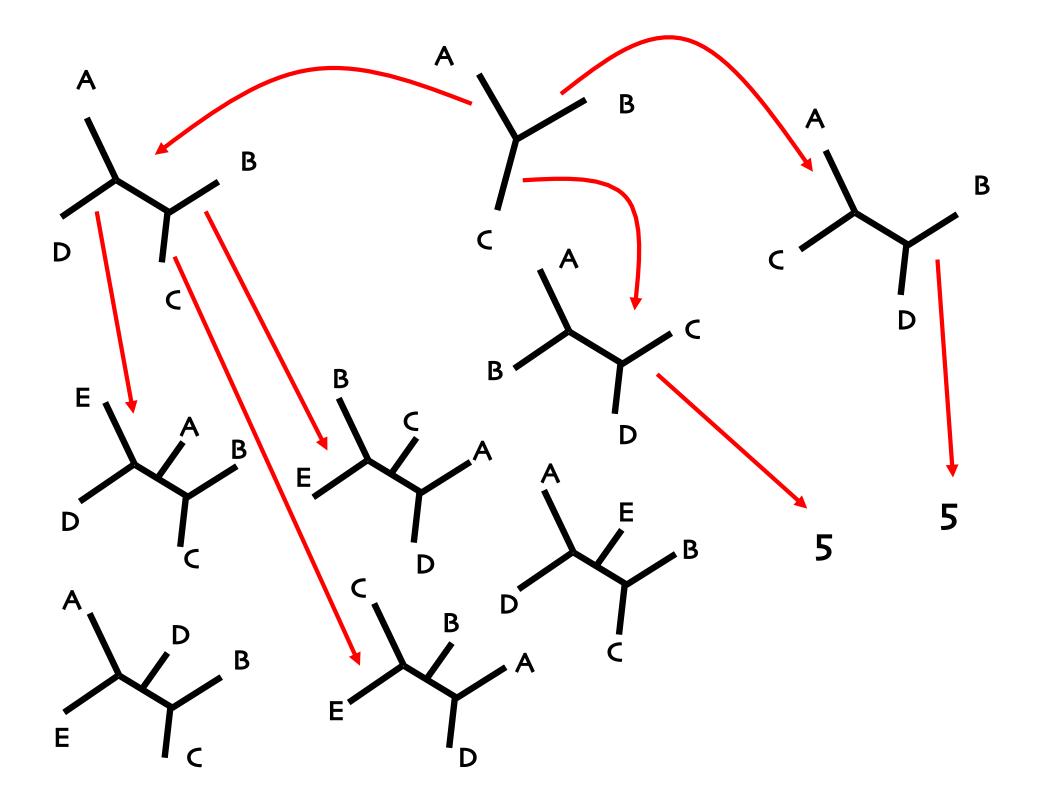


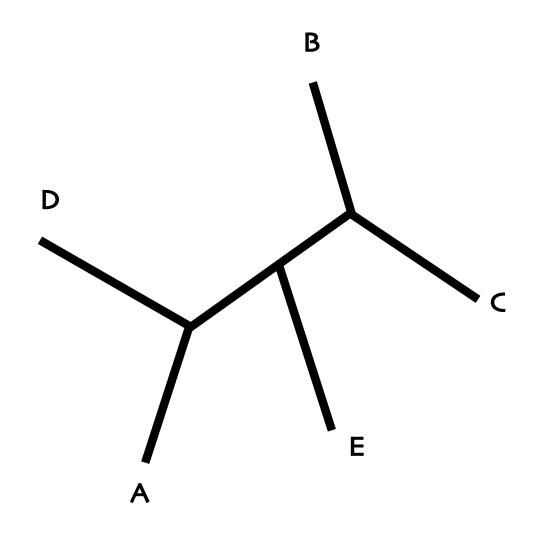
1. home exercise

1. characters

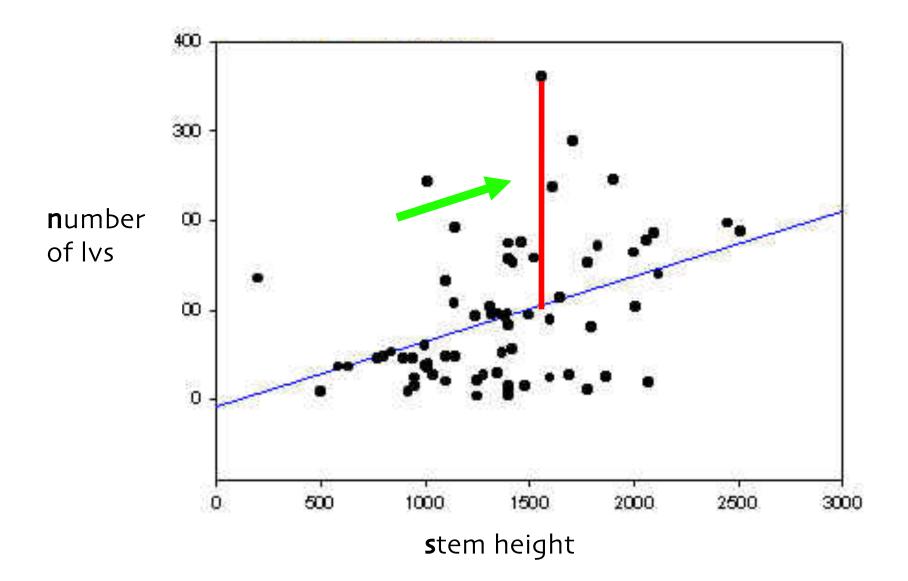

2. character weighting

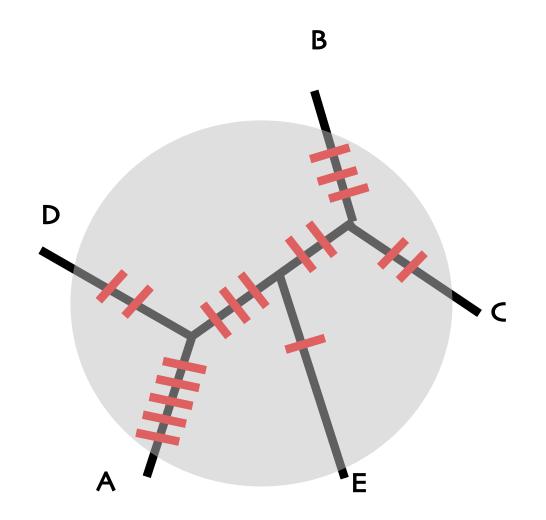
3. indices describing characters

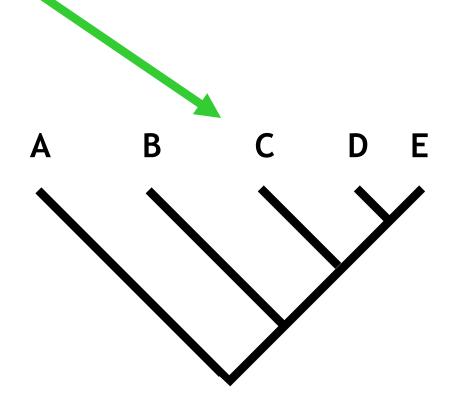
4. summary


HOME EXERCISE

	characters
	00000000111
terminals	123456789012
terminals	
A	010111011111
B	111000101010
C	101100100001
D	100011001000
Ε	100001100111


	characters														
) ()	0	0	0	0	0		0	1	1	1	_			
trees	. 2	3	4	5	6	7	8	9	0	1	2	Σ			
1	. 1	2	2	2	2	2		2	2	1	2	20			
2	. 1	2	2	2	2	2	Ŀ	2	2	2	2	21			
3	. 1	2	2	2	2	2	Ŀ	1	2	2	2	20			
4	. 2	2	1	2	2	2		2	2	2	2	21			
5	. 2	2	1	2	2	2	Ŀ	2	2	2	1	20			
6	. 2	2	1	2	2	2	L	2	2	2	2	21			
7	. 2	2	2	2	2	2	L	2	1	1	2	20			
8	. 2	1	2	2	1	2		2	1	2	2	19			
9	. 2	2	2	2	2	2	L	2	1	2	1	20			
10	. 2	2	2	2	2	2	L	1	2	2	1	20			
11	. 2	2	2	2	2	2		2	2	1	2	21			
12	. 2	1	2	2	1	2		2	2	2	2	20			
13	. 2	2	2	1	2	1	L	1	2	2	2	19			
14	. 2	2	2	1	2	1	Ŀ	2	2	2	2	20			
15	. 2	1	2	1	1	1	ŀ	2	2	2	2	18			


	characters														
	0	0	0	0	0	0	0	0	0	1	1	1	_		
trees	1	2	3	4	5	6	7	8	9	0	1	2	Σ		
1	1	1	2	2	2	2	2	1	2	2	1	2	20		
2	1	1	2	2	2	2	2	1	2	2	2	2	21		
3	1	1	2	2	2	2	2	1	1	2	2	2	20		
4	1	2	2	1	2	2	2	1	2	2	2	2	21		
5	1	2	2	1	2	2	2	1	2	2	2	1	20		
6	1	2	2	1	2	2	2	1	2	2	2	2	21		
7	1	2	2	2	2	2	2	1	2	1	1	2	20		
BEST HYPOTH	HESIS														
- smallest nun	nber of	chai	nges	from	n one	e cha	racte	er sta	ite to	o and	other	•			
- largest part (HIST	of reser ORY (d							-		dЬy	thei	r shar	red		
13	1	2	2	2	1	2	1	1	1	2	2	2	19		
14	1	2	2	2	1	2	1	1	2	2	2	2	20		
15	1	2	1	2	1	1	1	1	2	2	2	2	18		

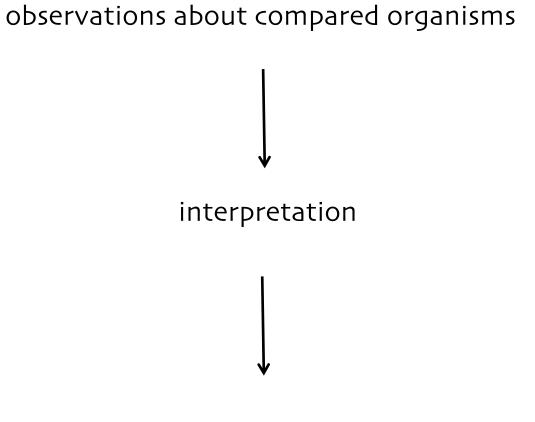

					ch	ara	acte	ers					
	0	0	0	0	0	0	0	0	0	1	1	1	_
trees	1	2	3	4	5	6	7	8	9	0	1	2	Σ
1	1	1	2	2	2	2	2	1	2	2	1	2	20
2	1	1	2	2	2	2	2	1	2	2	2	2	21
3	1	1	2	2	2	2	2	1	1	2	2	2	20
4	1	2	2	1	2	2	2	1	2	2	2	2	21
5	1	2	2	1	2	2	2	1	2	2	2	1	20
6	1	2	2	1—	2	2	2	1	2	2	2	2	21
7	1	2	2	2 ⁿ	umb	per o	f cha	racte	er sta	ates=	= n		
8	1	2	1	2 ^		MUN	M nu	mbe	r of e	evolu	ution	ary cl	hanges= n-1
9	1	2	2	2	2	2	2	1	2	1	2	1	20
10	1	2	2	2	2	2	2	1	1	2	2	1	20
11	1	2	2	2	2	2	2	1	2	2	1	2	21
12	1	2	1	2	2	1	2	1	2	2	2	2	20
13	1	2	2	2	1	2	1	1	1	2	2	2	19
14	1	2	2	2	1	2	1	1	2	2	2	2	20
15	1	2	1	2	1	1	1	1	2	2	2	2	18

d(A, B) = ∑ | X(Ai) - X (Bi) |

A 0010001010
B 0101010000
C 0111000001
D 1010110001
E 0000110101

characters 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

 B
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1


 C
 0
 1
 1
 0
 0
 1
 1
 1
 1
 1
 1

 D
 1
 0
 0
 0
 1
 1
 1
 1
 0

 E
 1
 0
 1
 0
 1
 1
 1
 1
 0

0	0.0													t	trnL.r	nxs									-	-			-
	Characters	. विकेक	कं कं	596de	516263	\$45	da da	as 47 d	71727	37475	74777	8798d	B 1828	38485	BeBarb	a a a a a a a a a a a a a a a a a a a	ə ilə zə zə	ффф	a de de la	0 0 0	000	0 0 0	0 0 1	1 1 1	1 1 1	1 1 1 2	2222	2 2 2	2 2 3 3 3 3
Таха																													
1	Meiotrichum Iyallii	A C I	TA	СТ	A A G	TGT	ТА	GC	тт	T C A	G A T	г т с	A G (GGA	A A I	с с т	AGG	TG	A A A	A A G	ТАТ	T A T	AGG	T A A	тсс	TGAG	CCAA	4 T C	т т <mark>а</mark> ттт
2	Oligotrichum hercynicum	A C I	TA	СТ	A A A	TGT	ТА	GC	тт	C A	G A T	т т с	AG	G G A	AA	с с т	AGG	TG	A A A	A A G	T A I	T A T	AGG	T A A	тсс	TGAG	CCAA	A T C	ТТАТТТ
3	Oligotrichum parallelum	A C 1	T A	СТ	A A A	TGT	ТА	GC	тт	C A	G A T	т т с	A G (G G <mark>A</mark>	A A (с с т	A G G T	TG	A A A	A A G	ТАТ	T A T	AGG	T A A	тсс	T G A G	CCAA	A T C	ТТАТТТ
4	Steereobryon subulirostru	A C T	ТА	СТ	A A G	TGT	ТА	GC	тт	C A	G A T	т т с	A G (G G <mark>A</mark>	A A	т с т	AGG	TG	A A A	A A G	ТАТ	T A T	AGA	T A A	тсс	TGAG	CCAA	АТС	ТТАТТС
5	Atrichum oerstaedianum	A T T	ТА	СТ	A A G	TGT	ТА	GC	тт	C A	G A T	Т Т С	A G (G G <mark>A</mark>	A A	ттт	AGG	TG	A A A	A A G	ТАТ	ГАТ	AGA	T A A	тсс	T G A G	CCAA	4 T C	ТТАТТС
6	Atrichum androgynum	A T T	ТА	СТ	A A G	TGT	ТА	GC	тт	T C A	GA	Г Т С	A G (G G <mark>A</mark>	A A	ТТТ	AGG	TG	A A A	A A G	ТАТ	T A T	AGA	T A A	тсс	TGAG	CCAA	4 T C	ТТАТТС
7	Atrichum undulatum	ATT	ТА	СТ	A A G	TGT	ТА	GC	тт	T C A	GA	Г Т С	A G (G G A	A A	ттт	AGG	TG	A A A	A A G	ТАТ	ГАТ	AGA	T A A	тсс	T G A G	CCAA	4 T C	ТТАТТС
8	Psilopilum laevigatum	A C T	TA	СТ	A A G	TGT	TA	GC	ТТ	T C A	GA	Т Т С	A G (G G A	A A I	с с т	AGG	TG	A A A	A A G	ТАТ	T A T	AGG	T A A	тсс	TGAG	CCAA	4 T C	ТТАТТС
9	Polytrichastrum alpinum	A C 1	TA	СТ	A A G	TGT	T A	GC	TT	T C A	G A T	Г Т С	A G (G G A	A A I	ссс	AGG	TG	A A A	A A G	ТАТ	ГАТ	AGG	ΤΑΑ	тсс	TGAG	CCAA	A T C	ТТАТТС
10	Polytrichastrum formosum	A C 1	ТА	СТ	A A G	TGT	ТА	GC	тт	T C A	GA	Г Т С	A G (G G A	A A I	ссс	AGG	TG	A A A	AAA	ТАТ	ГАТ	AGG	T A A	тсс	TGAG	CCAA	4 T C	ТТАТТС
11	Polytrichastrum longisetu	AC	TA	CT	A A G	TGT	TA	GC	ТТ	T C A	GA	ТТС	AG	G G A	AA	ссс	AGG	TG	A A A	A A A	ТА	ΤΑΤ	AGG	ΤΑΑ	ТСС	T G A G	CCAA	A T C	ТТАТТС
12	Polytrichum brachymitrium	AC	TA	CT	A A G	TGT	TA	GC	TT	T C A	GA	ТТС	A G (G G A	AA	ссс	A G G T	TG	A A A	A A G		T A T	AGG	ΤΑΑ	тсс	T G <mark>A</mark> G	CCAA	A T C	ТТАТТС
13	Polytrichum commune	A C T	TA	CT	A A G	TGT	TA	GC	TT	C A	GA	TTC	A G (GGA	AA	ссс	AGG	TG	A A A	A A G		ΤΑΤ	AGG	ΤΑΑ	тсс	T G A G	CCAA	A T C	ТТАТТС
14	Polytrichum juniperinum	A C I	TA	СТ	A A G	TGT	T A	GC	TT.	r c a	GA	Г Т С	A G (G G A	A A I	ссс	AGG	TG	A A A	A A G	ТАТ	ГАТ	AGG	T A A	ТСС	TGAG	ССАА	A T C	ТТАТТС
15	Polytrichum piliferum	AC	TA	СТ	A A G	TGT	T A	GC	11	r C A	GA	Г Т С	A G (GGA	A A I	ссс	AGG	TG	A A A	AAA	TAI	ΓΑΤ	AGG	T A A	ТСС	TGAG	CCAA	A T C	ТТАТТС
16	Polytrichum subpilosum	AC	TA	СТ	A A G	TGT	T A	GC	11	T C A	GA	TTC	A G (GGA	A A I	ссс	AGG	TG	A A A	A A G		ΤΑΤ	AGG	TAA	ТСС	TGAG	CCAA	A T C	ТТАТТТ
17	P tortile	AC		CI	A A G	TGT	T A	GC	11	T C A	G A T	Т Т С	A G (GGA	A A I	ССТ	AGG	TG	A A A	AAG	TAT	ΤΑΤ	AGG	TAA	ТСС	TGAG	CCAA	A T C	ТТАТТТ
18	P pensilvanicum BG5266	AC			A A G	TGI	T A	GC	파파	T C A	GA	Т Т С	A G (GGA	A A I	ССТ	AGG	TG	A A A	AAA	TAI	ΤΑΤ	AGG	ΤΑΑ	ТСС	TGAG	CCAA	A T C	ТТАТТТ
19	P macrophyllum	AC	TA	СТ	A A G	TGT	T A	GC	11	T C A	G A T	Т Т С	A G (GGA	A A I	ССТ	AGG	TG	A A A	AAG		ΤΑΤ	AGG	ΤΑΑ	ТСС	TGAG	CCAA	A T C	ТТАТТТ
20	P rufisetum	AC		СТ	A A G	TGT		GC	파파	C A	G A T	ТТС	A G (GGA	A A I	ССТ	AGG	TG	A A A	A A G		T A T	AGG	TAA	тсс	TGAG	CCAA	A T C	ТТАТТТ
21	P sinense	AC		СТ	A A G	TGT		GC	<u>1</u> 1	C A	G A T	ТТС	A G (GGA	A A (ССТ	AGG	TG	A A A	A A G		ΤΑΤ	AGG	TAA	тсс	TGAG	CCAA	A T C	ТТАТТТ
22	P comosum	AC	T A	СП	A A G	TGT		GC	TT.	T C A	G A T	ГГС	AG	GGA	A A I	ССТ	AGG	TG	A A A	A A G		T A T	AGG	TAA	ТСС	TGAG	CCAA	A T C	
23	P fastigiatum	AC	TA	СП	A A G	TGT		GC	파파		G A T	ГГС	A G (GGA	A A I	ССТ	AGG	TG	A A A	A A G		T A T	AGG	TAA	ТСС	TGAG	CCAA	A T C	<u>T T A T T T</u>
24	P cirratum	AC		СТ	A A G	TGT		GC	44		GA	ГТС	AG	GGA	A A I	ссс	AGG	TG	A A A	A A G		ΤΑΤ	AGG	TAA	ТСС	TGAG	CCAA	A T C	
25	P neesii	AC			A A G	TGT		GC	44		GA	ГГС	A G (GGA	A A I	ССТ	AGG	TG	A A A	A A G			AGG	TAA	ТСС	TGAG	CCAA	A T C	
26	P microstomum	AC			AAG	TGT		GC	파파		GA	TTC	AG	GGA	AA	ссс	AGG	TG	A A A	A A G			AGG	TAA	ТСС	TGAG	CCAA	A T C	
27	P tahitense	AC			AAG	TGI		GC	44		GA	ТТС	AG	GGA	AA	ССТ	AGG	TG	A A A	A A G			AGG	TAA	тсс	TGAG	CCAA	ATC	
28	P subulatum	AC		СП	AAG	TGT		GC	11		GA	TTC	AG	GGA	AA	ССТ	AGG	TG	A A A	A A G			AGG	TAA	тсс	TGAG	CCAA	ATC	
29	P dentatum	AC	TA		AAG	TG	TA	GC	44	CA	GA		AG	GGA	AA		AGG	TG	AAA	A A G		AT	AGG	T A A	ТСС	TGAG	CCAA		
30	P campylocarpum	AC	A		AAG	TGT	T A	GC		CA	GA		AG	GGA	AA		AGG	TG	AAA	AAG	_	AT	AGG		ТСС	TGAG	CCAA		
31	P nanum	AC	A		AAG	TGT		GC		CA	GA		AGO	GGA	AA		AGG	TG	A A A	AAG	A	A	AGG			T G A G	CCAA	G T C	
32	P spinulosum	AC			AAG	TGT	A	GC			GA		AG	GGA	AA	ССТ	AGGT	TG	A A A	AAA			AGG		ТСС	TGAG	CCAA		
33	P tubulosum	AC			AAG	TGT	A	GC		CA	GA		AG	GGA	AA	ССТ	AGGT	TG	AAA	AAG			AGG	TAA	ТСС	TGAG	CCAA		
34	P inflexum				AAG	TGT		GC		CA	GA		AGO	GGA	AA	ССТ	AGGT	TG	<u> </u>	AAG		AT	AGG		ТСС	TGAG	CCAA		
35	P nipponicum				AAG	TGT	A	GC		CA	GA		AGI	GGA	AA		AGGT	TG	AAA	AAG		AT	AGG		ТСС	TGAG	CCAA		
36	P perichaetiale	AC			AAG	TGT	A	GC	++	CA	GA		AG	GGA	AA		AGG	TG	AAA	AAA	A	AT	AGG	AA	T C C	TGAG	CCAA	ATC	
37	P gracilifolium	AC			AAG	TGI	A	GC		CA	GA		AG	GGA	AA		AGG	TG	A A A	AAG		AT	AGG			I G A G	CCAA		
38	P japonicum	AC	A		A A G	TGT	A	GC			GA		AGO	GGA	AA		AGG	TG	A A A	AAG		A 1	AGG			T G A G	CCAA		
39	P procerum	AC	A		A A G	I G I	A	GC		CA	GA		AGO	5 6 A	AA		AGG	TG	A A A		GA	A 1	AGG			T G A G	CCAA		
40	P proliferum	AC	A		AAG	G	A	GC			GA		AGO	5 G A	AA		AGG	TG	A A A			A 1	AGG			I G A G	C C A A		
41	P neglectum B comine llusidum	AC	A		AAG	TGT	A	GC	++		GA		AGO	GGA	AA		AGG	TG	A A A		GA	A 1	AGG			TGAG			
42	P semipellucidum		A		AAG		A	GC			GA		AGO	GGA	AA		AGG	TG	A A A		TAI	A 1	AGG			TGAG	C C A A		
43	P subtortile	A C 1			A A G	TGT	A	GC		CA	GA		AG	GGA	AG		AGG	TG	AAA	A A G	TAT	A	AGG	A A	T C C	TGAG	CCAA		

coding as characters and their states

= potentially useful for phylogenetic analysis

COMPARATIVE STUDY OF CHARACTERS

transformation series, character character, character state

Wiley's 3 conditions for characters to be useful in cladistic analysis:

- 1. variation between compared terminals
- 2. observed variation shows regularity
- 3. variation controlled genetically, not induced by

environment

from the level of single nucleotides to macromorphology

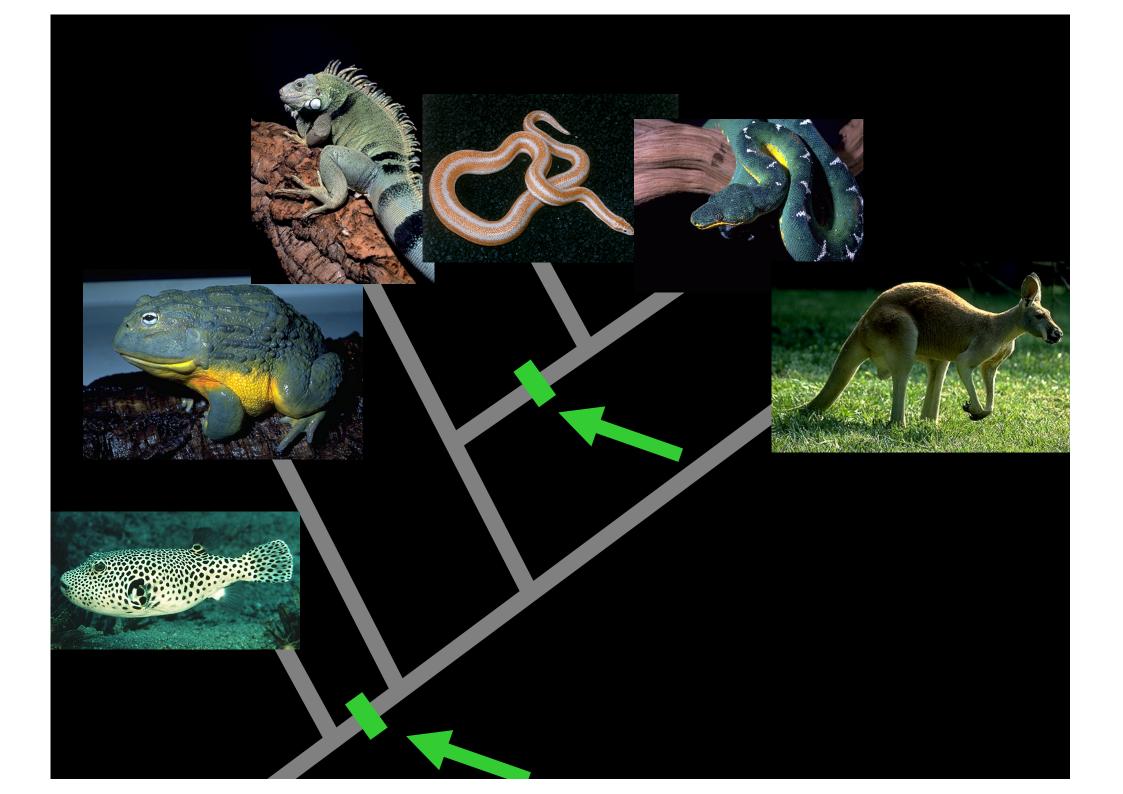
ALL assumedly homologous characters that show **VARIATION** between terminals are POTENTIALLY useful for infering phylogeny

we can use for example the following when trying to find potential homologies:

- 1. topology (position)
- 2. external similarity
- 3. "continuum" between character states

1. PRELIMINARY hypothesis about homology

observed similarities between compared terminals are interpreted as homologies (**NULL** hypothesis)


- 2. distinguish character STATES
- 3. with cladistic analysis we "test" these preliminary hypotheses against those made for other characters-->

hypothesis about homology either **accepted** or

rejected HOMOLOGY = shared feature inherited from common ancestor

ALL SYNAPOMORPHIES are homologies all homologies ARE NOT synapomorphies

ATTENTION! level of observation

binary characters (only 2 character states) coded o & 1

teeth by If margins : present (o), absent (1)

in many characters numerous character states can be distinguished , coded 0, 1, 2, 3, 4, etc. A C G T

petal color: white (o), yellow (1), orange (2) red (3), blue (4)

transformation series, character character, character state

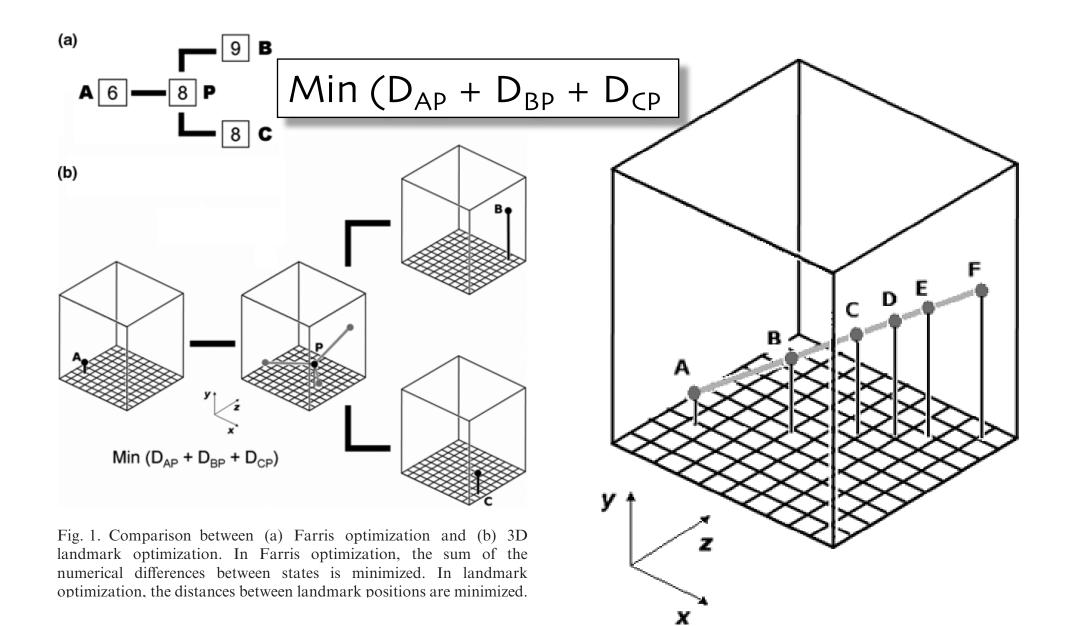
Wiley's 3 conditions for characters to be useful in cladistic analysis:

- 1. variation between compared terminals
- 2. observed variation shows regularity
- 3. variation controlled genetically, not induced by

environment

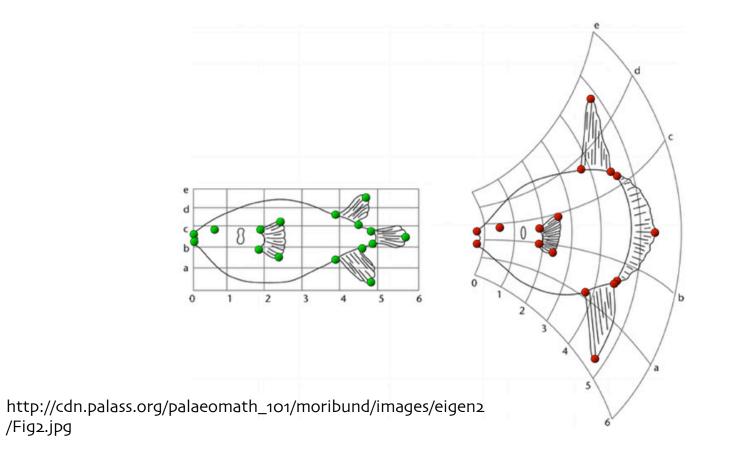
from the level of single nucleotides to macromorphology

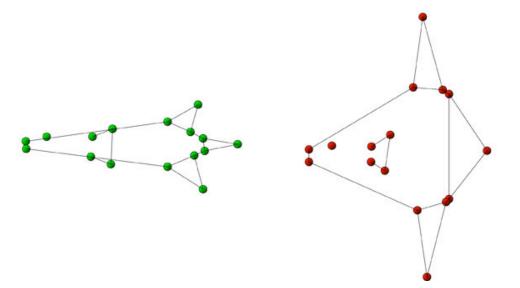
ALL assumedly homologous characters that show VARIATION between terminals are POTENTIALLY useful for infering phylogeny

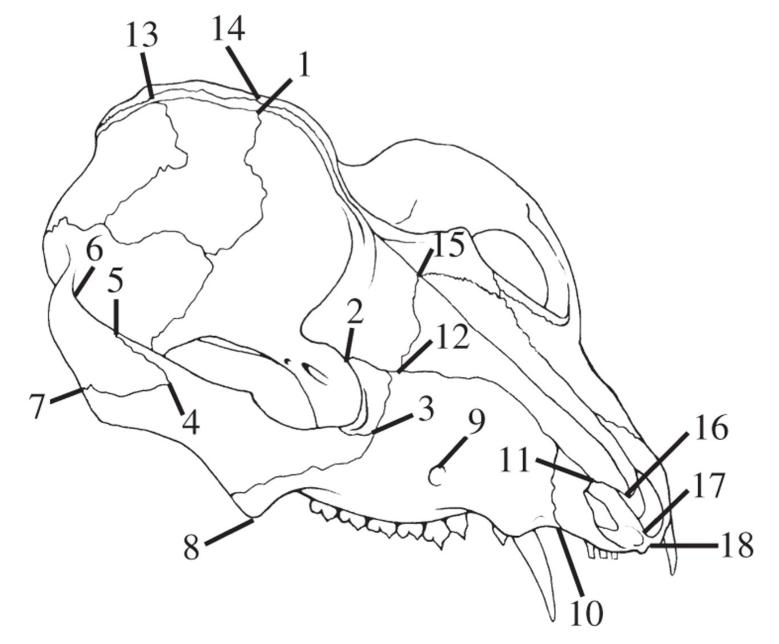

continuous characters & landmark data

QUANTITATIVE characters, ch. state distinction impossible/problematic

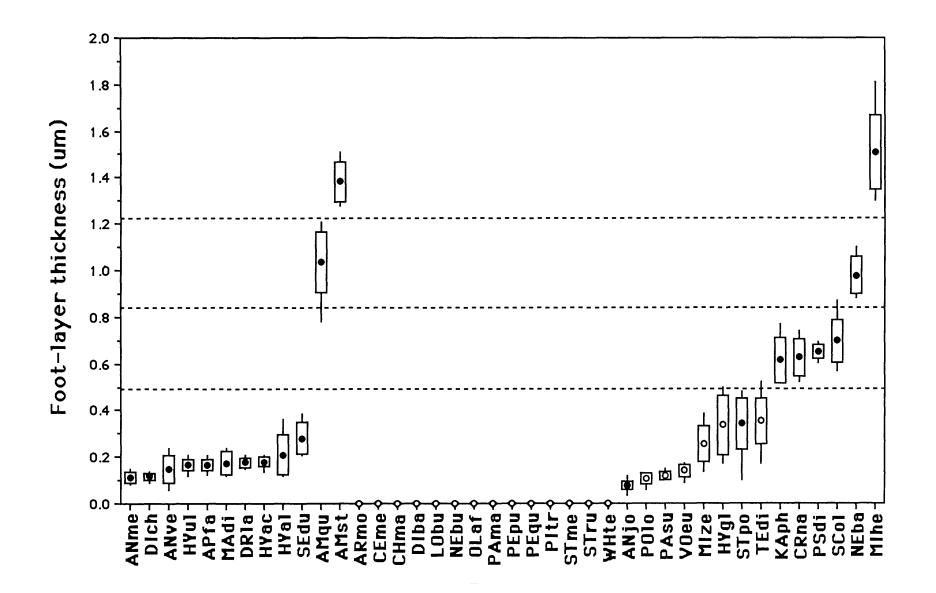
VARIATION still observed between terminals


numerous case studies have shown that also these kind of characters DO include valuable phylogenetic information


most advanced applications allow use of these characters directly & together with other kind of characters e.g. with program TNT Catalano, S.A. & al. 2010. Phylogenetic morphometrics (1): the use of landmark data in a phylogenetic framework. Cladistics 26: 539-549.

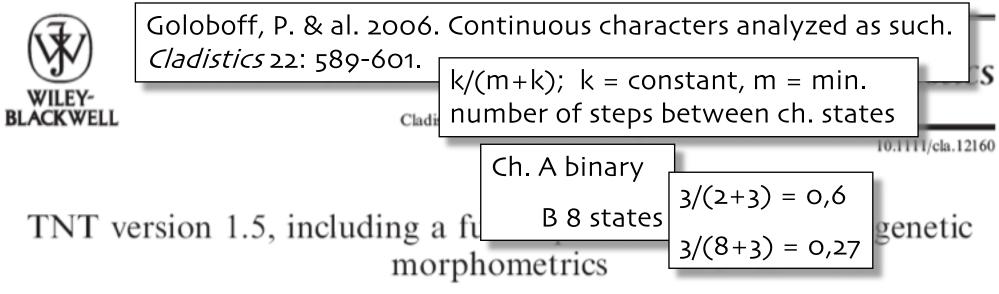

Diodon

Orthagoriscus



Goswami, A. & al. 2011. Biting through constraints: cranial morphology, disparity and convergence across living and fossil carnivorous mammals. *Proceedings of the Royal Society, B Biological Sciences 27*8: 1831-1839.

Levin, G.A. & Simpson, M.G. 1994. Phylogenetic implications of pollen ultrastructure in the Oldfieldioideae (Euphorbiaceae). *Annals of the Missouri Botanical Garden* 81: 203-238.

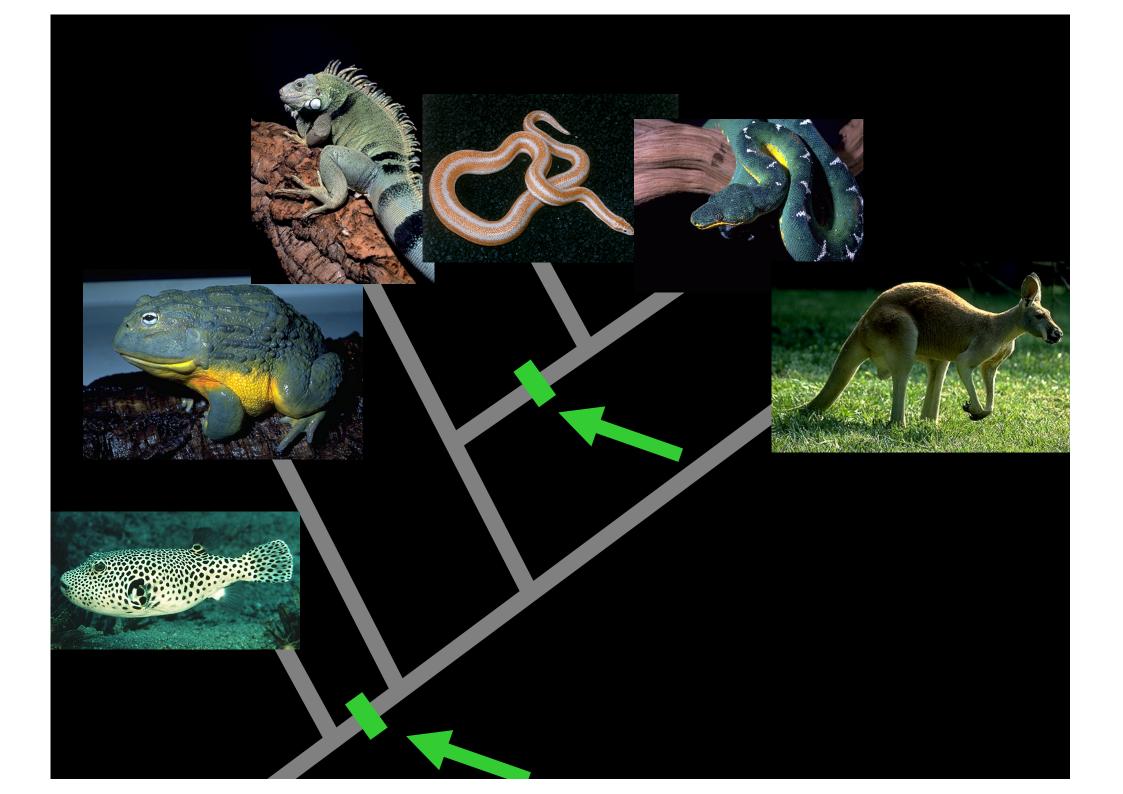

Cladistics 26 (2010) 539-549

Cladistics

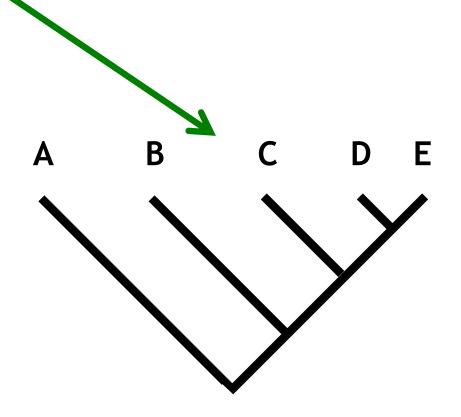
10.1111/j.1096-0031.2010.00302.x

Phylogenetic morphometrics (I): the use of landmark data in a phylogenetic framework

Santiago A. Catalano^{a,b,*}, Pablo A. Goloboff^{a,c} and Norberto P. Giannini^{a,d}



Pablo A. Goloboff^{a,*} and Santiago A. Catalano^{a,b}

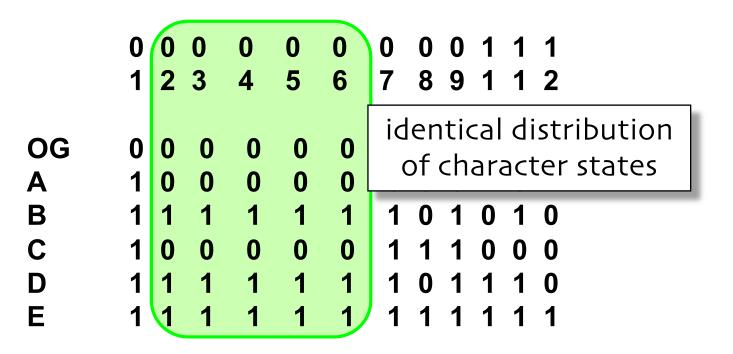

^aUnidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas, Miguel Lillo 251, 4000 S.M. de Tucumán, Argentina; ^bFacultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 S.M. de Tucumán, Argentina

Accepted 29 February 2016

also LACK of some structure might provide useful information reduction, neoteny

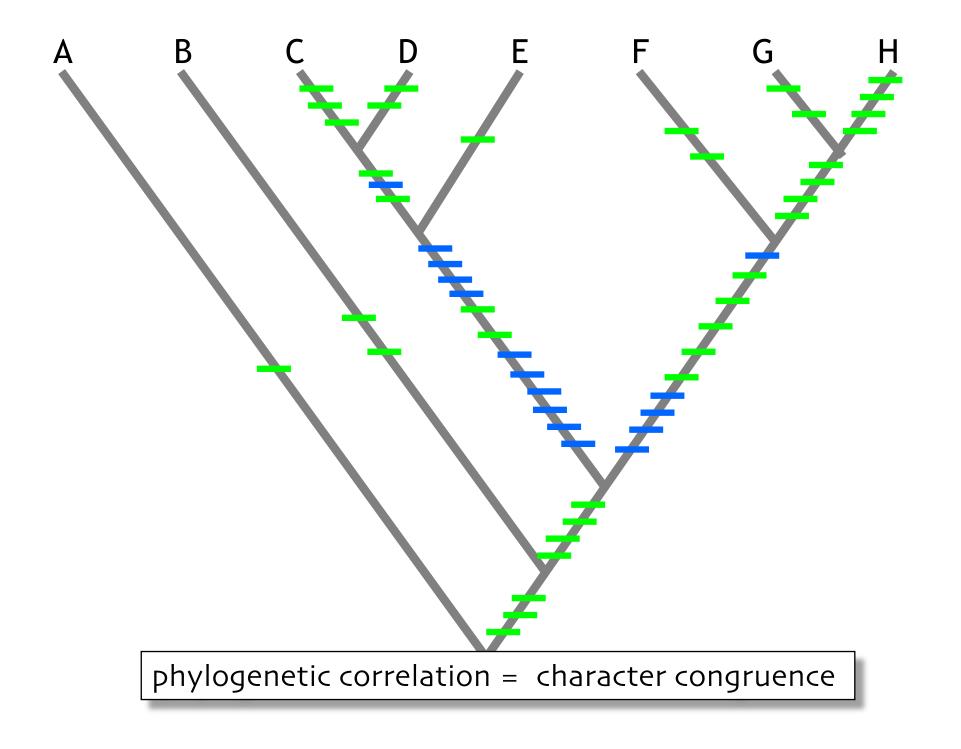
A 0010001010 B 0101010000 C 0111000001 D 1010110001 E 0000110101

characters -----> matrix <----- cladistic analysis


much homoplasy, suspicious ----> return to study &

evaluation of characters

reciprocal illumination


SUPERFICIALLY TWO THINGS ARE SAME BUT PROVE TO BE DIFFERENT WITH DETAILED STUDY

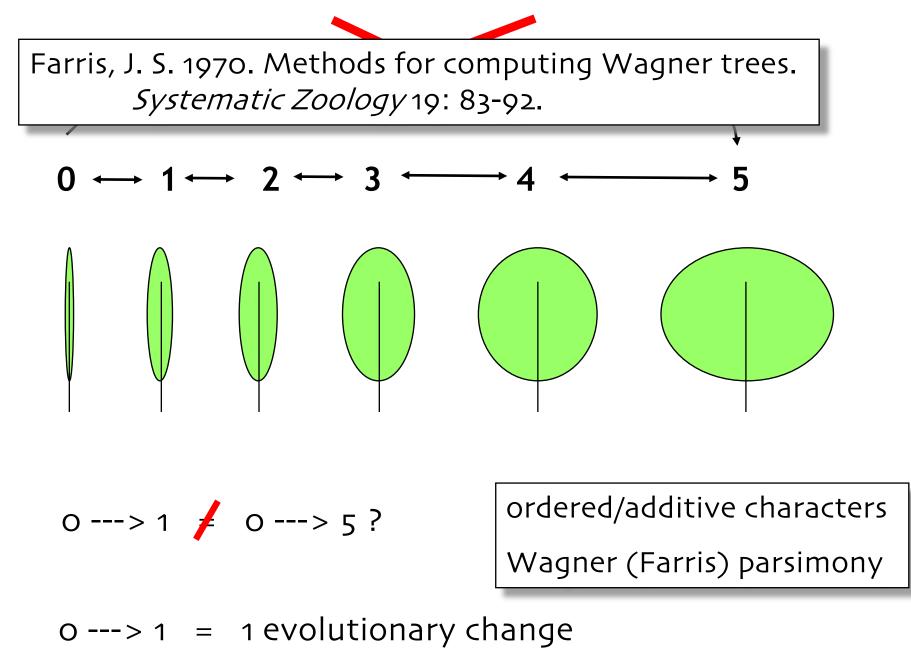
TAXONOMIC CHARACTERS characters used in phylogenetic analyses are assumed to be independent of other characters NO genetic correlation ALL these considered to be equally valuable = potentially useful for phylogenetic analyses

characters 2-6 from the same part of organism

genetic correlation?

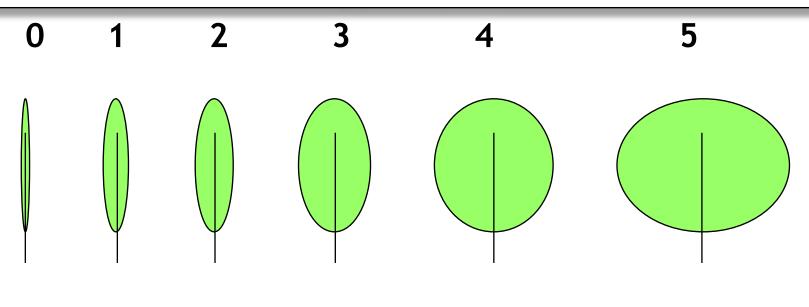
TAXONOMIC CHARACTERS & their states

- 1. order
- 2. direction
- 3. weight


TAXONOMIC CHARACTERS & their states

1. order

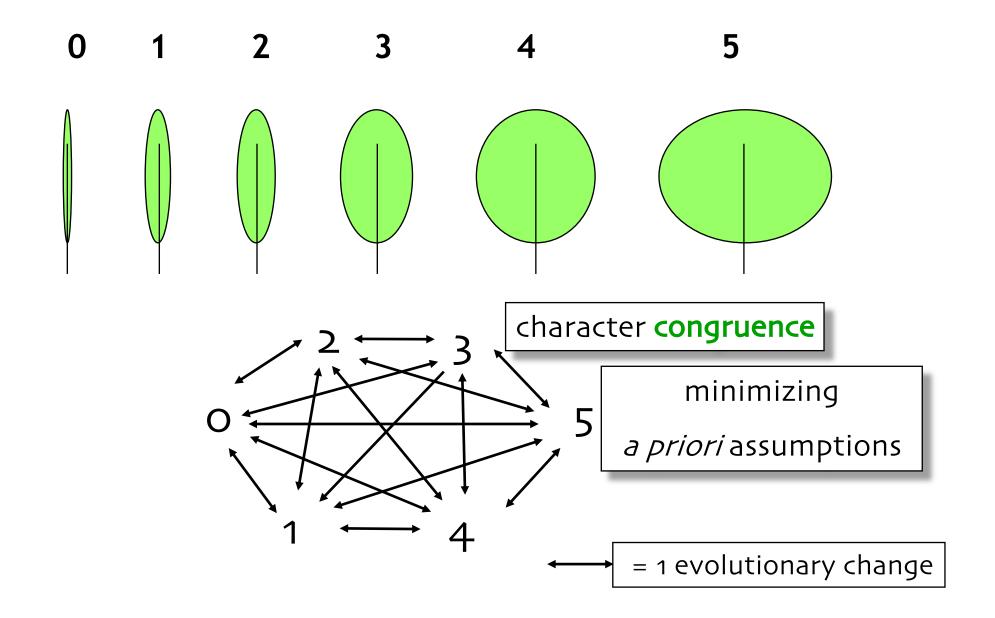
"If you have obvious order in your character states, do not ignore this information"

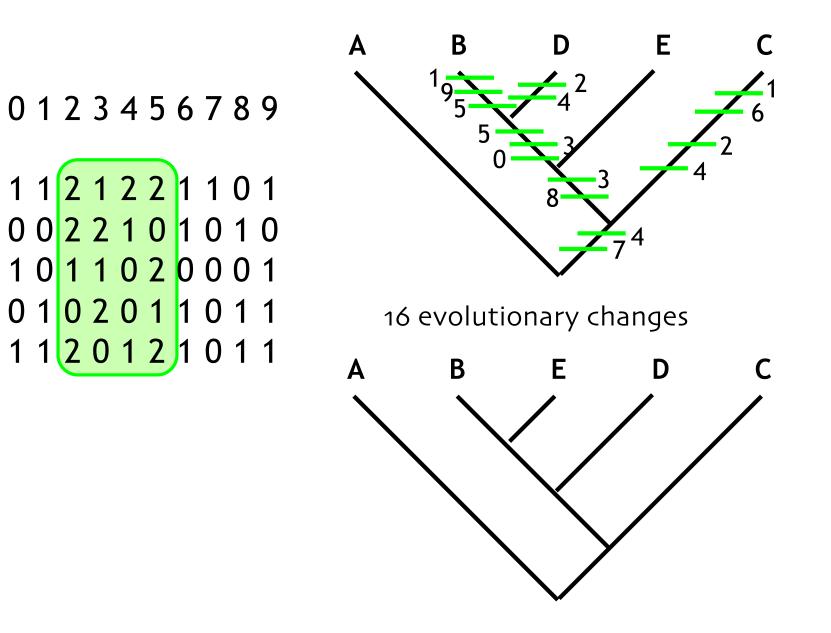

Slowinski, J. B. 1993. "Unordered" versus "ordered" characters.

Systematic Biology 42: 155-165.

o --- > 5 = 5 evolutionary changes

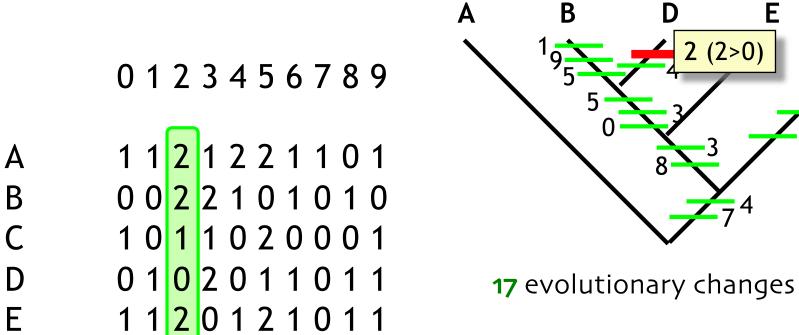
Fitch, W. M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. *Systematic Zoology* 20: 406-416.




unordered/non-additive characters Fitch parsimony

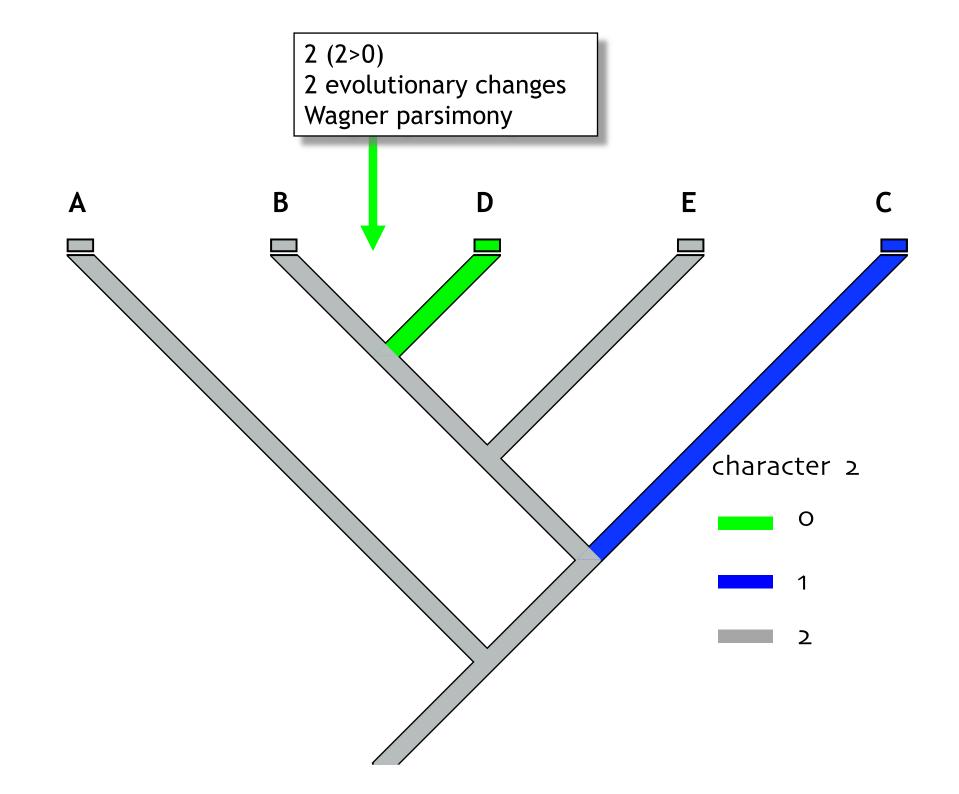
 $0 \rightarrow 1 = 1$ evolutionary change

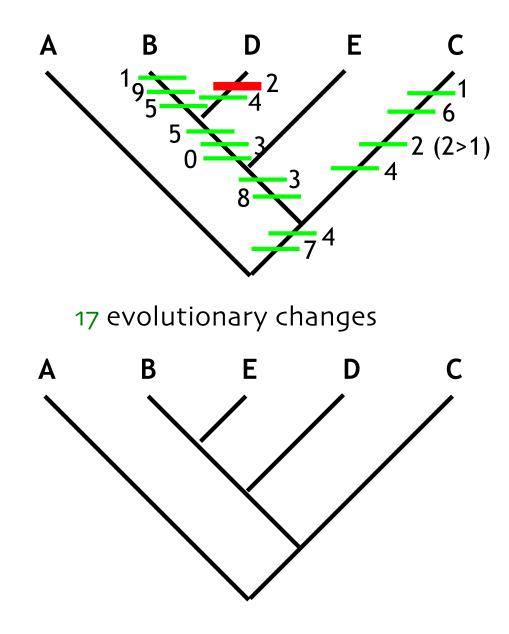
O ---> 1 = O ---> 5


o --- > 5 = 1 evolutionary change

Fitch parsimony

A B C D E


Wagner parsimony


Ε

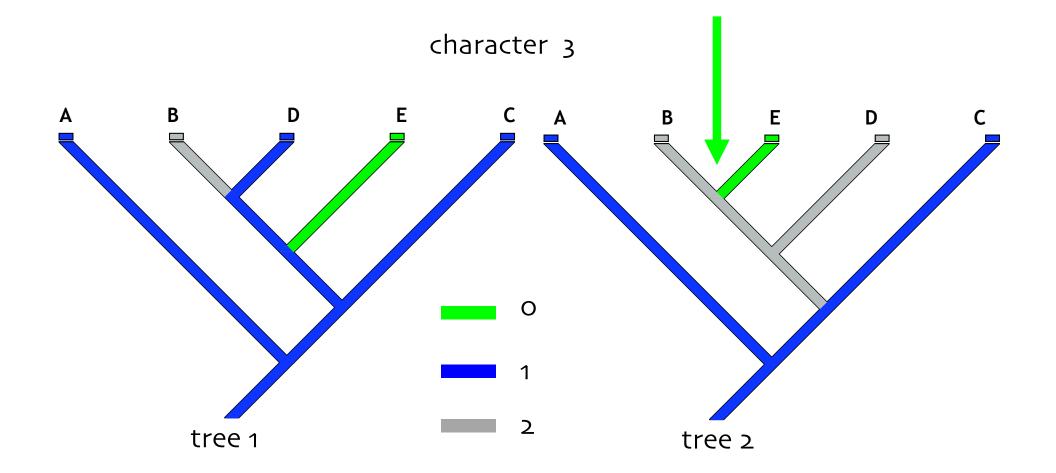
С

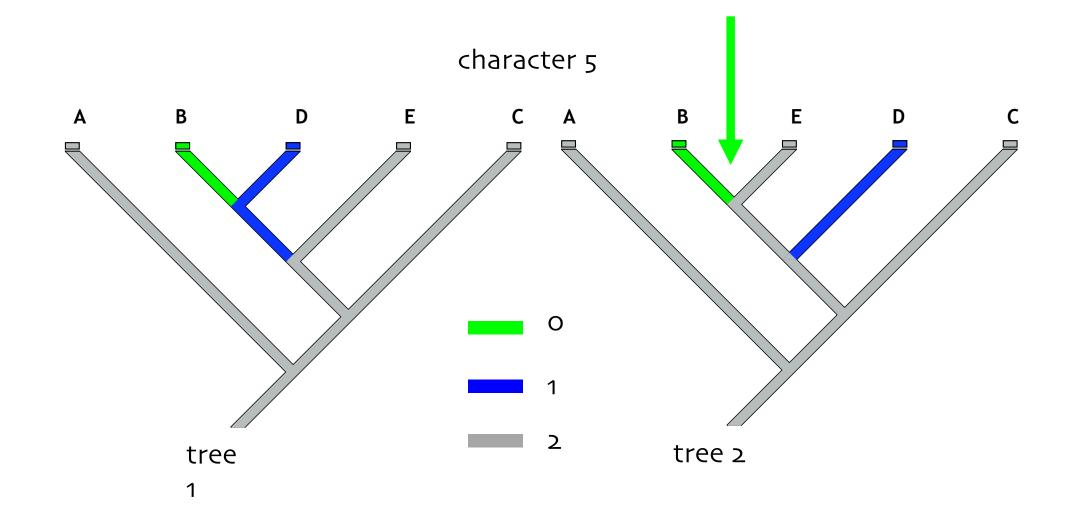
2 (2>1)

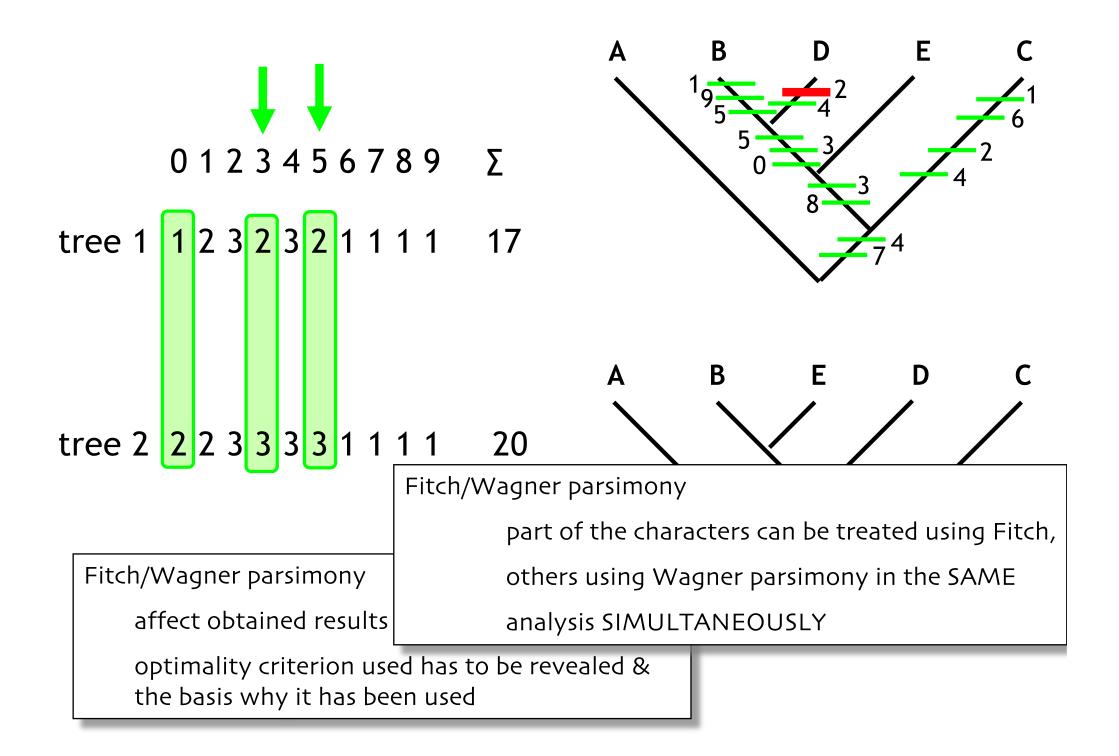
В С D

Wagner parsimony

A B C D E 0123456789


1121221101

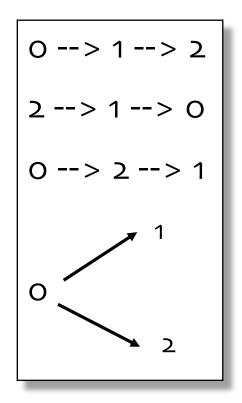

0022101010


1011020001

0102011011

1120121011

TAXONOMIC CHARACTERS & their states


1. order

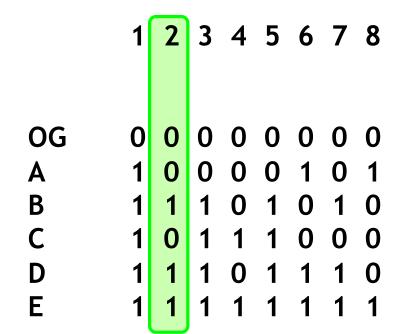
2. direction

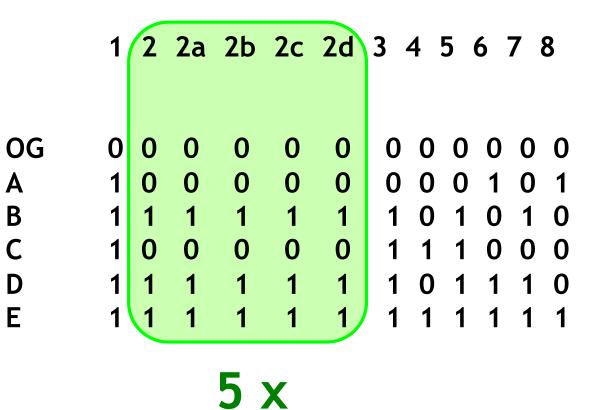
NOT needed BEFORE analysis

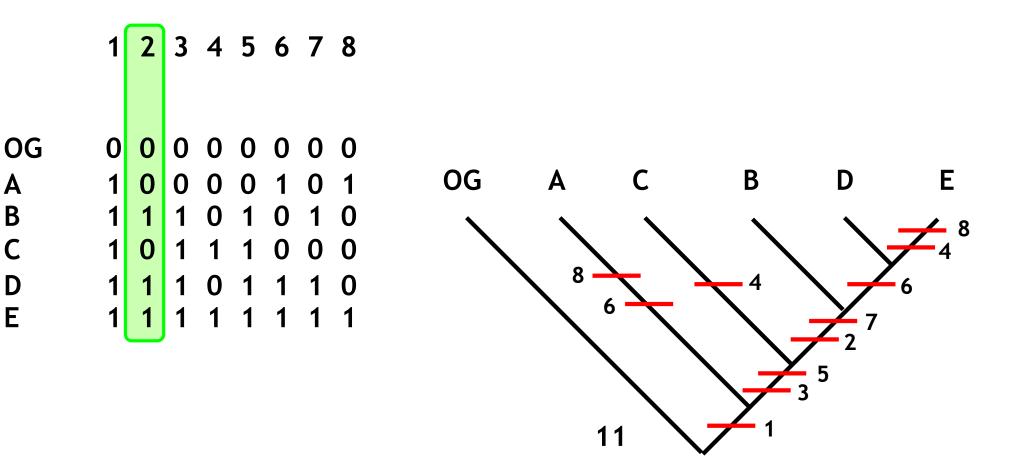
the tree resulting from our analysis

will reveal direction of change

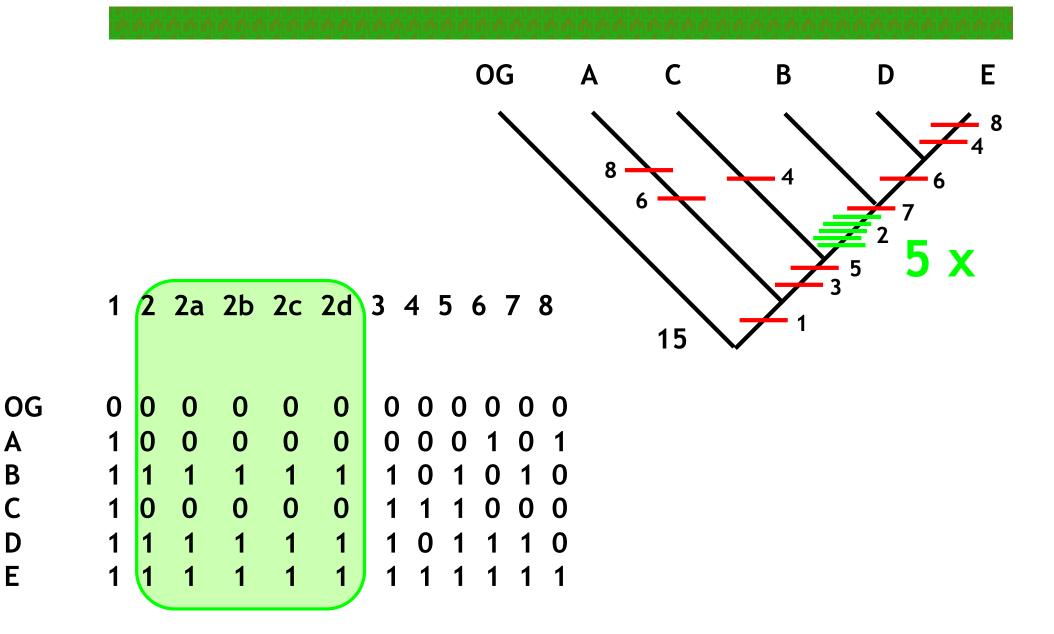
TAXONOMIC CHARACTERS & their states

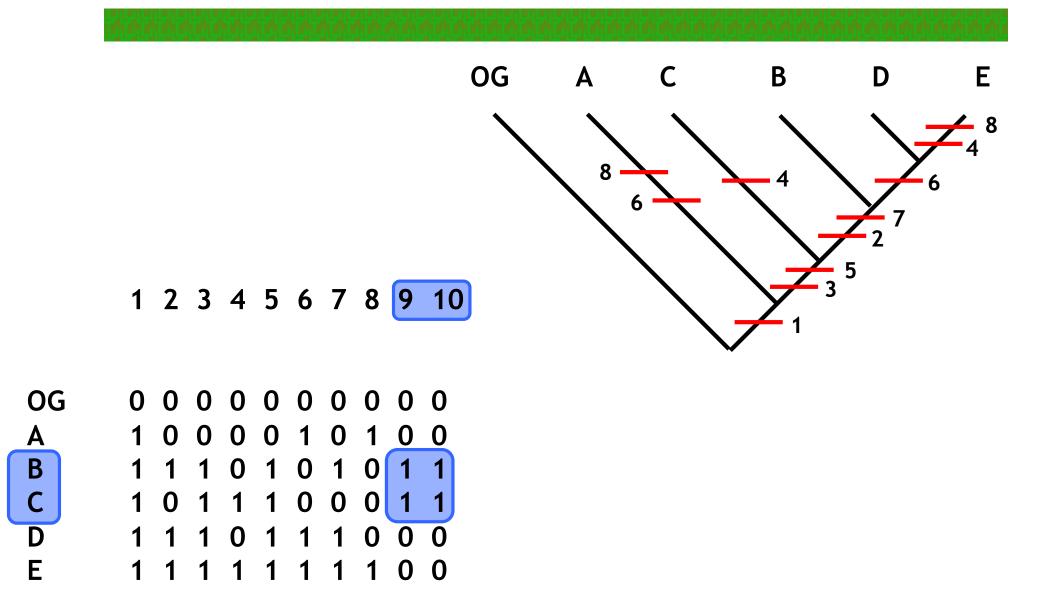

1. order

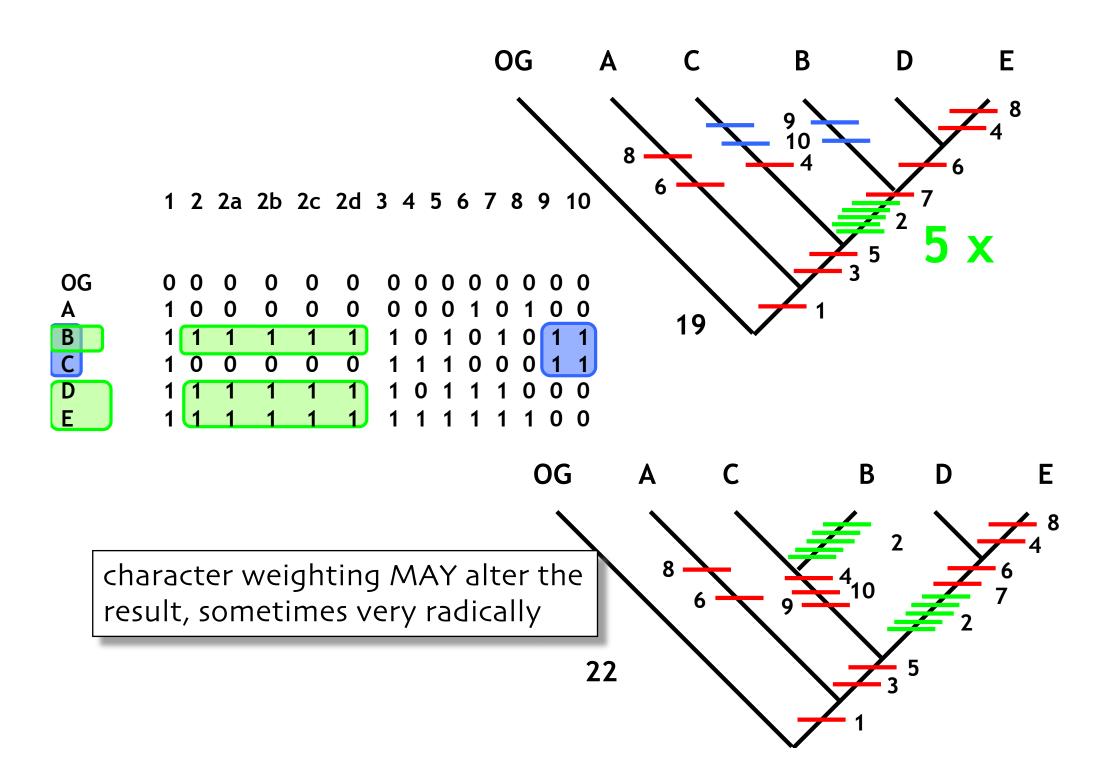

2. direction


3. weight

are all characters equally important?


equally reliable signal about phylogeny?





С

1. order

2. direction

3. weight

should characters be weighted?

what is the basis for weighting?

A PRIORI

PRESUMED that some of the characters are more "reliable"

a priori assumptions added to the analysis

are these ADDITIONAL assumptions warranted & realistic?

Neff, N.A. 1986. A rational basis for a priori character weighting. *Systematic Zoology* 35:110-123.

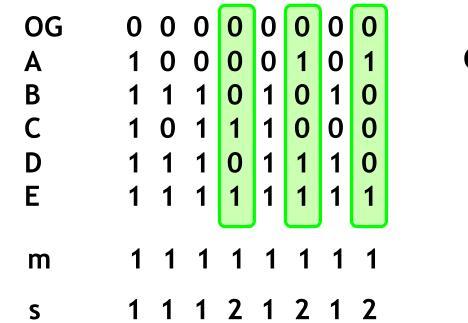
DESCENT WITH MODIFICATION

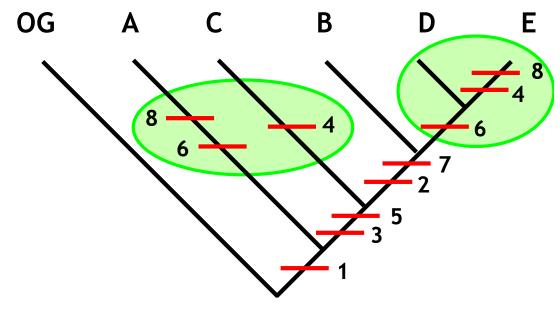
A POSTERIORI

characters that show *less homoplasy* are given more weight

these characters show better FIT with all other characters

CHARACTER CONGRUENCE


INDICES DESCRIBING CHARACTERS


consistency index, c

retention index, r

rescaled consistency index, rc

1 2 3 4 5 6 7 8

INDICES DESCRIBING CHARACTERS

consistency index, c

c = m/s

m = minimum number of character state changes

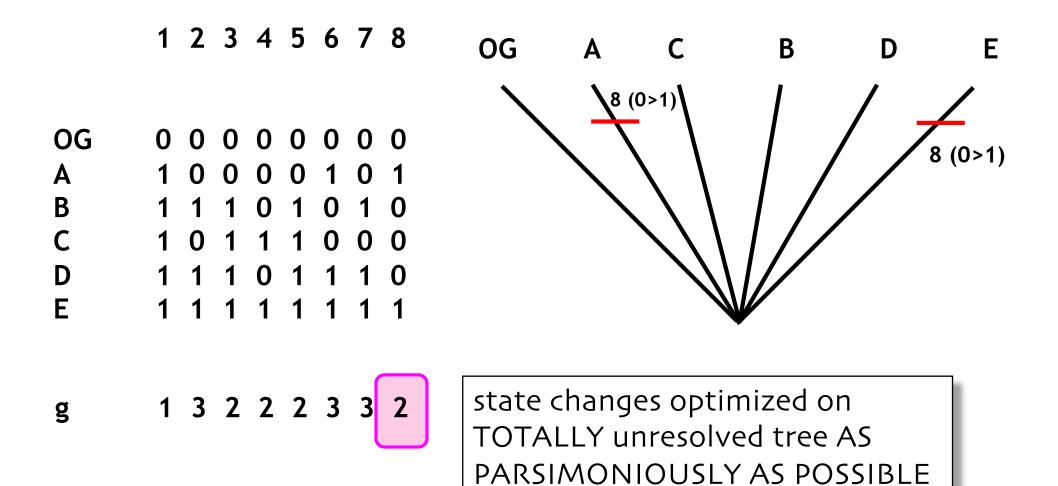
s = number of ch. state changes on the tree evaluated

ATTENTION! m = n-1 (n number of character states)

LOW value of c indicates POOR fit of character on a tree

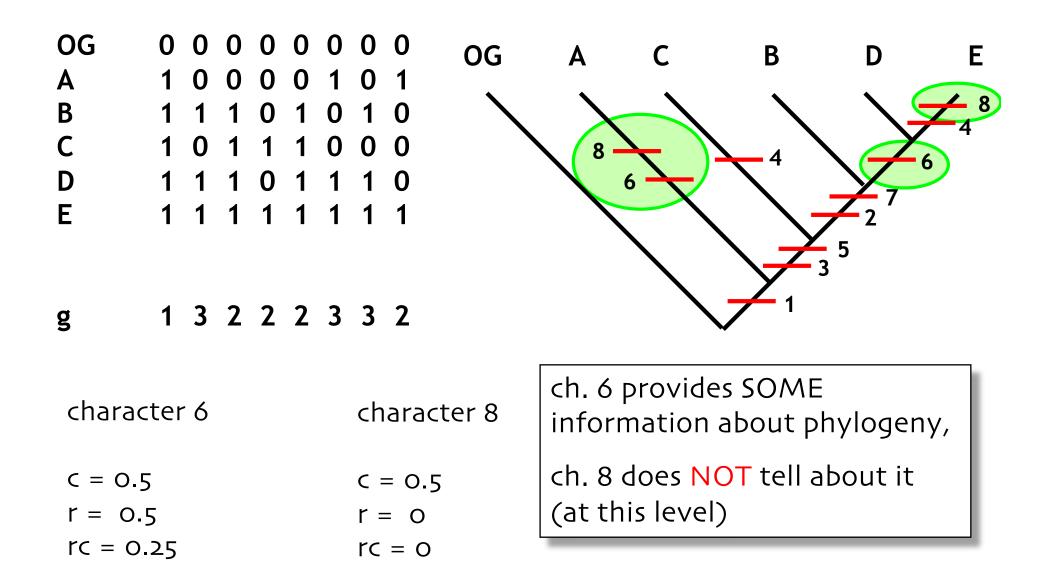
ATTENTION! it might be HIGHLY informative to calculate index also LOCALLY, i.e. for certain clades

INDICES DESCRIBING CHARACTERS


retention index, r ri

$$r = (g-s)/(g-m)$$

m = minimum number of character state changes


- s = number of ch. state changes on the tree evaluated
- g = minimum number of character state changes on UNRESOLVED TREE

ATTENTION! g can be obtained directly from the matrix, for example for binary characters it is the number of those terminals with less common ch. state

1 2 3 4 5 6 7 8

for phylogenetic analyses basically ALL characters that show variation between terminals CAN/SHOULD be used

character states are distinguished within most characters

continuous characters & landmark data CAN also be used

when making analyses using *Wagner* parsimony for characters showing clear order of states it is advisable to make analysis ALSO so that even these are treated with *Fitch* parsimon character congruence

a priori weighting is subjective and adds assumptions to analysis

consistency and retention indices tell how well each character is congruent with others