
13.xi.

1. a posteriori weighting

2. optimization

3. summary

character X
- r & c small, much homoplasy
- in conflict with other characters
- poor information about phylogeny

CHARACTER WEIGHT

CHARACTER WEIGHT

Character Y
- r & c large, only little homoplasy
- congruent with other characters
- informative about phylogeny

information from ch. Y is more reliable than from ch. X

in analysis more weight for Y than X

weighting made using rescaled consistency index (r x c)

CHARACTER WEIGHT

2-5 repeated until result stabilizes (tree length & ch.
weights), i.e. in two analyses following each other same
result obtained

A POSTERIORI (after analysis)

3) characters weighted with the value of r x c

Farris, J.S. 1969. A successive approximations
approach to character weighting. Systematic
Zoology 18:374-385.5) back to 2)

4) re-analysis

1) cladistic analysis

2) r x c calculated for all characters on shortest tree

CHARACTER WEIGHT

central assumption in a posteriori weighting is that
characters with lots of homoplasy (those WITHOUT
reliable signal about evolutionary history) are not as
reliable hypotheses of homology as characters with very
little homoplasy (part of historical signal), i.e. congruent
with other characters

CHARACTER WEIGHT

differential weighting is performed from the very start of
the analysis

IMPLIED CHARACTER WEIGHTING

weighting performed during analysis using consistency
related index c = m/s, CONCAVE weighting function

Goloboff, P.A. 1993. Estimating character weights during tree search.
Cladistics 9:83-91.

fit

extra steps extra steps extra steps

CHARACTER WEIGHT

fit fit

linear concave

convex

concavity might be TOO severe, reduced
by using constant k (e.g. 3-20)

(k+1)/s + k+1 - m

differential weighting is performed from the very start of
the analysis

IMPLIED CHARACTER WEIGHTING

this means that increase/decrease of ch. state changes in
characters with less homoplasy (high index value) affect
result more than same kind of changes in characters with
much homoplasy (low index value) ---->

weighting performed during analysis using consistency
related index (k+1)/s + k+1 - m

differential weighting is performed from the very start of
the analysis

IMPLIED CHARACTER WEIGHTING

weighting performed during analysis using consistency
related index

this means that increase/decrease of ch. state changes in
characters with less homoplasy affect result more than
same kind of changes in characters with much
homoplasy (low index value) ---->preference of trees were
CHARACTERS WITH LESS HOMOPLASY ARE MORE
DECISIVE

instead of trying to find a tree with smallest number of
ch. state changes this approach tries to find a TREE
MAXIMIZING FIT

(k+1)/s + k+1 - m

M
arc

han
tio

phyt
a

Horneophyton

Tortilicaulis

Aglaophyton

Huvenia

Rhynia

Bry
ophyt

a

Anth
oce

ro
to

phyt
a

> 400 Ma BP

Stomatophyta

Polysporangiophyta

EuphyllophytaLycopdiophyta

nucleotide triplets coding for aminoacids

triplets for Prolin

CCT

CCC

CCA

CCG

Källersjö, M., V.A. Albert, & J.S. Farris 1999. Homoplasy
increases phylogenetic structure. Cladistics 15:91-95

synonymous vs. nonsynonymous
substitutions

m
c = ---

s

∑ m
C = ------

∑ s

g - s
r = -------

g - m

∑ g - ∑ s
R = -------------

∑ g - ∑ m

individual character ALL characters (ensemble indices

INDICES DESCRIBING TREES

ATTENTION! it might be HIGHLY informative to calculate
indices also LOCALLY, i.e. for certain clades

38 evolutionary
changes

58 evolutionary
changes

TREE LENGTH (L) = number of ch. state changes in ALL characters

over the WHOLE TREE

OPTIMIZATION

reconstruction of character states for internal nodes
(HTU) of tree

HTU, Hypothetical Taxonomic Unit

Z
Y

X

W

V

A B C D E F
0 0 3 2 3 1

1

3

0

1
0

A B C D E F
0 0 3 2 3 1

0

3

0

0

3

A B C D E F
0 0 3 2 3 1

Farris, J.S. 1970. Methods for computing Wagner trees.

Systematic Zoology 19: 83-92.

Fitch, W.M. 1971. Toward defining the course of evolution : minimal
change for a specific tree topology.

Systematic Zoology 20: 406-416.

OPTIMIZATION

0 1 0 1 2 4
A B C D E F

DOWNWARD
PASS = postorder

{2,$4}
{0,$1}

RULE 1: if terminals share character state this will
be marked also for their ancestor (intersection, !)

RULE 2: if terminals do not share ch. state (intersection, ! = ")
their (union, #) is marked for their ancestor

0 1 0 1 2 4
A B C D E F

DOWNWARD
PASS

{2,$4}

{0,$1}

RULE 1: if terminals share character state this will
be marked also for their ancestor (intersection, !)

RULE 2: if terminals do not share ch. state (intersection, ! = ")
their (union, #) is marked for their ancestor

{1}

{1,$2,$4}

0 1 0 1 2 4
A B C D E F

DOWNWARD
PASS

{2,$4}

{0,$1}

RULE 1: if terminals share character state this will
be marked also for their ancestor (intersection, !)

{1}

{1,$2,$4}
RULE 2: if terminals do not share ch. state
(intersection, ! = ") their (union, #) is
marked for their ancestor

{0,$1}

0 1 0 1 2 4
A B C D E F

DOWNWARD
PASS

{2,$4}

{0,$1}

{1}

{1,$2,$4}

{0,$1}

ATTENTION! LENGTH of diagram, number of ch. state changes, calculated
already at this stage. Unions (!) add always one ch. state change.

PRELIMINARY state sets (P)

tree length= 4

- root final state set = root preliminary state set (F = P)

RULE 2. If Rule 1 does not apply and the union of final/preliminary states of
the 2 descendants of the current node (Left and Right) are equal to
preliminary states of the current node (P = L ∪ R), then F = P ∪ A.

“ upward pass” rules (Fitch 1971, Wheeler 2012)

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final state set, F,
is equal to that of the ancestor (F = A).

RULE 3. If Rule 1 and 2 do not apply the final state set is the preliminary state
set, supplemented by state set that is common to the ancestor and
descendants (F = P ∪ (L ∩ A) ∪ (R ∩ A)).

0 1 0 1 2 4
A B C D E F

UPWARD
PASS = preorder

{2,$4}

{0,$1}

{1}

{1,$2,$4}

{0,$1}

root final state set = root
preliminary state set (F = P)

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

{2,$4}

{0,$1}

{1}

{1,$2,$4}

{0,$1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final
state set, F, is equal to that of the ancestor (F = A).

RULE 2. If Rule 1 does not apply and the union of
final/preliminary states of the 2 descendants of the
current node (Left and Right) are equal to the

preliminary states of the current node (P = L ∪ R),
then F = P ∩ A.

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

{2,$4}

{0,$1}

{1}

{1,$2,$4}

{0,$1}

RULE 3. If Rules 1 and 2 do not apply the final state set is the
preliminary state set, supplemented by state set that is
common to the ancestor and descendants
(F = P ∪ (L ∩ A) ∪ (R ∩ A)). = 1 ∪ (0,1 ∩ 0,1) ∪ (1,2,4 ∩ 0,1))

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

{2,$4}

{0,$1}

{0,$1}

{1,$2,$4}

{0,$1}

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

{2,$4}

{0,$1}

{0,$1}

{1,$2,$4}

{0,$1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final
state set, F, is equal to that of the ancestor (F = A).

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

{2,$4}

{0,$1}

{0,$1}

{1,$2,$4}

{0,$1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final
state set, F, is equal to that of the ancestor (F = A).

RULE 2. If Rule 1 does not apply and union of
final/preliminary states of 2 descendants of current
node (Left and Right) are equal to preliminary
states of current node (P = L ∪ R), then F = P ∪ A.

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

{2,$4}

{0,$1}

{0,$1}

{0,$1,$2,$4}

{0,$1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final
state set, F, is equal to that of the ancestor (F = A).

RULE 2. If Rule 1 does not apply and union of
final/preliminary states of 2 descendants of current
node (Left and Right) are equal to preliminary
states of current node (P = L ∪ R), then F = P ∪ A.

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

{0,$1}

{0,$1}

{0,$1,$2,$4}

{0,$1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final
state set, F, is equal to that of the ancestor (F = A).

RULE 2. If Rule 1 does not apply and union of
final/preliminary states of 2 descendants of current
node (Left and Right) are equal to preliminary
states of current node (P = L ∪ R), then F = P ∪ A.

{0,$1,$2,$4}

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

{1,$0}

{0,$1}

{0,$1,$2,$4}

{0,$1}

FINAL state sets (F)

{0,$1,$2,$4}

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

{1,$0}

{0,$1}

{0,$1,$2,$4}

{1,$0}

FINAL state sets (F)

{0,$1,$2,$4}

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

{1,$0}

{0,$1}

{0,$1,$2,$4}

{1,$0}

0$>$1 0$>$1 {0,$1,$2,$4}

0$>$2 0$>$4

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

{1,$0}

{0,$1}

{0,$1,$2,$4}

{1,$0}

{0,$1,$2,$4}

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

{1,$0}

{0,$1}

{0,$1,$2,$4}

{1,$0}

{0,$1,$2,$4}

1$>$0

1$>$0

1$>$2 1$>$4

A B C D E F
A A T G T C

A = 0

C = 1

G = 2

T = 3

A B C D E F
A A T G T C

{A,T}

{A,C,T}
{A,G,T}

{A,T}

{A,T}

A B C D E F
A A T G T C

A">"T
A">"T

T">"G T">"C

11 EQUALLY parsimonious
optimizations

Farris, J.S. 1970. Methods for computing Wagner trees.

Systematic Zoology 19: 83-92.

Fitch, W.M. 1971. Toward defining the course of evolution : minimal
change for a specific tree topology.

Systematic Zoology 20: 406-416.

Wagner optimization

FITCH PARSIMONY

WAGNER PARSIMONY

0
2

1

0 <--> 1 <--> 2

A B C D E F
0 1 0 1 2 4

DOWNWARD
PASS

RULE 1: if terminals share character state this will
be marked also for their ancestor (intersection, !)

[2,4]
2,3,4

RULE 2: if terminals do not share ch. states
(intersection, ! = ") assign smallest
closed interval between states of
terminals for their ancestor, i.e.

[a, b] = {x|a<x<b}

FITCH PARSIMONY

WAGNER PARSIMONY

0
2

1

0 <--> 1 <--> 2

A = {0,1,2,3}
B = {5,6}

A ! B= "
A # B= {0,1,2,3,4,5,6}

A = {0,1,2,3}
B = {5,6}

A ! B= "
A # B= {3,4,5}

FITCH PARSIMONY

WAGNER PARSIMONY

0
2

1

0 <--> 1 <--> 2

A = {0,1,2,3}
B = {5,6}

A ! B= "
A # B= {0,1,2,3,4,5,6}

A = {0,1,2,3}
B = {5,6}

A ! B= "
A # B= {3,4,5}[3,5]= {x|3<x<5}

WAGNER PARSIMONY 0 <--> 1 <--> 2

0 1 2 3 4 5 6

A

A = {0,1,2,3}
B = {5,6}

A ! B= "
A # B= {3,4,5} = {x|3<x<5}

B

WAGNER PARSIMONY 0 <--> 1 <--> 2

0 1 2 3 4 5 6

A

A = {0,1,2,3}
B = {5,6}

A ! B= "
A # B= {3,4,5} = {x|3<x<5}

B

SMALLEST closed interval between A & B

A B C D E F
0 1 0 1 2 4

DOWNWARD
PASS

[2,4]
2,3,4

[1,2]
RULE 1: if terminals share character state this will

be marked also for their ancestor (intersection, !)
RULE 2: if terminals do not share ch. states

(intersection, ! = ") assign smallest
closed interval between states of
terminals for their ancestor, i.e.

[a, b] = {x|a<x<b}

A B C D E F
0 1 0 1 2 4

DOWNWARD
PASS

[2,4]
2,3,4

[1,2]
[0,1]

RULE 1: if terminals share character state this will
be marked also for their ancestor (intersection, !)

RULE 2: if terminals do not share ch. states
(intersection, ! = ") assign smallest
closed interval between states of
terminals for their ancestor, i.e.

[a, b] = {x|a<x<b}

A B C D E F
0 1 0 1 2 4

DOWNWARD
PASS

[2,4]

[1,2]
[0,1]

[1]

RULE 1: if terminals share character state this will
be marked also for their ancestor (intersection, !)

A B C D E F
0 1 0 1 2 4

DOWNWARD
PASS

[2,4]

[1,2]
[0,1]

[1]

[0,1]

L = 1 + 1 + 1 + 2 = 5

2,3,4
PRELIMINARY set of
character states (P)

RULE 2: if terminals do not share ch. states
(intersection, ! = ") assign smallest
closed interval between states of
terminals for their ancestor, i.e.

[a, b] = {x|a<x<b}

A B C D E F
0 1 0 1 2 4

DOWNWARD
PASS

{2,4}

{1,2,4}
{0,1}

{1}

{0,1}

Fitch parsimony

L = 1 + 1 + 1 +1 = 4

- PRELIMINARY (P) state set for root and terminals is their final set
(P = F)

“ upward pass” rules (Goloboff 1993)

RULE 1. If A ! P = A, F = A.

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ ", define X as
X = (L ∪ R ∪ P) ! A. If X ! P ≠ ", F = X. If X ! P = ", F equals
the LARGEST closed interval between X and state in P closest to X.

A, character state of
immediate ancestor

RULE 3. If rules 1 & 2 do not apply, F equals the LARGEST closed interval
between the state in P closest to A and the state in (L ∪ R) closest
to A.

A

P

L R

1.

A

P

L R

1.

2.

A

P

L R

1.
2.

2.

A

P

L R

1.
2.

2.3.

3.
3.

F

- PRELIMINARY (P) state set for root and terminals is their final set
(P = F)

“ upward pass” rules (Goloboff 1993)

RULE 1. If A ! P = A, F = A.

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ ", define X as
X = (L ∪ R ∪ P) ! A. If X ! P ≠ ", F = X. If X ! P = ", F equals
the LARGEST closed interval between X and state in P closest to X.

A, character state of
immediate ancestor

RULE 3. If rules 1 & 2 do not apply, F equals the LARGEST closed interval
between the state in P closest to A and the state in (L ∪ R) closest
to A.

WAGNER PARSIMONY 0 <--> 1 <--> 2

0 1 2 3 4 5 6

X

X = {0,1,2,3}
P = {5,6} X ! P= "

P

RULE 2.

F = [0,5] = {x|0<x<5}

- PRELIMINARY (P) state set for root and terminals is their final set
(P = F)

“ upward pass” rules (Goloboff 1993)

RULE 1. If A ! P = A, F = A.

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ ", define X as
X = (L ∪ R ∪ P) ! A. If X ! P ≠ ", F = X. If X ! P = ", F equals
the LARGEST closed interval between X and state in P closest to X.

A, character state of
immediate ancestor

RULE 3. If rules 1 & 2 do not apply, F equals the LARGEST closed interval
between the state in P closest to A and the state in (L ∪ R) closest
to A.

A B C D E F
0 1 0 1 2 4

UPWARD
PASS

[2,4]

[1,2]
[0,1]

[1]

[0,1]

PRELIMINARY (P) state set for root and terminals is their
final set (P = F)

RULE 1. If A ! P = A, F = A.

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ ", define X as
X = (L ∪ R ∪ P) ! A. If X ! P ≠ ", F = X. If X ! P = ", F equals
the LARGEST closed interval between X and state in P closest to X.

A B C D E F
0 1 0 1 2 4

UPWARD
PASS

[2,4]

[1,2]
[0,1]

[1]

[0,1]

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ ", define X as
X = (L ∪ R ∪ P) ! A. If X ! P ≠ ", F = X. If X ! P = ", F equals
the LARGEST closed interval between X and state in P closest to X.

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

[0,1]

[1,2]

[0,1]

[0,1]''''

RULE 1. If A ! P = A, F = A.

[2,4]

[1,2]

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

[1]

[0,1]

RULE 1. If A ! P = A, F = A.

[2,4]

[1,2][0,1]

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ ", define X as
X = (L ∪ R ∪ P) ! A. If X ! P ≠ ", F = X. If X ! P = ", F equals

the LARGEST closed interval between X and state in P closest to X.

[0,1]((((

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

[1]

[0,1]

RULE 1. If A ! P = A, F = A.

[2,4]

[1,2][0,1] [1]((((

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠ ", define X as
X = (L ∪ R ∪ P) ! A. If X ! P ≠ ", F = X. If X ! P = ", F equals

the LARGEST closed interval between X and state in P closest to X.

[0,1]((((

0 1 0 1 2 4
A B C D E F

UPWARD
PASS

[1]

[0,1]

[0,1]&&&&

[2,4]

[1,2][0,1] [1]&&&&

[2]&&&&

RULE 3. If rules 1 & 2 do not apply, F equals the
LARGEST closed interval between the
state in P closest to A and the state in
(L ∪ R) closest to A.

RULE 1. If A ! P = A, F = A.

RULE 2. If rule 1 does not apply, and (L ∪ R) ! A ≠
", define X as X = (L ∪ R ∪ P) ! A. If X ! P
≠ ", F = X. If X ! P = ", F equals the
LARGEST closed interval between X and
state in P closest to X.

[0,1]

0 1 0 1 2 4
A B C D E F

[1]

[0,1]

[0,1]&&&&

[1]&&&&

[2]&&&&

FINAL character state sets (F)

[0,1]

0 1 0 1 2 4
A B C D E F

[1]

[0,1]

[0,1]&&&&

[1]&&&&

[2]&&&&

FINAL character state sets (F)

0 1 0 1 2 4
A B C D E F

1

1

1

1

2

0 1 0 1 2 4
A B C D E F

1

1

1

1

2
1 change

1 evolutionary
change L = 1 + 1 + 1 + 2 = 5

2 changes

1 change

[0,1]

A B C D E F

[1]

[0,1]

[0,1]&&&&

[1]&&&&

[2]&&&&

0 1 0 1 2 4

0 1 0 1 2 4
A B C D E F

1

2
1 change

1 evolutionary
change

L = 1 + 1 + 1 + 2 = 5

2 changes

1 change
0

0

0

optimization has to be used in order to find shortest tree &
to find character states for internal nodes

SUMMARY

MULTIPLE equally parsimonious reconstructions are possible

a posteriori character weighting is objective but justification
still debated implied weighting made during the search

