

IPS-164 INTRODUCTION TO PHYLOGENETICS 2022

Lecture 10

Bayesian Inference \& Model Selection

Sergei Tarasov

Beetle curator \& Docent
Finnish Museum of Natural History, University of Helsinki

- @tarasov_sergio
- sergei.tarasov@helsinki.fi

PLAN OF THE TODAY'S LECTURE

1. Bayesian Inference
2. Model Selection
3. Dating divergence time (Part I)

Bayesian interpretation of probability

- Bayesian interpretation expresses a degree of belief in an event
- This degree of belief is based on prior knowledge about the event

Bayes' theorem:
Likelihood: Prior:

\[

P(A \mid B)=\frac{\)| Probability |
| :--- |
| of $B \text { given } A$ |
| Probability of A |
| before gathering the |
| data |}{$P(B \mid A) P(A)$}

\]

Posterior:
Probability that A
is true given B is
observed

Probability of B
(= probability of
data, $=$ marginal

probability)

Thomas Bayes (1701-1761)

Using the Bayes theorem: $\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})=\frac{\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A}) \boldsymbol{P}(\boldsymbol{A})}{\boldsymbol{P}(\boldsymbol{B})}$

Men (0.5)

Women (0.5)

If we see someone has long hair, what is the probability that this person is a man (or a woman)?

Using the Bayes theorem: $\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})=\frac{\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A}) \boldsymbol{P}(\boldsymbol{A})}{\boldsymbol{P}(\boldsymbol{B})}$

Women (0.5)

If we see someone has long hair, what is the probability that this person is a man (or a woman)?

M \& W	Total Prob.	Hair Length Prob.
Short	$0.6^{*} 0.5=0.3$	
Long	$0.4^{*} 0.5=0.2$	
Short	$0.7 * 0.5=0.35$	
Long	$0.3 * 0.5=0.15$	
Total	1	

Using the Bayes theorem: $\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})=\frac{\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A}) \boldsymbol{P}(\boldsymbol{A})}{\boldsymbol{P}(\boldsymbol{B})}$

Using the Bayes theorem: $\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})=\frac{\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A}) \boldsymbol{P}(\boldsymbol{A})}{\boldsymbol{P}(\boldsymbol{B})}$

Women (0.5)

$P($ man \mid long hair $)=\frac{$| 0.4 |
| :---: |
| 0.5 |
| $(\text { long hair } \mid \text { man }) P(\text { man })$ |}{$P(\text { long hair })$}$=0.57$

$$
\begin{array}{llll}
0.4 & 0.5 & 0.3 & 0.5
\end{array}
$$

$$
P(\text { long hair })=P(\text { Long hair }) P(\text { man })+P(\text { Long hair }) P(\text { woman })=0.35
$$

If we see someone has long hair, what is the probability that this person is a man (or a woman)?

Monty Hall Paradox

Monty Hall Paradox

Monty Hall Paradox

Monty Hall Paradox

1.

Switch and win

$$
P_{r}\left(w_{1} i_{1}=\frac{1}{3} ; \frac{2}{3}\right.
$$

Monty Hall Paradox

1.

2.

(3) $\quad \mathbf{p}($ the car behind door $1 \mid$ Monty Hall opens door 3)= $\frac{\mathbf{p}(\text { Monty Hall opens door } 3 \mid \text { the car behind door } 1) * \mathbf{p}(\text { the car behind door } 1)}{\mathbf{p (M o n t y} \text { Hall opens door } 3)}$
$=(1 / 2 * 1 / 3) /(1 / 2)=\mathbf{1} / \mathbf{3}$
(1\&2) \mathbf{p} (the car behind door 2 | Monty Hall opens door 3)=
$\underline{\mathbf{p}(\text { Monty Hall opens door } 3 \mid \text { the car behind door } 2) * \mathbf{p} \text { (the car behind door } 2 \text {) }) ~}$ p(Monty Hall opens door 3)

$$
=(1 * 1 / 3) /(1 / 2)=2 / 3
$$

Bayesian interpretation of probability

- Bayesian interpretation expresses a degree of belief in an event
- This degree of belief is based on prior knowledge about the event

Bayes' theorem:
Likelihood: Prior:
Probability Probability of A
of B given A before gathering the
data

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Posterior:

Probability that A is true given B is observed

Probability of B (=probability of data, =marginal probability)

Without loss of generality posterior can be written as:
Posterior \propto Likelihood * Prior

Likelihood function of Binomial distribution

(0)

Given n and k, infer probability for every p
$\operatorname{Ln}(p \mid n, k)$
$\operatorname{Likelihood}(p \mid n=3, k=2)=\binom{n}{k} p^{k}(1-p)^{n-k}=\binom{3}{2} p^{2}(1-p)^{3-2}$

Ln of p give $\mathrm{k}=2$ and $\mathrm{n}=3$

Likelihood function of Binomial distribution

Given n and k, infer probability for every p

$$
\operatorname{Ln}(p \mid n, k)
$$

$\operatorname{Likelihood}(p \mid n=3, k=2)=\binom{n}{k} p^{k}(1-p)^{n-k}=\binom{3}{2} p^{2}(1-p)^{3-2}$

Informal Axiom of Statistics:

Any measured quantity of any set of objects in the Universe has some probability distribution

What if the parameter p is not just a maximum point but has some distribution?

Use the Bayes theorem!

Posterior \propto Likelihood * Prior

Bayesian theorem applied to probability distribution

- We can find the distribution of p using Bayes theorem:

Posterior \propto Likelihood * Prior

- Bayes theorem requires prior choice

Beta distribution is the natural choice as the prior for the Binomial Likelihood

$$
f(x \mid a, b)=\frac{1}{\mathrm{~B}(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

Why not Normal?

Normal Distribution. It has two parameters:
Mean (mu) and Variance (sigma)

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Posterior for coin toss

Prior Beta(a=1, b=1)

Priors:

Prior Beta(a=2, b=5)

Prior Beta(a=0.5, b=0.5)

Posterior for coin toss

Posterior for coin toss

Hyperpriors are the priors for the priors

```
Informal Axiom of Statistics:
Any measured quantity of any set of objects in the Universe has some probability distribution
```

Model with priors
Likelihood: $(p \mid n, k)=\binom{n}{k} p^{k}(1-p)^{n-k}$ Prior: $p \sim \operatorname{Beta}(a, b)$

Model with hyperpriors
Likelihood: $(p \mid n, k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Prior: $p \sim \operatorname{Beta}(a, b)$
Hyperprior: $a \sim \operatorname{Gamma}\left(k_{1}, \theta_{1}\right)$ Hyperprior: $b \sim \operatorname{Gamma}\left(k_{2}, \theta_{2}\right)$

Bayesian inference

- Sample parameters from their joint posterior distribution
- Your parameter sample is a distribution
- It's not a point estimate as in the Likelihood method

ML

Posterior

BI

Topology and branch lengths

Rates of the rate matrix

$$
\pi=\left(\pi_{1}, \pi_{2}\right)
$$

Initial vector at the root of tree

Felsenstein's pruning algorithm is the same for the Bayesian Inference but add Priors

Given values:	
state $1 \quad$ state 2	
1	0 0
	$\begin{aligned} & =\left[\begin{array}{cc} -1 & 1 \\ 2 & -2 \end{array}\right. \\ & =(1 / 2,1 / 2) \end{aligned}$

Likelihood (at the root):

$$
\begin{gathered}
L(\text { tree })=\operatorname{Pr}(\text { black }) * \boldsymbol{\pi}_{1}+\operatorname{Pr}(\text { red }) * \pi_{2}= \\
0.02 * 1 / 2+0.02 * 1 / 2=\mathbf{0 . 0 2}
\end{gathered}
$$

Posterior $\propto L($ tree $) ~ * ~ P r i o r ~$

Approximating the posterior distribution with Markov Chain Monte Carlo (MCMC) method using Metropolis-Hasting algorithm

Estimating area of the circle using Monte Carlo method

Approximating the posterior distribution with Markov Chain Monte Carlo (MCMC) method using Metropolis-Hasting algorithm

MCMC is a Markov chain that being at stationary randomly samples from the posterior distribution

Posterior

Approximating the Joint Posterior Probability Density with MCMC

Programming our MCMC robot...
Our robot parachutes into a random location in the joint posterior density and will explore parameter space by following these simple rules:

Approximating the Joint Posterior Probability Density with MCMC

Programming our MCMC robot...
Our robot parachutes into a random location in the joint posterior density and will explore parameter space by following these simple rules:

Approximating the Joint Posterior Probability Density with MCMC

Programming our MCMC robot...

Our robot parachutes into a random location in the joint posterior density and will explore parameter space by following these simple rules:

1. If the proposed step will take the robot uphill, it automatically takes the step

$$
\operatorname{Pr}[\text { Accept }]=1
$$

Approximating the Joint Posterior Probability Density with MCMC

Programming our MCMC robot...

Our robot parachutes into a random location in the joint posterior density and will explore parameter space by following these simple rules:

1. If the proposed step will take the robot uphill, it automatically takes the step

Approximating the Joint Posterior Probability Density with MCMC

Programming our MCMC robot...

Our robot parachutes into a random location in the joint posterior density and will explore parameter space by following these simple rules:

1. If the proposed step will take the robot uphill, it automatically takes the step
2. If the proposed step will take the robot downhill, it divides the elevation of the proposed location by the current location, and it only takes the step if the quotient is less than a uniform random variable, U[0,1]

Approximating the Joint Posterior Probability Density with MCMC

Programming our MCMC robot...

Our robot parachutes into a random location in the joint posterior density and will explore parameter space by following these simple rules:

1. If the proposed step will take the robot uphill, it automatically takes the step
2. If the proposed step will take the robot downhill, it divides the elevation of the proposed location by the current location, and it only takes the step if the quotient is less than a uniform random variable, $\mathrm{U}[0,1]$
3. The proposal distribution is symmetrical, so $\operatorname{Pr}[\mathrm{A} \rightarrow \mathrm{B}]=\operatorname{Pr}[\mathrm{B} \rightarrow \mathrm{A}]$

Approximating the Joint Posterior Probability Density with MCMC

Programming our MCMC robot...

Our robot parachutes into a random location in the joint posterior density and will explore parameter space by following these simple rules:

1. If the proposed step will take the robot uphill, it automatically takes the step
2. If the proposed step will take the robot downhill, it divides the elevation of the proposed location by the current location, and it only takes the step if the quotient is less than a uniform random variable, $\mathrm{U}[0,1]$
3. The proposal distribution is symmetrical, so $\operatorname{Pr}[\mathrm{A} \rightarrow \mathrm{B}]=\operatorname{Pr}[\mathrm{B} \rightarrow \mathrm{A}]$

From the presentation of Brian Moore (Univ. of Davis)

Assessing MCMC Performance: Three Main Issues

1. Convergence

Has the chain (robot) successfully targeted the stationary distribution?
2. Mixing

Is the chain (robot) successfully integrating over the joint posterior probability?
3. Sampling intensity

Has the robot collected enough samples to adequately describe the posterior probability distribution?

Software for accessing diagnostics:

- Tracer https://github.com/beast-dev/tracer/releases/tag/v1.7.1
- Bonsai (R package)
- AWTY

Assessing MCMC Performance: Diagnostics Based on Single Runs

Example: Tracer plots of tree-length at two stages of a single MrBayes run
bad convergence

| fast* | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| lnL | blow* | | |

[^0]
Assessing MCMC Performance: Diagnostics Based on Single Runs

Example: Tracer plots of relative-rate multipliers from two MrBayes runs
bad mixing

better mixing

Assessing MCMC Performance:
 Diagnostics Based on Single Runs

Example: Tracer plots of relative-rate multipliers from two MrBayes runs
bad mixing
better mixing

Assessing MCMC Performance:
 Diagnostics Based on Single Runs

Example: ESS values for relative-rate multipliers from two MrBayes runs
low intensity

Approximating the Joint Posterior Probability Density with Metropolis-Couples MCMC

Robot Squadron!!

Summary: Some General Strategies for Assessing MCMC Performance

You can never be absolutely certain that the MCMC is reliable, you can only identify when something has gone wrong. Gelman

1. When do you need to assess MCMC performance?

ALWAYS

2. When should you assess the performance of individual runs?
always
3. Which diagnostics should you use to assess individual runs?

ALL that are relevant for the models/parameters you are estimating under
4. When is a single run sufficient to assess MCMC performance?

NEVER
5. When should you estimate under the prior?

WHENEVER POSSIBLE (and be wary of programs where it is not possible)

Summary: Some General Strategies for Assessing MCMC Performance

You can never be absolutely certain that the MCMC is reliable, you can only identify when something has gone wrong. Gelman
6. When should you use Metropolis-Coupling?

Whenever you cannot be certain that standard MCMC is adequate
i.e., ALWAYS (and be wary of programs where it is not possible)
7. When should you perform multiple independent MCMC runs?

ALWAYS (and be wary of pseudo-independence)
8. Which diagnostics should you use to assess individual runs?

ALL that are relevant for the models/parameters you are estimating under
9. How many independent MCMC runs are sufficient?

AS MANY AS POSSIBLE (i.e., as many as you think your data/problem deserve)
10. How long should you run each MCMC analysis?

AS LONG AS POSSIBLE (i.e., as long as you think your data/problem deserve)

Credible interval in BI

- Credible interval is an interval within which a parameter value falls with a particular probability
- A measure of the parameter uncertainty

Credible interval 95\%

Maximimum Likelihood vs. Bayesian Inference

Likelihood:

- Fast
- No priors no subjectivity
- Some types of analyses are challenging due complex likelihood functions

Bayesian:

- Slow
- Priors are logical since everything has a distribution
- Scientists think in a Bayesian way
- Some models can be implemented only in BI. Bayesian non-parametric methods (Dirichlet process prior).

Software for tree reconstruction using BI

- MrBayes: http://nbisweden.github.io/MrBayes/
- RevBayes: https://revbayes.github.io
- Beast: https://www.beast2.org

Suggested literature

Doing Bayesian Data Analysis

A Tutorial with R, JAGS, and Stan

John K. Kruschke

Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan

Quick demo:

Binomial Bayesian Inference

Model selection using Maximum Likelihood

- Different models have different number of parameters

Model selection using Maximum Likelihood

AIC (Akaike information criterion)

- Based on information theory
- AIC estimates the relative amount of information lost by a given model in comparison to the true (unknown) model
- The less information a model loses, the higher the quality of that model

Model selection using Maximum Likelihood

AIC (Akaike information criterion)

- Based on information theory
- AIC estimates the relative amount of information lost by a given model in comparion to the true (unknown) model
- The less information a model loses, the higher the quality of that model
- AIC shows the raltive fit of a model
- The model with a minimum AIC is the best
- Use $\Delta A I C$ for comparing multiple models

$\triangle A I C$ scale

$$
A I C=2 k-2 L n(L)
$$

Where k is the number of the parameters

$$
\begin{aligned}
& \text { Delata AIC: } \\
& \triangle A I C=A I C(M 1)-A I C(M 2)
\end{aligned}
$$

0 to 2	Not worth more than a bare mention
2 to 6	Positive
6 to 10	Strong
>10	Very strong

Model selection using Maximum Likelihood

BIC (Bayesian information criterion)

- Motivated by Bayesin thinking but applied to likelihood methods
- BIC approximates the probability of data
- BIC shows the raltive fit of a model
- The model with a minimum BIC in a set of models is the best (= has maximum posterior probability)

$$
B I C=\log (n) k-2 \operatorname{Ln}(L)
$$

Where k is the number of the parameters and n is the number of data points

```
Delata BIC:
\DeltaBIC = BIC(M1) - BIC(M2)
```

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

probability of data (marginal probability)

$B I C$ is the area under
likelihood function

Model selection in Bayesian framework

Marginal Likelihood (MLn) and Bayes factor (BF)

- Based on Marginal lekelihood (= probability of data)
- Similar to BIC
- BF is similar to $\triangle B I C$
- BF shows the relative fit of a model

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

probability of data (marginal probability)

- Marginal likelihood is hard to compute
- Softwares implement special algorithms for computing it (i.e. stepping stone)

$$
B F=M \operatorname{Ln}(M 1)-M \operatorname{Ln}(M 2)
$$

Improving Marginal Likelihood Estimation for Bayesian Phylogenetic Model Selection
Wangang Xie ${ }^{1}$, paul O. Lewis ${ }^{2}$,*, Yu Fan ${ }^{2}$, Lynn $K_{\text {Ko }}{ }^{3}$ and Ming-Hui Chen ${ }^{3}$
$B F$ scale

0 to 2	Not worth more than a bare mention	
2 to 6	Positive	
6 to 10	Strong	
>10	Very strong	

Marginal likelihood is the area under posterior distribution function

Model selection in practice

- Maximum Likelihood
- IQ Tree http://www.iqtree.org
- Bayesian
- MrBayes: http://nbisweden.github.io/MrBayes/
- RevBayes: https://revbayes.github.io
- Beast: https://www.beast2.org
- Old software
- ParitionFinder http://www.robertlanfear.com/partitionfinder/
- ModelTest-NG v0.1.5 https://github.com/ddarriba/modeltest/releases

Suggested literature

Model Selection by Burham and Anderson

Doing Bayesian Data Analysis

Model Selection and Model Averaging

Summary

- Bayesian Inference is a natural extension of Likelihood method for estimating posterior probability of parameters
- Model selection tools allow testing various hypotheses in Maximum Likelihood and Bayesian frameworks

[^0]: *somewhat data-set dependent

