$4}
{0,$1}

RULE 1: if terminals share character state this will 
be marked also for their ancestor (intersection, !)

RULE 2: if terminals do not share ch. state (intersection, ! = ") 
their (union, #) is marked for their ancestor



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

DOWNWARD
PASS

{2,$4}

{0,$1}

RULE 1: if terminals share character state this will 
be marked also for their ancestor (intersection, !)

RULE 2: if terminals do not share ch. state (intersection, ! = ") 
their (union, #) is marked for their ancestor

{1}

{1,$2,$4}



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

DOWNWARD
PASS

{2,$4}

{0,$1}

RULE 1: if terminals share character state this will 
be marked also for their ancestor (intersection, !)

{1}

{1,$2,$4}
RULE 2: if terminals do not share ch. state 
(intersection, ! = ") their (union, #) is 
marked for their ancestor

{0,$1}



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

DOWNWARD
PASS

{2,$4}

{0,$1}

{1}

{1,$2,$4}

{0,$1}

ATTENTION! LENGTH of diagram, number of ch. state changes, calculated
already at this stage. Unions (!) add always one ch. state change.

PRELIMINARY state sets (P)

tree length= 4 



- root final state set = root preliminary state set (F = P)

RULE 2. If Rule 1 does not apply and the union of final/preliminary states of 
the 2 descendants of the current node (Left and Right) are equal to 
preliminary states of the current node (P = L ∪ R), then F = P ∪ A.

“ upward pass” rules (Fitch 1971, Wheeler 2012)

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final state set, F, 
is equal to that of the ancestor (F = A).

RULE 3. If Rule 1 and 2 do not apply the final state set is the preliminary state 
set, supplemented by state set that is common to the ancestor and 
descendants (F = P ∪ (L ∩ A) ∪ (R ∩ A)).



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS = preorder

{2,$4}

{0,$1}

{1}

{1,$2,$4}

{0,$1}

root final state set = root 
preliminary state set (F = P)



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{2,$4}

{0,$1}

{1}

{1,$2,$4}

{0,$1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final 
state set, F, is equal to that of the ancestor (F = A).

RULE 2. If Rule 1 does not apply and the union of 
final/preliminary states of the 2 descendants of the 
current node (Left and Right) are equal to the  

preliminary states of the current node (P = L ∪ R), 
then F = P ∩ A.



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{2,$4}

{0,$1}

{1}

{1,$2,$4}

{0,$1}

RULE 3. If Rules 1 and 2 do not apply the final state set is the 
preliminary state set, supplemented by state set that is 
common to the ancestor and descendants 
(F = P ∪ (L ∩ A) ∪ (R ∩ A)). = 1 ∪ (0,1 ∩ 0,1) ∪ (1,2,4 ∩ 0,1)) 



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{2,$4}

{0,$1}

{0,$1}

{1,$2,$4}

{0,$1}



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{2,$4}

{0,$1}

{0,$1}

{1,$2,$4}

{0,$1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final 
state set, F, is equal to that of the ancestor (F = A).



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{2,$4}

{0,$1}

{0,$1}

{1,$2,$4}

{0,$1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final 
state set, F, is equal to that of the ancestor (F = A).

RULE 2. If Rule 1 does not apply and union of 
final/preliminary states of 2 descendants of current 
node (Left and Right) are equal to preliminary 
states of current node (P = L ∪ R), then F = P ∪ A.



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{2,$4}

{0,$1}

{0,$1}

{0,$1,$2,$4}

{0,$1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final 
state set, F, is equal to that of the ancestor (F = A).

RULE 2. If Rule 1 does not apply and union of 
final/preliminary states of 2 descendants of current 
node (Left and Right) are equal to preliminary 
states of current node (P = L ∪ R), then F = P ∪ A.



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{0,$1}

{0,$1}

{0,$1,$2,$4}

{0,$1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final 
state set, F, is equal to that of the ancestor (F = A).

RULE 2. If Rule 1 does not apply and union of 
final/preliminary states of 2 descendants of current 
node (Left and Right) are equal to preliminary 
states of current node (P = L ∪ R), then F = P ∪ A.

{0,$1,$2,$4}



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{1,$0}

{0,$1}

{0,$1,$2,$4}

{0,$1}

FINAL state sets (F)

{0,$1,$2,$4}



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{1,$0}

{0,$1}

{0,$1,$2,$4}

{1,$0}

FINAL state sets (F)

{0,$1,$2,$4}



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{1,$0}

{0,$1}

{0,$1,$2,$4}

{1,$0}

0$>$1 0$>$1 {0,$1,$2,$4}

0$>$2 0$>$4



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{1,$0}

{0,$1}

{0,$1,$2,$4}

{1,$0}

{0,$1,$2,$4}



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{1,$0}

{0,$1}

{0,$1,$2,$4}

{1,$0}

{0,$1,$2,$4}

1$>$0

1$>$0

1$>$2 1$>$4



A                 B                     C                    D        E         F
A                 A                      T                    G T         C

A = 0

C = 1

G = 2

T = 3



A                 B                     C                    D        E         F
A                 A                      T                    G T         C

{A,T}

{A,C,T}
{A,G,T}

{A,T}

{A,T}



A                 B                     C                    D        E         F
A                 A                      T                    G T         C

A">"T
A">"T

T">"G T">"C

11 EQUALLY parsimonious 
optimizations



Farris, J.S. 1970. Methods for computing Wagner trees. 

Systematic Zoology 19: 83-92.

Fitch, W.M. 1971. Toward defining the course of evolution : minimal
change for a specific tree topology. 

Systematic Zoology 20: 406-416.

Wagner optimization



FITCH PARSIMONY

WAGNER PARSIMONY 

0
2

1

0 <--> 1 <--> 2



A                  B                    C             D          E              F
0                   1                    0             1 2              4

DOWNWARD
PASS

RULE 1: if terminals share character state this will 
be marked also for their ancestor (intersection, !)

[2,4]
2,3,4

RULE 2: if terminals do not share ch. states 
(intersection, ! = ") assign smallest 
closed interval between states of 
terminals for their ancestor, i.e. 

[a, b] = {x|a<x<b}



FITCH PARSIMONY

WAGNER PARSIMONY 

0
2

1

0 <--> 1 <--> 2

A = {0,1,2,3}  
B = {5,6}  

A ! B= "
A # B= {0,1,2,3,4,5,6}

A = {0,1,2,3}  
B = {5,6}  

A ! B= "
A # B= {3,4,5}



FITCH PARSIMONY

WAGNER PARSIMONY 

0
2

1

0 <--> 1 <--> 2

A = {0,1,2,3}  
B = {5,6}  

A ! B= "
A # B= {0,1,2,3,4,5,6}

A = {0,1,2,3}  
B = {5,6}  

A ! B= "
A # B= {3,4,5}[3,5]= {x|3<x<5}



WAGNER PARSIMONY 0 <--> 1 <--> 2

0        1         2        3        4       5      6

A

A = {0,1,2,3}  
B = {5,6}  

A ! B= "
A # B= {3,4,5} = {x|3<x<5}

B



WAGNER PARSIMONY 0 <--> 1 <--> 2

0        1         2        3        4       5      6

A

A = {0,1,2,3}  
B = {5,6}  

A ! B= "
A # B= {3,4,5} = {x|3<x<5}

B

SMALLEST closed interval between A & B



A                  B                    C             D          E              F
0                   1                    0             1 2              4

DOWNWARD
PASS

[2,4]
2,3,4

[1,2]
RULE 1: if terminals share character state this will 

be marked also for their ancestor (intersection, !)
RULE 2: if terminals do not share ch. states 

(intersection, ! = ") assign smallest 
closed interval between states of 
terminals for their ancestor, i.e. 

[a, b] = {x|a<x<b}



A                  B                    C             D          E              F
0                   1                    0             1 2              4

DOWNWARD
PASS

[2,4]
2,3,4

[1,2]
[0,1]

RULE 1: if terminals share character state this will 
be marked also for their ancestor (intersection, !)

RULE 2: if terminals do not share ch. states 
(intersection, ! = ") assign smallest 
closed interval between states of 
terminals for their ancestor, i.e. 

[a, b] = {x|a<x<b}



A                  B                    C             D          E              F
0                   1                    0             1 2              4

DOWNWARD
PASS

[2,4]

[1,2]
[0,1]

[1]

RULE 1: if terminals share character state this will 
be marked also for their ancestor (intersection, !)



A                  B                    C             D          E              F
0                   1                    0             1 2              4

DOWNWARD
PASS

[2,4]

[1,2]
[0,1]

[1]

[0,1]

L = 1 + 1 + 1 + 2  = 5

2,3,4
PRELIMINARY set of 
character states (P)

RULE 2: if terminals do not share ch. states 
(intersection, ! = ") assign smallest 
closed interval between states of 
terminals for their ancestor, i.e. 

[a, b] = {x|a<x<b}



A                  B                    C             D          E              F
0                   1                    0             1 2              4

DOWNWARD
PASS

{2,4}

{1,2,4}
{0,1}

{1}

{0,1}

Fitch parsimony

L = 1 + 1 + 1 +1 = 4



- PRELIMINARY (P) state set for root and terminals is their final set  
(P = F)

“ upward pass” rules (Goloboff 1993)

RULE 1. If A ! P = A, F = A. 

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ ", define X as 
X = (L ∪ R ∪ P) ! A. If X ! P ≠ ", F = X. If X ! P = ", F equals 
the LARGEST closed interval between X and state in P closest to X.  

A, character state of 
immediate ancestor

RULE 3. If rules 1 & 2 do not apply, F equals the LARGEST closed interval 
between the state in P closest to A and the state in (L ∪ R) closest 
to A.
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- PRELIMINARY (P) state set for root and terminals is their final set  
(P = F)

“ upward pass” rules (Goloboff 1993)

RULE 1. If A ! P = A, F = A. 

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ ", define X as 
X = (L ∪ R ∪ P) ! A. If X ! P ≠ ", F = X. If X ! P = ", F equals 
the LARGEST closed interval between X and state in P closest to X.  

A, character state of 
immediate ancestor

RULE 3. If rules 1 & 2 do not apply, F equals the LARGEST closed interval 
between the state in P closest to A and the state in (L ∪ R) closest 
to A.



WAGNER PARSIMONY 0 <--> 1 <--> 2

0        1         2        3        4       5      6

X

X = {0,1,2,3}  
P = {5,6}  X ! P= "

P

RULE 2. 

F = [0,5] = {x|0<x<5}



- PRELIMINARY (P) state set for root and terminals is their final set  
(P = F)

“ upward pass” rules (Goloboff 1993)

RULE 1. If A ! P = A, F = A. 

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ ", define X as 
X = (L ∪ R ∪ P) ! A. If X ! P ≠ ", F = X. If X ! P = ", F equals 
the LARGEST closed interval between X and state in P closest to X.  

A, character state of 
immediate ancestor

RULE 3. If rules 1 & 2 do not apply, F equals the LARGEST closed interval 
between the state in P closest to A and the state in (L ∪ R) closest 
to A.



A                  B                    C             D          E              F
0                   1                    0             1 2              4

UPWARD
PASS

[2,4]

[1,2]
[0,1]

[1]

[0,1]

PRELIMINARY (P) state set for root and terminals is their 
final set  (P = F)

RULE 1. If A ! P = A, F = A. 

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ ", define X as 
X = (L ∪ R ∪ P) ! A. If X ! P ≠ ", F = X. If X ! P = ", F equals 
the LARGEST closed interval between X and state in P closest to X.  



A                  B                    C             D          E              F
0                   1                    0             1 2              4

UPWARD
PASS

[2,4]

[1,2]
[0,1]

[1]

[0,1]

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ ", define X as 
X = (L ∪ R ∪ P) ! A. If X ! P ≠ ", F = X. If X ! P = ", F equals 
the LARGEST closed interval between X and state in P closest to X.  



0                   1                    0                    1 2          4
A                  B                    C                    D       E          F

UPWARD
PASS

[0,1]

[1,2]

[0,1]

[0,1]''''

RULE 1. If A ! P = A, F = A. 

[2,4]

[1,2]



0                   1                    0                    1 2          4
A                  B                    C                    D       E          F

UPWARD
PASS

[1]

[0,1]

RULE 1. If A ! P = A, F = A. 

[2,4]

[1,2][0,1]

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ ", define X as 
X = (L ∪ R ∪ P) ! A. If X ! P ≠ ", F = X. If X ! P = ", F equals 

the LARGEST closed interval between X and state in P closest to X.  

[0,1]((((



0                   1                    0                    1 2          4
A                  B                    C                    D       E          F

UPWARD
PASS

[1]

[0,1]

RULE 1. If A ! P = A, F = A. 

[2,4]

[1,2][0,1] [1]((((

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ ", define X as 
X = (L ∪ R ∪ P) ! A. If X ! P ≠ ", F = X. If X ! P = ", F equals 

the LARGEST closed interval between X and state in P closest to X.  

[0,1]((((



0                   1                    0                    1 2          4
A                  B                    C                    D       E          F

UPWARD
PASS

[1]

[0,1]

[0,1]&&&&

[2,4]

[1,2][0,1] [1]&&&&

[2]&&&&

RULE 3. If rules 1 & 2 do not apply, F equals the 
LARGEST closed interval between the 
state in P closest to A and the state in 
(L ∪ R) closest to A.

RULE 1. If A ! P = A, F = A. 

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ 
", define X as X = (L ∪ R ∪ P) ! A. If X ! P 
≠ ", F = X. If X ! P = ", F equals the   
LARGEST closed interval between X and 
state in P closest to X.  



[0,1]

0                   1                    0           1 2          4
A                  B                    C           D                 E          F

[1]

[0,1]

[0,1]&&&&

[1]&&&&

[2]&&&&

FINAL character state sets (F)



[0,1]

0                   1                    0           1 2          4
A                  B                    C           D                 E          F

[1]

[0,1]

[0,1]&&&&

[1]&&&&

[2]&&&&

FINAL character state sets (F)



0                   1                    0           1 2          4
A                  B                    C           D                 E          F

1

1

1

1

2



0                   1                    0           1 2          4
A                  B                    C           D                 E          F

1

1

1

1

2
1 change

1 evolutionary
change L = 1 + 1 +  1 + 2 = 5

2 changes

1 change



[0,1]

A                  B                    C           D                 E          F

[1]

[0,1]

[0,1]&&&&

[1]&&&&

[2]&&&&

0                   1                    0           1 2          4



0                   1                    0           1 2          4
A                  B                    C           D                 E          F

1

2
1 change

1 evolutionary
change

L = 1 + 1 +  1 + 2 = 5

2 changes

1 change
0

0

0



optimization has to be used in order to find shortest tree & 
to find character states for internal nodes

SUMMARY

MULTIPLE equally parsimonious reconstructions are possible

a posteriori character weighting is objective but justification 
still debated implied weighting made during the search


