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. PLAN OF THE TODAY’S LECTURE

1. Bayesian Inference
2. Model Selection

3. Dating divergence time (Part I)

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI



Bayesian interpretation of probability

e Bayesian interpretation expresses a degree of belief in an event 3
* This degree of belief is based on prior knowledge about the event i ks "j"- ,

Bayes' theorem:

Likelihood: Prior:

Probability = Probability of A A kS
of Bgiven A  before gathering the Thomas Bayes (1701 -1761)
data
P(B|A) P(A)
P(A|B) =
P(B)

Posterior:
Probability that A Probability of B
is true given B is (=probability of
observed data, =marginal

probability)



P(B|A) P(A)
P(B)

Using the Bayes theorem: pwiB) =

Men (0.5) Women (0.5)

Short

hair(0.6)

If we see someone has long hair, what is the
probability that this person is a man (or a woman)?



P(B|A) P(A)
P(B)

Total Prob. Hair Length
Men (0.5) Women (0.5) Prob.

0.6*0.5=0.3

Using the Bayes theorem: pwiB) =

Short

hair(0.6)

0.4*0.5=0.2

0.7*0.5=0.35

0.3*0.5=0.15

If we see someone has long hair, what is the
probability that this person is a man (or a woman)?



P(B|A) P(A)
P(B)

Total Prob. Hair Length
Men (0.5) Women (0.5) Prob.

0.6*0.5=0.3

Using the Bayes theorem: pwiB) =

Short

hair(0.6)

0.4*0.5=0.2 0.2/(0.2+0.15)
= 0.57

0.7*0.5=0.35

0.3*0.5=0.15 0.15/(0.2+0.15)

If we see someone has long hair, what is the =k

probability that this person is a man (or a woman)?



P(B|A) P(A)

Using the Bayes theorem: pwiB) =

P(B)
Men (0.5) Women (0.5)
0.4 0.5
P(long hair|man) P(man)
P ) = = 0.57
o (man | long hair) P(long hair) 0.5
hair(0.6) 0.35
04 0.5 0.3 0.5

P(long hair) = P(Long hair)P(man)+P(Long hair)P(woman) = 0.35

If we see someone has long hair, what is the
probability that this person is a man (or a woman)?



Monty Hall Paradox
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Monty Hall Paradox
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Player choice
before door is open

(3)

(1&2)

p(the car behind door 1 | Monty Hall opens door 3)=

p(Monty Hall opens door 3 | the car behind door 1 )* p(the car behind door 1)
p(Monty Hall opens door 3)

=(/2*1/3)/ (@/2)=1/3

p(the car behind door 2 | Monty Hall opens door 3)=

p(Monty Hall opens door 3 | the car behind door 2)* p(the car behind door 2 )
p(Monty Hall opens door 3)

=(1*1/3)/(1/2)=2/3



Bayesian interpretation of probability

e Bayesian interpretation expresses a degree of belief in an event
* This degree of belief is based on prior knowledge about the event

Bayes' theorem: . .
Likelihood:  Prior:

Probability = Probability of A
of Bgiven A  before gathering the

data
P(B|A) P(4)
P(A|B) =
P(B)

Posterior: Without loss of generality posterior can be written as:
Probability that A Probability of B
Is true given Bis (=probability of Posterior « Likelihood * Prior
observed data, =marginal

probability)



Likelihood function of Binomial distribution

Given n and k, infer
probability for every p

Ln(p|n,k)

Likelihood(p | n = 3,k = 2) = ()p*(1 — p)"* = C)p2(1 — p)32

Likelihood (Ln)

0.4

0.3

0.2

0.1

0.0

Ln of p give k=2 and n=3

Likelihood is not a
distribution!!!

0.0

0.2

0.4 0.6 0.8

p parameter

1.0




Likelihood function of Binomial distribution

Ln of p give k=2 and n=3

Given n and k, infer )
probability for every p

0.4

0.3

Ln(p|n,k) 3
Likelihood(p |n =3,k =2) = (Z)pk(l — p)"_k = (;)pz(l — p)3_2 = N Likelihood is not a
i distribution!!!
| | r;parametér | |

Informal Axiom of Statistics:

Any measured quantity of What if the parameter p is not Use the Bayes theorem!
any set of objects in the ‘ just a maximum point but has ‘

Universe has some some distribution? Posterior « Likelihood * Prior

probability distribution




Bayesian theorem applied to probability
distribution

* We can find the distribution of p using Bayes theorem:

Ln of p give k=2 and n=3

Posterior « Likelihood * Prior

* Bayes theorem requires prior choice

Likelihood (Ln)

p parameter

Likelihood
Bp* @ —p)* %= (C)p*(1 —p)*~?




Beta distribution is the natural choice as the
orior for the Binomial Likelihood

=
F(zla,b) = = (1 — 2)P!
’ B(a, B)

https://en.wikipedia.org/wiki/Beta_distribution



Why not Normal?

Normal Distribution. It has two parameters:
Mean (mu) and Variance (sigma)




Priors:

Posterior for coin toss

prior

Prior Beta(a=1, b=1)

prior2

Prior Beta(a=2, b=5)

prior3

Ln of p given k=2 and n=3
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Posterior for coin toss

Priors:

Posteriors:

prior

08 10 1.2

0.6

prior * Pr

Prior Beta(a=1, b=1)

0.0

Posterior

08

0.0

0.2

04 0.6

08

prior2

prior2 * Pr

0.5

0.4

03

0.2

0.0

Prior Beta(a=2, b=5)

0.2

Posterior

0.8

prior3

prior3 * Pr

Likelihood (Ln)

0.3

0.1

0.0

Ln of p given k=2 and n=3
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p parameter
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Priors:

Posteriors:

Posterior for coin toss

Prior Beta(a=1, b=1)

prior
10 1.2 1.4

08

0.6

100 trials

Prior Beta(a=2, b=5)

Ln of p given 100 trials

0.02 0.03 0.04

Likelihood (Ln)
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Hyperpriors are the priors for the priors

Informal Axiom of Statistics:

Any measured quantity of any set of objects in the Universe has some probability distribution

Model with priors Model with hyperpriors

Likelihood: (p | n, k) = (3)p*(1 — p)"* Likelihood: (p | n, k) = (3)p*(1 —p)"*
Prior: p ~ Beta(a, b) Prior: p ~ Beta(a, b)

Hyperprior: a ~ Gamma(k, 0,)
Hyperprior: b ~ Gammal(k,, 0,)



Bayesian inference

 Sample parameters from their joint
posterior distribution

* Your parameter sample is a distribution

* It’s not a point estimate asin the
Likelihood method

Topology and branch lengths Rates of the rate matrix

Likelihood (Ln)

Posterior

p parameter

ML Bl

m =(1q, T,)

Initial vector at the root of tree



state 1

Given values:

state 2

.
«—

-elsenstein’s pruning algorithm is the same
for the Bayesian Inference but add Priors

1

0 0|1

Qz[_zl —12]

T =(1/2, 1/2)

1 0 0 1 (1} 1 0 1
N [ ] ] ]
2 2
o 0.12 | 0.12
state 1 state 2
8 6 10

0.08 | 0.04

0.02

0.02

Likelihood (at the root):

L(tree) = Pr(black)* m,+Pr(red)* m, =
0.02*1/2+ 0.02*1/2 = 0.02

Posterior « L(tree) * Prior




Approximating the posterior distribution with
Markov Chain Monte Carlo (MCMC) method using
Metropolis-Hasting algorithm

Estimating area of the circle using Monte Carlo method
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Approximating the posterior distribution with
Markov Chain Monte Carlo (MCMC) method using
Metropolis-Hasting algorithm

MCMC is a Markov chain that being at
stationary randomly samples from the Posterior
posterior distribution

Wbty -
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Approximating the Joint Posterior Probability
Density with MCMC

Programming our MCMC robot...
Our robot parachutes into a random location in the joint posterior density

and will explore parameter space by following these simple rules:

From the presentation of Brian Moore
(Univ. of Davis)
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Approximating the Joint Posterior Probability
Density with MCMC

Programming our MCMC robot...
Our robot parachutes into a random location in the joint posterior density

and will explore parameter space by following these simple rules:
1. If the proposed step will take the robot uphill, it automatically takes the step

From the presentation of Brian Moore
(Univ. of Davis)
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Approximating the Joint Posterior Probability
Density with MCMC

Programming our MCMC robot...
Our robot parachutes into a random location in the joint posterior density
and will explore parameter space by following these simple rules:

1. If the proposed step will take the robot uphill, it automatically takes the step

From the presentation of Brian Moore
(Univ. of Davis)

Metropolis et al. (1953); Hastings (1970)



Approximating the Joint Posterior Probability
Density with MCMC

Programming our MCMC robot...

Our robot parachutes into a random location in the joint posterior density
and will explore parameter space by following these simple rules:

1. If the proposed step will take the robot uphill, it automatically takes the step

2. If the proposed step will take the robot downlhill, it divides the elevation of

the proposed location by the current location, and it only takes the step if
the quotient is less than a uniform random variable, U[0,1]

From the presentation of Brian Moore
(Univ. of Davis)

Pr[Accept] = new height
[ Pt old height

Metropolis et al. (1953); Hastings (1970)



Approximating the Joint Posterior Probability
Density with MCMC

Programming our MCMC robot...
Our robot parachutes into a random location in the joint posterior density

and will explore parameter space by following these simple rules:
1. If the proposed step will take the robot uphill, it automatically takes the step

2. If the proposed step will take the robot downhill, it divides the elevation of

the proposed location by the current location, and it only takes the step if
the quotient is less than a uniform random variable, U[0,1]

3. The proposal distribution is symmetrical, so Pr[A->B] = Pr[B>A]

From the presentation of Brian Moore
(Univ. of Davis)

(X)
XXX)
(s

S
S

\\\ \

(XXX
0.0'0.0
&

5
K50

)
Y
()
Y
é

()
)
%

A
000:0’
3

N e
S
NS

()
‘0

%)
)

KX)
"

W
0

’o:o
§

W
%5

5
A8
8
W
50
W
0
L
()

Y

Metropolis




Approximating the Joint Posterior Probability
Density with MCMC

Programming our MCMC robot...
Our robot parachutes into a random location in the joint posterior density

and will explore parameter space by following these simple rules:
1. If the proposed step will take the robot uphill, it automatically takes the step
2. If the proposed step will take the robot downhill, it divides the elevation of

the proposed location by the current location, and it only takes the step if
the quotient is less than a uniform random variable, U[0,1]

3. The proposal distribution is symmetrical, so Pr[A—>B] = Pr[B >A]

From the presentation of Brian Moore
(Univ. of Davis)
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Assessing MCMC Performance:
Three Main Issues

1. Convergence

Has the chain (robot) successfully targeted the stationary distribution?

2. Mixing
Is the chain (robot) successfully integrating over the joint posterior probability?

3. Sampling intensity

Has the robot collected enough samples to adequately describe the posterior

probability distribution?

From the presentation of Brian Moore
(Univ. of Davis)

Software for accessing diagnostics:

* Tracer https://github.com/beast-dev/tracer/releases/tag/v1.7.1
* Bonsai (R package)
* AWTY



https://github.com/beast-dev/tracer/releases/tag/v1.7.1

Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: Tracer plots of tree-length at two stages of a single MrBayes run

bad convergence better convergence
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treelength

From the presentation of Brian Moore
(Univ. of Davis)

1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000

500000 1000000 1500000 2000000 2500000 3000000 Stat
ate

fast* slow*

InL  base freq. sub. rates ASRV TL topology

*somewhat data-set dependent



From the presentation of Brian Moore

(Univ. of Davis)

a
o

=

g
E

e
s

Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: Tracer plots of relative-rate multipliers from two MrBayes runs

bad mixing

2000000 4000000 6000000 8000000 1000000

SSSSS

multiplier.run2.p

mb_rate,

better mixing




Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: Tracer plots of relative-rate multipliers from two MrBayes runs

bad mixing better mixing

From the presentation of Brian Moore
(Univ. of Davis)




Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: ESS values for relative-rate multipliers from two MrBayes runs

low intensity

Tracer

Trace Files: . I Estimates A Marginal Density Mjomt—Margmal #a Trace

“Tree File States Burn-In | "Summary Statistic
cynmix_mb_r... 10000000 1000000
cynmix_mb_r 10000000 1000000 & -

Combined 18002000 - v 1500
+
Traces: 1250
Statistic Mean ESS |
PICT {1V} U.Z3> 12985.1
PI(A}11} 0.266 8523.852
pi(CH11} 0.175 9924.249
pi(G){11} 0.223 11199.6... ey

From the presentation of Brian Moore el e

i i alpha(2} 0.29 12239.5...

(Univ. of Davis) alpha(3} 0.162 18002 >
alpha{4} 4.267 7522.814 -~ &
alpha(5} 6.663 1175.049 2
alpha(6} 25.365 5177.458 @
alpha{7} 11.172 6234.171 =
alpha(8} 0.237 16335.0.
alpha{9} 0.128 5200.724 o
alpha{10} 0.114 16777.1...
alphafl1} 0.643 15895.52
m{1} 7.079 47.726 |
m{2} 0.365 59.933
m{3} 0.173 82.558 |
m{4} 0.379 37.265 | 2501
m{5} 2.046E-2 97.208 |,
m{6} 1.037E-2 71.864 |
m{7} 0.472 56.944 |
m{8} 0.148 |
m(9) 6.793E-2 81.501 || 05 058 045
m{10} 6.066E-2 47.164 A
m{11} 0.373 57.176 ||+ m{2}




Approximating the Joint Posterior Probability
Density with Metropolis-Couples MCMC

Robot Squadron!!

From the presentation of Brian Moore
(Univ. of Davis)




Summary: Some General Strategies for Assessing
MCMC Performance

You can never be absolutely certain that the MCMC is reliable, you can only identify when
something has gone wrong. Gelman

1. When do you need to assess MCMC performance?
2. When should you assess the performance of individual runs?

3. Which diagnostics should you use to assess individual runs?
_ that are relevant for the models/parameters you are estimating under

4. When is a single run sufficient to assess MCMC performance?

5. When should you estimate under the prior?

E (and be wary of programs where it is not possible)

From the presentation of Brian Moore
(Univ. of Davis)



From the presentation of Brian Moore
(Univ. of Davis)

Summary: Some General Strategies for Assessing
MCMC Performance

You can never be absolutely certain that the MCMC is reliable, you can only identify when
something has gone wrong. Gelman

6. When should you use Metropolis-Coupling?
Whenever you cannot be certain that standard MCMC is adequate

i.e., ALWAYS (and be wary of programs where it is not possible)

7. When should you perform multiple independent MCMC runs?
ALWAYS (and be wary of pseudo-independence)

8. Which diagnostics should you use to assess individual runs?
ALL that are relevant for the models/parameters you are estimating under

9. How many mdependent MCMC runs are sufficient?
AS MANY AS POSSIBLE (i.e., as many as you think your data/problem deserve)

10. How Iong should you run each MCMC analysis?
AS LONG AS POSSIBLE (i.e., as long as you think your data/problem deserve)



Credible interval in Bl

* Credible interval is an interval within which a parameter value falls
with a particular probability

* A measure of the parameter uncertainty

Posterior

Likelihood (Ln)
0.03 0.04

0.02

0.01

0.00

0.0 0.2 0.4 0.6 0.8 1.0

p parameter

Credible interval 95%



Maximimum Likelihood vs. Bayesian Inference

Likelihood: Bayesian:
* Fast * Slow
* No priors no subjectivity * Priors are logical since everything has

* Some types of analyses are a distribution

challenging due complex likelihood  Scientists think in a Bayesian way

functions  Some models can be implemented
only in Bl. Bayesian non-parametric
methods (Dirichlet process prior).



Software for tree reconstruction using Bl

* MrBayes: http://nbisweden.github.io/MrBayes/

» RevBayes: https://revbayes.github.io

e Beast: https://www.beast2.org



http://nbisweden.github.io/MrBayes/
https://revbayes.github.io/
https://www.beast2.org/

Suggested literature

Doing Bayesian
Data Analysis

A Tutorial with R, JAGS, and Stan

John K. Kruschke

Doing Bayesian Data Analysis: A Tutorial
with R, JAGS, and Stan



Quick demo:
Binomial Bayesian Inference
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Model selection using Maximum Likelihood

* Different models have different number of parameters

Bias?
Variance

\

Few Many
Number of parameters



Model selection using Maximum Likelihood

AIC (Akaike information criterion)
e Based on information theory

» AIC estimates the relative amount of information lost by a given model in comparison to the true (unknown)

model
Truth

* The less information a model loses, the higher the quality of that model

0 20 40 60 80

M2 /
8IO

0 20 40 60
K-L4

0 20 40 60 80

I Kullback—Leibler
{ y divergence (“distance”)
1
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Model selection using Maximum Likelihood

AIC (Akaike information criterion)
e Based on information theory

* AIC estimates the relative amount of information lost by a given model in comparion to the true (unknown)
model

* The less information a model loses, the higher the quality of that model

e AIC shows the raltive fit of a model

AIC = 2k — 2Ln(L)

* The model with a minimum AIC is the best Where k is the number of the parameters

* Use AAIC for comparing multiple models

Delata AIC:
AAIC = AIC(M1) — AIC(M?2)

AAIC scale
Oto2 | Not worth more than a bare mention
2to 6 | Positive

6 to 10 = Strong

> 10 | Very strong




Model selection using Maximum Likelihood

BIC (Bayesian information criterion)

* Motivated by Bayesin thinking but applied to likelihood methods P(B |A) P(A)

» BIC approximates the probability of data P(AlB) - P(B)

* BIC shows the raltive fit of a model probability of data

* The model with a minimum BIC in a set of models is the best (= has (marginal probability)

maximum posterior probability)

BIC = Log(n)k — 2Ln(L) ]
Where k is the number of the parameters and 2 /
is th ber of dat int R ‘ ‘
n is the number of data points ABIC scale :
Delata BIC: 0to2 | Not worth more than a bare mention
= 2t06 | Positi
ABIC = BIC(M1) — BIC(M2) o S;S;gve BIC is the area under

>10 | Very strong likelihood function




Model selection in Bayesian framework

Marginal Likelihood (MLn) and Bayes factor (BF)
* Based on Marginal lekelihood (= probability of data)
* Similar to BIC

e BFissimilarto ABIC

 BF shows the relative fit of a model

* Marginal likelihood is hard to compute

» Softwares implement special algorithms for computing it (i.e. stepping stone)

BF = MLn(M1) — MLn(M?2)

Improving Marginal Likelihood Estimation for Bayesian Phylogenetic Model Selection

BF scale T
0to2 | Not worth more than a bare mention | """ ™"
2to 6 | Positive Bl P
6 to 10 = Strong
> 10 | Very strong
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P(A|B) =

0.03

0.02

0.01

0.00

P(B|A) P(A)
P(B)

probability of data
(marginal probability)

Marginal likelihood is the area under
posterior distribution function



Model selection in practice

e Maximum Likelihood
e |Q Tree http://www.igtree.org

* Bayesian
* MrBayes: http://nbisweden.github.io/MrBayes/
* RevBayes: https://revbayes.github.io

e Beast: https://www.beast2.org

e Old software
e ParitionFinder http://www.robertlanfear.com/partitionfinder/
 ModelTest-NG v0.1.5 https://github.com/ddarriba/modeltest/releases



http://www.iqtree.org/
http://nbisweden.github.io/MrBayes/
https://revbayes.github.io/
https://www.beast2.org/
http://www.robertlanfear.com/partitionfinder/
https://github.com/ddarriba/modeltest/releases

Suggested literature

Model Selection by Burham and Anderson

Doing Bayesian Data Analysis: A Tutorial
with R, JAGS, and Stan

Model Selection and Model Averaging

Doing Bayesian
Data Analysis

A Tutorial with R, JAGS, and Stan

&




Summary

* Bayesian Inference is a natural extension of Likelihood method for

estimating posterior prdbability of parameters

* Model selection tools allow testing various hypotheses in Maximum

Likelihood and Bayesian frameworks



