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PLAN OF THE TODAY’S LECTURE

Aim: Derive a Markov model of trait (DNA) evolution and its likelihood inference
on phylogenetic tree

1. From Binomial distribution to Markov model
2. We will study general principles of Markov models
3. We will study Markov models on phylogenetic tree; Felsenstein’s prunning

algorithm



Binomial model ( and distribution)
Binomial model gives the probability of seeing k heads in n coin tosses (trials) 
given that probability of seeing a head in one coin toss is p.

𝐵(𝑘|𝑛, 𝑝) =
𝑛
𝑘 𝑝!(1 − 𝑝)"#!

Number of heads in an 
experiment

Number of tosses in 
an experiment

Probability of seeing heads

Number of ways to 
choose k heads

Probability of seeing k
heads

Probability of seeing  
tails (n-k)

• Coin is fair
• We toss the coin 3 times

𝑛
𝑘 =

𝑛!
𝑘! 𝑛 − 𝑘 !



Likelihood function of Binomial distribution

𝐿𝑛 𝑝 𝑛 = 3, 𝑘 = 2) = "
! 𝑝

!(1 − 𝑝)"#! = $
% 𝑝

%(1 − 𝑝)$#%

In statistics, a likelihood function (often simply the likelihood) is a particular 
function of the parameter of a statistical model given data. Likelihood 
functions play a key role in statistical inference.

• Domain of p is a value between 0 and 1 (since p is a 
probability)
• Let’s try all p’s to get a likelihood function
• Likelihood function is not a distribution

Binomial Likelihood:
Given n and k infer p that maximizes the 
likelihood function



Modeling phylogenetic process: Markov 
models (Markov chains)

http://setosa.io/ev/markov-chains/

In probability theory, a Markov model is a stochastic model used to model a 
system that randomly changes from one state to another over time

http://setosa.io/ev/markov-chains/


Ingredients to derive continuous-time Markov models

Binomial distr. Poisson distr. Exponential distr.
Continuous-time 

and discrete-state 
Markov models
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distrubution

Exponential 
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Continuous-time 
and discrete-state 
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Let’s derive a distribution that models 
number of some evets over time 
• We need to translate probabilities into rates

• ‘Bulb experiment’ is a good example for deriving this distribution
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• We need to translate probabilities into rates

• ‘Bulb experiment’ is a good example for deriving this distribution

…………………………

• Fixed amount of time.
• For example 1 year.
• We repeat this experiment 

1000 times

1st change

2nd change

3rd change



Let’s derive a distribution that models 
number of some evets over time
• We need to translate probabilities into rates

• ‘Bulb experiment’ is a good example for deriving this distribution

…………………………

• Fixed amount of time.
• For example 1 year.
• We repeat this experiment 

1000 times

1st change

2nd change

3rd change

Find a distribution for 
the number of changes 
(=number of bulbs that 
died during one year)! 



From Binomial to Poisson distribution
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From Binomial to Poisson distribution

(∆𝑡 = 0.2 𝑦𝑒𝑎𝑟) Time 1year

1 year

∆𝑡

Probability of dying in ∆t is p 
(Let’s assume p = 0.5) 

Let’s calculate probability of one death (k=1)
• One death can happen via 5 different ways
• What distribution is that?

∆𝑡

𝐵 𝑘 = 1 𝑛 = 5, 𝑝 = 0.5 = 5 ∗ 0.5$0.5%

It’s Binomial distribution



From Binomial to Poisson distribution
• Probability of two deaths (k=2)

………………….. all other possibilities

𝐵(𝑘 = 2|𝑛 = 5, 𝑝 = 0.5) =
5
2
0.5&0.5'

It’s Binomial distribution



From Binomial to Poisson distribution
• Probability of two deaths (k=2)

………………….. all other possibilities

Number of bulb deaths over 1 year

𝐵(𝑘 = 2|𝑛 = 5, 𝑝 = 0.5) =
5
2
0.5&0.5'

It’s Binomial distribution

• Probability of k deaths is Binomial too

k (number of bulb deaths)



Increasing number of bins

Time 1year

• 5 bins is a bad precision • Let’s increase the number of bins to 10

∆𝑡 = 0.1 year∆𝑡 = 0.2 𝑦𝑒𝑎𝑟

𝐵𝑛𝑒𝑤 𝑘 𝑛 = 10, 𝑝 = 0.25) =
𝑛
𝑘 𝑝!(1 − 𝑝)"#!𝐵𝑜𝑙𝑑 𝑘 𝑛 = 5, 𝑝 = 0.5) =
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Increasing number of bins

Time 1year

• 5 bins is a bad precision • Let’s increase the number of bins to 10

∆𝑡 = 0.1 year∆𝑡 = 0.2 𝑦𝑒𝑎𝑟

𝐵𝑛𝑒𝑤 𝑘 𝑛 = 10, 𝑝 = 0.25) =
𝑛
𝑘 𝑝!(1 − 𝑝)"#!𝐵𝑜𝑙𝑑 𝑘 𝑛 = 5, 𝑝 = 0.5) =

𝑛
𝑘 𝑝!(1 − 𝑝)"#!

Time 1year

Key observations:
• Increasing number of bins n decreases p parameter
• Note, that the product np is the same in both cases

• 10 * 0.25 = 5 * 0.5
• Let’s denote this product as 𝝀 = np 



Motivation for Poisson distribution

• Binomial is not convenient for 

phenomena that continuously occur 

over time

• Let’s re-write Binomial to make it 

“convenient”

• We use substitution: 𝝀 = np 

• Mathematical trick: note that p= 𝝀/n

• Take limit of n to get rid of the subjective 

split of time into bins

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑘|𝑛, 𝜆/n) =
𝑛
𝑘
(𝝀/n)!(1 − (𝝀/n))"#!



Motivation for Poisson distribution

• Binomial is not convenient for 

phenomena that continuously occur 

over time

• Let’s re-write Binomial to make it 

“convenient”

• We use substitution: 𝝀 = np 

• Mathematical trick: 

• Note that p= 𝝀/n

• Take limit of n to get rid of the 

subjective split of time into bins

Poisson(𝑘 𝜆 = lim
"#()

𝑛
𝑘
𝑝!(1 − 𝑝)"#! =

𝒆#𝝀𝝀𝒌

𝒌!

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑘|𝑛, 𝜆/n) =
𝑛
𝑘
(𝜆/n)!(1 − (𝜆/n))"#!

Poisson(𝑘 𝜆, 𝑡 = ,'()(./)*

!!



Poisson distribution

• 𝜆 is called the rate parameter
• Poisson distr. shows the number of 

changes k given 𝜆 and time t

Number of dead bulb’s per year

Poisson(𝑘 𝜆, 𝑡 = ,'()(./)*

!!



Ingredients to derive continuous-time Markov models

Binomial 
distribution

Poisson 
distrubution

Exponential 
distribution

Continuous-time 
and discrete-state 

Markov models



From Poisson to Exponential distribution

…………………………

Duration of bulb’s lifetime

Duration of bulb’s lifetime

Duration of bulb’s lifetime t 
given rate 𝜆

Can we derive a distribution for 
the duration of the  bulb’s 
lifetime?



Let’s step aside and think how this 
distribution would look like



Deriving Exponential distribution

Exponential ( t 𝜆 = 𝜆𝑒#./

Poisson(𝑘 𝜆, 𝑡 = ,'()(./)*

!!

Poisson(𝑘 = 0 𝜆, 𝑡 = ,'()(./)+

2!
= 𝑒#./

Poisson(𝑘 > 0 𝜆, 𝑡 = ,'()(./)+

2!
= 1 - 𝑒#./

3
3/

(1 - 𝑒#./) = 𝜆𝑒#./

Observing exactly 0 changes

Observing more than 0 changes
(something happens)

Differentiating with respect to time 



Exponential distribution

Exponential ( t 𝜆 = 𝜆𝑒#./

Duration of bulb’s lifetime

• Exponential and Poisson are the 

same processes but different 

aspects

• Same interpretation of the 

parameter 𝝀 (=rate)

• 𝝀 is the mean number of changes 

over time interval in Poisson



Now we can model events occurring over 
time !

State 1

State 2

State 3

Poisson(𝑘 𝜆, 𝑡 = ,'()./*

!!

Exponential(t 𝜆 = 𝜆𝑒#./

Time

State transitions

state 1 state 2

Evolution of characters on a tree 
is the the state transitions over 
time

Time
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Modeling phylogenetic process: Markov 
models (Markov chains)

Andrey Markov (1856 – 1922)

• In probability theory, a Markov model is a stochastic model used 
to model randomly changing systems

• It is assumed that future states depend only on the current state, not on 
the events that occurred before it (that is, it assumes the Markov 
property)

past state –> present state –> future state

Future state depends 
only on present state



Continuous-time Markov models: 
creating transition rate matrix
• Let’s generalize exponential distribution for modeling transitions between discrete states

• Let’s assume that we have a system (organism) that come in three states

• We that the waiting time of staying in each state is exponential distribution

state 1 state 2

state 3

Representing Markov chain evolution



Continuous-time Markov models: 
creating transition rate matrix

• Let’s represent our evolving system in a smart way

• Main diagonal elements are rates from the exponential distribution

𝜆A
𝜆B

𝜆C

From:

To:

state 1 state 2

state 3

0.5
1

1.2
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Continuous-time Markov models: 
creating transition rate matrix

• Let’s represent our evolving system in a smart way

• Main diagonal elements are rates from the exponential distribution

• Off-diagonal elements are probabilities

state 1 state 2

state 3

0.5 0.8 0.2
0.8 1 0.2
0.8 0.2 1.2

𝜆A 𝑝AB 𝑝AC
𝑝BA 𝜆B 𝑝BC
𝑝CA 𝑝CB 𝜆C



Continuous-time Markov models: 
creating transition rate matrix

• For mathematical convenience let’s rescale probabilities by rates

state 1 state 2

state 3

0.5 0.5 ∗ 0.8 0.5 ∗ 0.2
1

1.2

𝜆A 𝜆A ∗ 𝑝AB 𝜆A ∗ 𝑝AC
𝜆B

𝜆C



Continuous-time Markov models: 
creating transition rate matrix

• For mathematical convenience let’s make the rates negative

state 1 state 2

state 3

−0.5 0.5 ∗ 0.8 0.5 ∗ 0.2
−1

−1.2

−𝜆A 𝜆A ∗ 𝑝AB 𝜆A ∗ 𝑝AC
−𝜆B

−𝜆C



Continuous-time Markov models: 
creating transition rate matrix

state 1 state 2

state 3

0.5 0.8 0.2
0.8 1 0.2
0.8 0.2 1.2

𝜆A 𝑝A 𝑝B
𝑝A 𝜆B 𝑝B
𝑝A 𝑝B 𝜆C

−0.5 0.4 0.1
0.8 −1 0.2
0.96 0.24 −1.2

−𝜆A 𝛼AB 𝛼AC
𝛼BA −𝜆B 𝛼BC
𝛼CA 𝛼CB −𝜆C

Non-rescaled matrix

Transition rate 
matrix.
Rescaled matrix with 
entities called 
infinitesimal rates



From rates to probabilities

state 1 state 2

state 3

−0.5 0.4 0.1
0.8 −1 0.2
0.96 0.24 −1.2

• Transition rate matrix. Infinitesimal rates

Q=

𝑃 𝑸, 𝑡 = 𝑒!"

𝑒D∗A =
0.72 0.2 0.08
0.46 0.46 0.08
0.46 0.2 0.34

• Probability transition matrix. Exponentiate rate matrix

𝑒4/ = 1 +
𝑄𝑡$

1! +
𝑄𝑡&

2! +
𝑄𝑡'

3! + ⋯

Matrix exponential transforms rates into probabilities:



Continuous-time Markov models: 
creating transition rate matrix

state 1 state 2

state 3

Initial vector of 
probabilities

(1/3, 1/3, 1/3)

Pr=0.4/0.5

Pr=0.1/0.5

𝑃 𝑸, 𝑡 = 𝑒!"𝑒D∗A =
0.72 0.2 0.08
0.46 0.46 0.08
0.46 0.2 0.34



Simulating data under Markov models on a 
tree

state 1 state 2Q= −1 1
2 −2

time

2

10

8

6

2

Initial vector
𝜋 =(1/2, 1/2)

Random number 
generator
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RND=0.4 (starting state 1)

2. Draw a random number from Exponential distribution with 𝜆 = 1. 
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3. Draw a random number from Exp(𝜆 = 1). RND=8.4
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state 1 state 2Q= −1 1
2 −2

time

2

10

8

6
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Initial vector
𝜋 =(1/2, 1/2)

Random number 
generator

1. Randomly select state at the root from a uniform distribution. 
RND=0.4 (starting state 1)

2. Draw a random number from Exponential distribution with 𝜆 = 1. 
RND=2.4

3. Draw a random number from Exp(𝜆 = 1). RND=8.4
4. Draw a random number from Exp(𝜆 = 1). RND=4.2 (to state 2)



Simulating data under Markov models on a 
tree

state 1 state 2Q= −1 1
2 −2

time

2

10

8

6

2

Initial vector
𝜋 =(1/2, 1/2)

Random number 
generator

1. Randomly select state at the root from a uniform distribution. 
RND=0.4 (starting state 1)

2. Draw a random number from Exponential distribution with 𝜆 = 1. 
RND=2.4

3. Draw a random number from Exp(𝜆 = 1). RND=8.4
4. Draw a random number from Exp(𝜆 = 1). RND=4.2 (to state 2)
5. Draw a random number from Exp(𝜆 = 2). RND=4.6



Simulating data under Markov models on a 
tree

state 1 state 2Q= −1 1
2 −2

time

2

10

8

6

2

Initial vector
𝜋 =(1/2, 1/2)

Random number 
generator

1. Randomly select state at the root from a uniform distribution. 
RND=0.4 (starting state 1)

2. Draw a random number from Exponential distribution with 𝜆 = 1. 
RND=2.4

3. Draw a random number from Exp(𝜆 = 1). RND=8
4. Draw a random number from Exp(𝜆 = 1). RND=4.2 (to state 2)
5. Draw a random number from Exp(𝜆 = 2). RND=4.6
6. Draw a random number from Exp(𝜆 = 2). RND=4.9



Simulating data under Markov models on a 
tree

state 1 state 2Q= −1 1
2 −2

time

2

10

8

6

2

Initial vector
𝜋 =(1/2, 1/2)

Random number 
generator

1. Randomly select state at the root from a uniform distribution. 
RND=0.4 (starting state 1)

2. Draw a random number from Exponential distribution with 𝜆 = 1. 
RND=2.4

3. Draw a random number from Exp(𝜆 = 1). RND=8
4. Draw a random number from Exp(𝜆 = 1). RND=4.2 (to state 2)
5. Draw a random number from Exp(𝜆 = 2). RND=4.6
6. Draw a random number from Exp(𝜆 = 2). RND=4.9
7. Draw a random number from Exp(𝜆 = 1). RND=9.1 (to state 2)



Simulating data under Markov models on a 
tree

state 1 state 2Q= −1 1
2 −2

time

2

10

8

6

2

Initial vector
𝜋 =(1/2, 1/2)

Random number 
generator

1. Randomly select state at the root from a uniform distribution. 
RND=0.4 (starting state 1)

2. Draw a random number from Exponential distribution with 𝜆 = 1. 
RND=2.4

3. Draw a random number from Exp(𝜆 = 1). RND=8
4. Draw a random number from Exp(𝜆 = 1). RND=4.2 (to state 2)
5. Draw a random number from Exp(𝜆 = 2). RND=4.6
6. Draw a random number from Exp(𝜆 = 2). RND=4.9
7. Draw a random number from Exp(𝜆 = 1). RND=9.1 (to state 2)
8. Draw a random number from Exp(𝜆 = 2). RND=3.3



Simulating data under Markov models on a 
tree

state 1 state 2Q= −1 1
2 −2

time

2

10

8

6

2

Initial vector
𝜋 =(1/2, 1/2)

Random number 
generator

1. Randomly select state at the root from a uniform distribution. 
RND=0.4 (starting state 1)

2. Draw a random number from Exponential distribution with 𝜆 = 1. 
RND=2.4

3. Draw a random number from Exp(𝜆 = 1). RND=8
4. Draw a random number from Exp(𝜆 = 1). RND=4.2 (to state 2)
5. Draw a random number from Exp(𝜆 = 2). RND=4.6
6. Draw a random number from Exp(𝜆 = 2). RND=4.9
7. Draw a random number from Exp(𝜆 = 1). RND=9.1 (to state 2)
8. Draw a random number from Exp(𝜆 = 2). RND=3.3



Now let’s run likelihood inference

state 1 state 2Q= −1 1
2 −2

time

2

10

8

6

2

Initial vector
𝜋 =(1/2, 1/2)



Inference: estimating tree likelihood

Integrate over all possible combinations of the 
ancestral states



Felsenstein’s pruning algorithm

state 1 state 2

1 0

1 0 0 1

0 1 0 1 0 1

Q= −1 1
2 −2

𝜋 =(1/2, 1/2)

2

108 6

2

Given values:

1

2

3

2

state 1 state 2



Summary

• We have derived a discrete state Markov model from the chain 

consisting of Binomial, Poisson and Exponential distributions.

• Discrete state Markov model is the core of almost all phylogenetic 

approaches that use different type of data (morphology, DNA, 

proteins, etc.)


