12.xi.

1. home exercise
2. characters
3. character weighting
4. indices describing characters

4. summary

HOME EXERCISE

characters
000000000111
123456789012
terminals

A	010111011111
B	111000101010
C	101100100001
D	100011001000
E	100001100111

characters

	0	0	0	0	0	0	0	0	0	1	1	1	\sum
trees	1	2	3	4	5	6	7	8	9	0	1	2	
1	1	1	2	2	2	2	2	1	2	2	1	2	20
2	1	1	2	2	2	2	2	1	2	2	2	2	21
3	1	1	2	2	2	2	2	1	1	2	2	2	20
4	1	2	2	1	2	2	2	1	2	2	2	2	21
5	1	2	2	1	2	2	2	1	2	2	2	1	20
6	1	2	2	1	2	2	2	1	2	2	2	2	21
7	1	2	2	2	2	2	2	1	2	1	1	2	20

BEST HYPOTHESIS

- smallest number of changes from one character state to another
- largest part of resemblance between terminals explained by their shared HISTORY (descent from common ancestor)

13	1	2	2	2	1	2	1	1	1	2	2	2	19
14	1	2	2	2	1	2	1	1	2	2	2	2	20
15	1	2	1	2	1	1	1	1	2	2	2	2	18

characters

	0	0	0	0	0	0	0	0	0	1	1	1	
trees	1	2	3	4	5	6	7	8	9	0	1	2	\sum
-1	1	1	2	2	2	2	2	1	2	2	1	2	20
2	1	1	2	2	2	2	2	1	2	2	2	2	21
3	1	1	2	2	2	2	2	1	1	2	2	2	20
4	1	2	2	1	2	2	2	1	2	2	2	2	21
5	1	2	2	1	2	2	2	1	2	2	2	1	20
6	1	2	2	1	2	2	2	1	2	2	2	2	21
7	1	2	2	2	number of character states= \mathbf{n}								
8	1	2	1	2	MINIMUM number of evolutionary changes= n-1								
9	1	2	2	2	2	2	2	1	2	1	2	1	20
10	1	2	2	2	2	2	2	1	1	2	2	1	20
11	1	2	2	2	2	2	2	1	2	2	1	2	21
12	1	2	1	2	2	1	2	1	2	2	2	2	20
13	1	2	2	2	1	2	1	1	1	2	2	2	19
14	1	2	2	2	1	2	1	1	2	2	2	2	20
15	1	2	1	2	1	1	1	1	2	2	2	2	18

$$
d(A, B)=\sum|X(A i)-X(B i)|
$$

wwwz.hawaii.edu/~donaldp/Biostatitics/

$$
\begin{aligned}
& 0000000001 \\
& 1234567890 \\
& \text { A } 0010001010 \\
& \text { B } 0101010000 \\
& \text { C } 0111000001 \\
& \text { D } 1010110001 \\
& \text { E } 0000110101
\end{aligned}
$$

characters 1. 2. 3. 4. 5. 6. 7. 8. 9. 10 . terninals A 1000010000 $\begin{array}{lllllllllll}\text { B } & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
C 0 O $111 \begin{array}{lllllll}1 & 0 & 1 & 1 & 1 & 1 & 0\end{array}$ D 1000000111000 E 1001011111110

trnL.nxs																																																					
	Characters				1695	5950ds	ds 15	15.48	620546	45568	det 68	6859	crit													\$890	¢9192	29			¢ ${ }_{\text {de }}$	9¢9			0) 0	0) 0																	
Taxa	Characters																																																				
1	Meiotrichum lyallii	A		A	A	C T	A	A A G	G T	TGT	t T A	A G					A G	A T	T			G	G	A A			A 6	G G	T T	G	A A	A A	A A	AGT	I A T	A T	A 6	G	A A T				A	A G			A A A	A				A	
2	Oligotrichum hercynicum	A		A	A			$A A A$	A T	TGT	T T A	A 6	G				A G	A T	T		$A \mathrm{G}$	G		A A			A G	GGT			A A	A A	A	A	T A T	A T	$A \mathrm{~A}$	G	$A A T$					A			A A A	A				AT	
3	Oligotr ichum paralle lum	A		A	A			$A A A$	A T	TGT	T T A	A G					A G	A T				G		A A	A		A G	GG			$A A$	A	$A A$	A GT	TA T	A T	$A \mathrm{G}$	G	A A T	T				A			$A A$	A				A T	
4	Steereobryon subulirostru	A		A	A			A A G	G T	TG	A	A 6					A G	A			G	G		A A	A		A 6	GG			$A A$	A	$A A$	AGT	A T	A T	A G	A	A A T	T				A			A A A	A				-	
5	Atrichum oerstaedianum	A		A	A			A A G	G	G		G					A G	A			G	G	G	A A	A		$A G$	GG		G	$A A$	A A	A	A	A T	A T	$A G$	A	A A T					A			A A	A				A T	
6	Atrichum androgynum	A			A			G	G	G		G					G	A			G	6	G	A A	A		$A \mathrm{G}$	G G		GA	A A	A	$A A$	AGT	A T	A T	$A G$	A	A A T					A			A	A				A T	
7	Atrichum undulatum	A		A	A				G	G		A ${ }^{\text {a }}$					G				S	G	G	A A	A		A G	GG		G	A A	A	$A A$	$A G T$	A T	A T	A	A	A A T					A				A				A T	
8	Psilopilum laevigatum	A		A	A			A A G	G	G	A	A G					G	-			G	G	G	A A	A		A G	G		G	$A A$	A	A A	A	A T	A T	$A G$	G	A A T					A			A	A				A	
9	Polytrichastrum alp inum	A		A	A			$A A G$	G	G	A	A 6					A ${ }^{\text {a }}$	A			G	G		A A	A		$A G$	G		G	$A A$	A A	$A A$	A	A T	A T	$A G$	A	A A T					A			A	A				A	
10	Polytrichastrum formosum	A		A	A			$A A G$	GT	G T	A	A G					A G	A			G	G		A A	A		$A G$	G			$A A$	$A A$	$A A$	A A	A T	A T	$A G$	6	A A T					A 0			A	A				A T	
11	Polytrichastrum longisetu	A		A	A			$A A G$	GT	G T	TA	A 6					A G	A			G	G		A A	A		$A G$	G			$A A$	A A	$A A$	A A	A T	A T	$A G$	6	A A T	T				G			$A A$	A				A T	
12	Polytrichum brachymitrium	A		A	A			$A A B$	GT	TG	TA	A 6					A A	A			G	G		$A A$	A		$A G$	G			$A A$	$A A$	$A A$	A	A T	A T	$A G$	G	A A T	T				A G			$A A$	A				A T	
13	Polytrichum commune	A			A			$A A G$	GT	T		A $\mathrm{G}^{\text {a }}$					$A \mathrm{G}$	A			A G	G		A A			A G	G			$A A$	$A A$	A A	A	A T	A T	$A G$	G	A A T					A			A	A				A	
14	Polytrichum juniperinum			A	A			$A A G$	GT	T		A G					A G	A			A G	G	G	A A			A G	G		G	$A \mathrm{~A}$	A	$A A$	A	A T	A T	$A \mathrm{~A}$	A	A A T					A			A A A	A				,	
15	Polytrichum piliferum	A			A			$A A G$	GT	G		A G					A G	A			A 6	G	G	A A	A		A G	G			$A A$	A	$A A$	A A	A T	A T	A		A A T					A			$A \mathrm{~A}$					T	
16	Polytrichum subpilosum	A			A			$A A G$	GT	T T	T T A	A					A G	A			A G	G	G	A A	A		A G	G		${ }^{\text {a }}$	$A A$	A	$A A$	AGT	T A T	A T	$A G$		A A T					A			A A A					A T T	
17	P tortile	A			A			$A A G$	GT	T T	T TA	A G					A G	A			A G	-		A A			A G	G			$A A$	A	$A A$	A GT	I A T	A T	A G		A A T					A			$A A$	A				A T T	
18	P pensilyanicum B65266	A		T A	A			$A A G$	GT	T T	T T A	-					A G	A			A 6	-		A A			A G	G T			$A A$	A A	A A	$A A T$	T A T	A T	$A \mathrm{G}$		A A T					A			A A	A				A T T	
19	P macrophyllum	A		A	A			$A A G$	GT	T T	t TA	G					$A G$	A			G			$A A$			$A \mathrm{G}$	G $\mathrm{T}^{\text {T }}$			$A A$	$A A$	$A A$	AGT	I A T	A T	$A G$	0	A A T					A			$A A$	A T				A T T	T
20	P rufisetum	A		A	A			$A A G$	GT0	TG	T A	A G					A G	A			G			A A			G	G			$A A$	A A	A	A GT	I A T	A T	A	G	A A T					A			A A	A T				A T T	T
21	P sinense	A		A	A			$A A G$	T0	T	A	A G					A G	A			A 6	G		A A			A ${ }^{\text {a }}$	G		${ }^{\text {a }}$	$A A$	A	$A A$	AGT	A T	A T	A G	G	A A T					A			A	A T				-	
22	P comosum	A		A	A			$A A G$	-	G		A					A G	A			G	G		$A A$			A G	G		G	$A A$	A	$A A$	A	A T	A T	A	GT	A A T					A			A	A				A T T	
23	P fastigiatum	A		A	A			$A A G$	GT0	G		A					A G	A				G		$A A$			G	G		G	$A A$	A	$A A$	AGT	A T	A T	A	G T	A A T					A			A	A					
24	P cirratum	A			A			$A A G$	GT0	G	T A	A G					$A G$	-						A A			A G	G			$A A$	$A A$	A	A	A T	A T	A G	-	A AT					A			$A A$	$A T$				A T T	
25	P neesii	A		A	A			$A A G$	GT0	G	T A	A G					A G	A						$A A$			$A G$	G			$A A$	$A A A$	$A A$	A	A T	A T	A A	O	$A A T$								$A A$	A				A T T	
26	P microstomum	A		A	A			$A A G$	GT 0	G T	T T A	A 6					A A	A						A A	A		$A G$	G			A A	$A A$	$A A$	A	A T	A T	A A	G	A A T								$A A$	A				A T	
27	P tahitense	A		A	A			$A A G$	GTO	G T	t T A	A G					A G	A			$A \mathrm{G}$	O		A A	A		TA G	G			A A	$A A$	$A A$	A GT	I A T	A T	$A G$	G	A A T					A			A A	A				A T	
28	P subulatum	A			A			$A A G$	GT0	G T	t Ta	A G					A ${ }^{\text {a }}$	A			A 6		G	A A	A		TAG	G			A A	$A A$	A A	$A G T$	I A T	A T	$A G$	G	A A T					A			A A	A				A T	
29	P dentatum	A			A			$A A G$	GT0	G T		A 6					A G	-			A G	-	G	A A	A		$A G$	G			$A A$	$A A$	A	A GT	TA T	A T	$A G$	GT	$A A T$					A			A A	A				-	
30	P campy locarpum	A			A			$A A G$	GT0	G		A 6					A G	A			A G		G	A A	A		A 6	G			A A	$A A$	A	AGG	A T	A T	A G	G	A A T					A			A A	A T				A T T	
31	P nanum	A			A			$A A G$	GT0	G	A	A G					A G	A			A 6			A A			A 6	G			A A	A A A	A	A GT	I A T	A T	$A \mathrm{G}$	G	A A					A			A A	GT				A T T	
32	P spinulosum	A			A			$A A G$	GT0	G T	T T A	A G	G				A G	A			A	G	G	A			A G	G		G	$A A$	$A A$	A	A A	I A T	A T	$A G$	G T	A A T					A			$A A$	A				AT	
33	P tubulosum	A			A			$A A G$	GT0	G T	T T A	A G	c_{c} T				A G	A			A ${ }^{\text {a }}$			A A			A G	G			$A A$	$A A$	A	A G	A T	A T	$A \mathrm{G}$	O	A A T					A			A A	A T				A T	T
34	P inflexum	A			A			$A A G$	GT0	G T	T T A	A G					A G	A T			A G		G	A A			TAG	G T			$A A$	$A A$	$A A$	A GT	IA T	A T	$A G$	G	A A T								A A					A T T	
35	P nipponicum	A		A	A			$A A G$	GT0	G T	t TA	A G					A G	a T			A ${ }^{\text {a }}$			$A A$			A G	GT			$A A$	$A A$	A A	AGT	I A T	A T	A G	G	A A T								$A A$					A T T	
36	P perichaetiale	A		A	A			$A A G$	GT0	G T	T T A	A G					$A G$	A			A G			$A A$			$A G$	GT			$A A$	$A A$	A A	A A	IA T	A T	$A G$	G	A A T								$A A$	A				G T T	T A
37	P gracilifolium	A		A	A			$A A G$	GT0	G	t T A	A 6					A ${ }^{\text {a }}$	A			G			$A A$			$A G$	G T			$A A$	$A A$	A	AGT	IA	A T	$A G$	G	A A T								A	A T		T		A	
38	P japonicum	A			A			$A A G$	GT0	G		A G					A G	A			G			A A			$A G$	G		G	A A	A A	A	A GT	A 1	A T	A G	G	A A T								A	A T				A	
39	P procerum	A			A			$A A G$	GT0	6		A G					A G	A			G			$A A$			A G	\bigcirc		GA	$A A$	$A A$	A	,	GAT	A T	$A G$	G	A A T								A	A				A	
40	P proliferum	A			A			$A A G$	GT0	G	A	A 6					$A G$	A			G			$A A$			$A G$	O		G	$A A$	$A A$	A	A	A T	A T	$A G$	G	$A A T$								A	A				A	
41	P neglectum	A			A			$A A G$	GT0	G T	T T A	A $\mathrm{G}^{\text {a }}$					A G	-			G			$A A$			TA G	G			$A A$	$A A$	A	$A G G$	GA T	A T	$A G$	GT	A A T								$A A$	A				A	
42	P semipellusidum				A		A	$A A G$	GT0	G T	t T A	A 6					A G	A			A G			$A A$			TA G	G			A A	$A A$	$A \mathrm{~A}$	$A G T$	T A T	A T	A A	GT	$A A T$								$A A$	A				A T	
43	P subtortile	A							GT0	GT	T T A	A $\mathrm{G}^{\text {a }}$					$A G$				A 6						IAG	GT			A A	$A A$	$A A$	AGT	T A T	A T	A G	GT									A A					A T	

trnL.nxs
observations about compared organisms

interpretation

coding as characters and their states

TAXONOMIC CHARACTERS

= potentially useful for phylogenetic analysis

COMPARATIVE STUDY OF CHARACTERS

TAXONOMIC CHARACTERS

transformation series, character character, character state
Wiley's 3 conditions for characters to be useful in cladistic analysis:

1. variation between compared terminals
2. observed variation shows regularity
3. variation controlled genetically, not induced by environment $\begin{aligned} & \text { from the level of single nucleotides to } \\ & \text { macromorphology }\end{aligned}$

ALL assumedly homologous characters that show VARIATION between terminals are POTENTIALLY useful for infering phylogeny

TAXONOMIC CHARACTERS

we can use for example the following when trying to find potential homologies:

1. topology (position)
2. external similarity
3. "continuum" between character states

TAXONOMIC CHARACTERS

1. PRELIMINARY hypothesis about homology observed similarities between compared terminals are interpreted as homologies (NULL hypothesis)
2. distinguish character STATES
3. with cladistic analysis we "test" these preliminary hypotheses against those made for other characters-->

TAXONOMIC CHARACTERS

hypothesis about homology either accepted or rejected

HOMOLOGY = shared feature inherited from common ancestor

ALL SYNAPOMORPHIES are homologies all homologies ARE NOT synapomorphies

TAXONOMIC CHARACTERS

binary characters (only 2 character states) coded o \& 1
teeth by If margins : present (0), absent (1)
in many characters numerous character states can be distinguished, coded $0,1,2,3,4$, etc. A C G T
petal color: white (0), yellow (1), orange (2)
red (3), blue (4)

TAXONOMIC CHARACTERS

 character, character state
Wiley's 3 conditions for characters to be useful in cladistic analysis:

1. variation between compared terminals
2. observed variation shows regularity
3. variation controlled genetically, not induced by environment from the level of single nucleotides to macromorphology

ALL assumedly homologous characters that show VARIATION between terminals are POTENTIALLY useful for infering phylogeny

TAXONOMIC CHARACTERS

continuous characters \& landmark data
QUANTITATIVE characters, ch. state distinction impossible/problematic

VARIATION still observed between terminals
numerous case studies have shown that also these kind of characters DO include valuable phylogenetic information
most advanced applications allow use of these characters directly \& together with other kind of characters e.g. with program TNT

Catalano, S.A. \& al. 2010. Phylogenetic morphometrics (1): the use of landmark data in a phylogenetic framework. Cladistics 26: 539-549.

Diodon

Orthagoriscus

http://cdn.palass.org/palaeomath_101/moribund/images/eigen2 /Fig2.jpg

Goswami, A. \& al. 2011. Biting through constraints: cranial morphology, disparity and convergence across living and fossil carnivorous mammals. Proceedings of the Royal Society, B Biological Sciences 278: 1831-1839.

Levin, G.A. \& Simpson, M.G. 1994. Phylogenetic implications of pollen ultrastructure in the Oldfieldioideae (Euphorbiaceae). Annals of the Missouri Botanical Garden 81: 203-238.

WILEY-
BLACKWELL

Cladistics

Phylogenetic morphometrics (I): the use of landmark data in a phylogenetic framework

Pablo A. Goloboff ${ }^{\text {a,* }}$ and Santiago A. Catalano ${ }^{\text {a,b }}$

${ }^{a}$ Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Cientficas y Técnicas, Miguel Lillo 251, 4000 S.M. de Tucımán, Argentina;
${ }^{b}$ Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 S.M. de Tucumán, Argentìna

TAXONOMIC CHARACTERS

also LACK of some structure might provide useful information
reduction, neoteny

$$
\begin{aligned}
& 0000000001 \\
& 1234567890 \\
& \text { A } 0010001010 \\
& \text { B } 0101010000 \\
& \text { C } 0111000001 \\
& \text { D } 1010110001 \\
& \text { E } 0000110101
\end{aligned}
$$

TAXONOMIC CHARACTERS

characters ------> matrix <------- cladistic analysis
much homoplasy, suspicious -----> return to study \& evaluation of characters reciprocal illumination

SUPERFICIALLY TWO THINGS ARE SAME BUT PROVE TO BE DIFFERENT WITH DETAILED STUDY

TAXONOMIC CHARACTERS

characters used in phylogenetic analyses are assumed to be independent of other characters NO genetic correlation

ALL these considered to be equally valuable = potentially useful for phylogenetic analyses

characters 2-6 from the same part of organism
genetic correlation?

TAXONOMIC CHARACTERS \& their states

1. order
2. direction
3. weight

TAXONOMIC CHARACTERS \& their states

1. order

"If you have obvious order in your character states, do not ignore this information"

Slowinski, J. B. 1993. "Unordered" versus "ordered" characters. Systematic Biology 42: 155-165.

Farris, J. S. 1970. Methods for computing Wagner trees. Systematic Zoology19: 83-92.

o---> $1 \neq 0-->5$?
ordered/additive characters
Wagner (Farris) parsimony
o---> 1 = 1 evolutionary change
o ---> 5 = 5 evolutionary changes

Fitch, W. M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 20: 406-416.

o ---> $1=0--->5$
unordered/non-additive characters Fitch parsimony
o---> $1=1$ evolutionary change
o ---> $5=1$ evolutionary change

$$
0123456789
$$

| | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 0 | 1 |
| B | 0 | 0 | 0 | 2 | 2 | 1 | 0 | 1 | 0 | 1 | 0 |
| C | 1 | 0 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 1 | |
| D | 0 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 1 | 1 | |
| E | 1 | 1 | 2 | 0 | 1 | 2 | 1 | 0 | 1 | 1 | |

16 evolutionary changes

Fitch parsimony

	0	0	1	2	3	4	5	6	7	8	9
A	1	1	2	1	2	2	1	1	1	0	1
B	0	0	2	2	1	0	1	0	1	0	
C	1	0	1	1	0	2	0	0	0	1	
D	0	1	0	2	0	1	1	0	1	1	
E	1	1	2	0	1	2	1	0	1	1	

17 evolutionary changes

Wagner parsimony

Wagner parsimony

TAXONOMIC CHARACTERS \& their states

1. order

2. direction

NOT needed BEFORE analysis the tree resulting from our analysis will reveal direction of change

TAXONOMIC CHARACTERS \& their states

1. order

2. direction
3. weight

> are all characters equally important?
> equally reliable signal about phylogeny?

CHARACTER WEIGHT

	1	2	3	4	5	6	7	8
OG	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	0	1
B	1	1	1	0	1	0	1	0
C	1	0	1	1	1	0	0	0
D	1	1	1	0	1	1	1	0
E	1	1	1	1	1	1	1	1

CHARACTER WEIGHT

$$
\begin{array}{l|lllll|lllllll}
1 & 2 & 2 a & 2 b & 2 c & 2 d & 3 & 4 & 5 & 6 & 7 & 8 \\
0 & & & & & & & & & & & & \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

CHARACTER WEIGHT

CHARACTER WEIGHT

CHARACTER WEIGHT

OG	0	0	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	0	1	0	0
B	1	1	1	0	1	0	1	0	1	1
C	1	0	1	1	1	0	0	0	1	1
D	1	1	1	0	1	1	1	0	0	0
E	1	1	1	1	1	1	1	1	0	0

CHARACTER WEIGHT

1. order

2. direction
3. weight
should characters be weighted?
what is the basis for weighting?

CHARACTER WEIGHT

A PRIOR/
PRESUMED that some of the characters are more "reliable"
a prioriassumptions added to the analysis are these ADDITIONAL assumptions warranted \& realistic?

Neff, N.A. 1986. A rational basis for a priori character weighting. Systematic Zoology 35:110-123.

CHARACTER WEIGHT

A POSTERIORI
characters that show less homoplasyare given more weight
these characters show better FIT with all other characters
CHARACTER CONGRUENCE

INDICES DESCRIBING CHARACTERS

consistency index, c
retention index, r
rescaled consistency index, rc

12345678

OG	0	0	0	0	0	0	0	0
A	1	0	0	0	0	1	0	1
B	1	1	1	0	1	0	1	0
C	1	0	1	1	1	0	0	0
D	1	1	1	0	1	1	1	0
E	1	1	1	1	1	1	1	1
m	1	1	1	1	1	1	1	1
S	1	1	1	2	1	2	1	2

$$
c=\begin{gathered}
m \\
--- \\
s
\end{gathered} \quad \begin{gathered}
1 \\
2
\end{gathered}
$$

INDICES DESCRIBING CHARACTERS

consistency index , c
$c=m / s$
$\mathrm{m}=$ minimum number of character state changes
$s=$ number of ch. state changes on the tree evaluated

ATTENTION! m = n-1 (n number of character states)
LOW value of cindicates POOR fit of character on a tree
ATTENTION! it might be HIGHLY informative to calculate index also LOCALLY, i.e. for certain clades

INDICES DESCRIBING CHARACTERS

retention index, r ri

$$
r=(g-s) /(g-m)
$$

$\mathrm{m}=$ minimum number of character state changes
$s=$ number of ch. state changes on the tree evaluated
$و=$ minimum number of character state changes on UNRESOLVED TREE

ATTENTION!g can be obtained directly from the matrix, for example for binary characters it is the number of those terminals with less common ch. state

character 8

$$
r=\frac{g-s}{g-----}=\frac{2-2}{g------}=\frac{0}{2-1}=0
$$

$$
r=\begin{array}{ccc}
g-s & 3-2 & 1 \\
g-m & ------------1 & 3-1
\end{array}=0.5
$$

$$
12345678
$$

OG	0	0	0	0	0	0	0	0	OG
A	1	0	0	0	0	1	0	1	
B	1	1	1	0	1	0	1	0	
C	1	0	1	1	1	0	0	0	
D	1	1	1	0	1	1	1	0	
E	1	1	1	1	1	1	1	1	
g	1	3	2	2	2	3	3	2	

character 6	character 8
$c=0.5$	$c=0.5$
$r=0.5$	$r=0$
$r c=0.25$	$r c=0$

SUMMARY

for phylogenetic analyses basically ALL characters that show variation between terminals CAN/SHOULD be used
character states are distinguished within most characters
continuous characters \& landmark data CAN also be used
when making analyses using Wagner parsimony for characters showing clear order of states it is advisable to make analysis ALSO so that even these are treated with Fitch parsimon character congruence
a priori weighting is subjective and adds assumptions to analysis
consistency and retention indices tell how well each character is congruent with others

