IPS-164 INTRODUCTION TO PHYLOGENETICS 2022
Lecture 6

Intro to statistical phylogenetics. Part |

Sergei Tarasov

Beetle curator & Docent
Finnish Museum of Natural History, University of Helsinki

4 B

* (@tarasov_sergio * sergei.tarasov@helsinki.fi

* https://www.tarasovlab.com



% LET’S GET TO KNOW EACH OTHER

1. Say your name
2. Your interests in biology/phylogenetics
3. What has brought you to this course?
4. Your expectations from the course?
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. PLAN OF THE TODAY’S LECTURE

1. Intro to this (the second) part of the course

2. Overview of the statistical phylogenetics: which questions statistical phylogenetics
can address?

3. Parsimony vs. statistical phylogenetics
4. Intro to statistics and modeling
5. Binomial model
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Aim of this part of the course

* Explain how the statistical inference works in phylogenetics and overview its main
field

* So, you will be able to calculate likelihood by “hand”

* You will learn how to reconstruct phylogenetic tree and perform various other
analyses

* You will be able to select amongst available methods to address your research
guestions
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Lectures in this part of the course

6. Introduction to statistical phylogenetics (part I)
7. Introduction to statistical phylogenetics (part Il)
8. Reconstructing phylogenies (part |)

9. Reconstructing phylogenies (part Il)

10. Tree dating

11. Trait evolution

12. Trait evolution and Diversification



Suggested literature

Computational
Molecular Evolution

* Computational Molecular evolution \’}C%E%

INFERRING
PHYLOGENIES

* Felsenstein’s Inferring phylogenies

Phylogenetic
Comparative

It’s free at https://lukejharmon.github.io/pcm/

* Phylogenetic Comparative Methods in R



https://lukejharmon.github.io/pcm/

Suggested literature

Prohability Models

I 1th Edition
SHELDON M. ROSS
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* Paradis. Analysis of Phylogenetics and Evolution with R
e Revell & Harmon. Phylogenetic Comparative Methods in R
* Grolemund. R for Data Science. https://r4ds.had.co.nz/index.htm|

* All materials will be available at:
* GitHub https://github.com/sergeitarasov/Course IPS-164
* UH website https://www.mv.helsinki.fi/home/jhyvonen/IPS-164/



https://r4ds.had.co.nz/index.html
https://github.com/sergeitarasov/Course_IPS-164
https://www.mv.helsinki.fi/home/jhyvonen/IPS-164/

WHICH QUESTIONS STATISTICAL
PHYLOGENETICS CAN ADDRESS

1. Tree Reconstruction
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WHICH QUESTIONS STATISTICAL
PHYLOGENETICS CAN ADDRESS

Fossil record
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WHICH QUESTIONS STATISTICAL
PHYLOGENETICS CAN ADDRESS

amuun 3. ANCEStral Character State Estimation
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WHICH QUESTIONS STATISTICAL
PHYLOGENETICS CAN ADDRESS

4. Correlation Between two or more traits

' = B ‘ Discrete and
B Continuous traits
L= =
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WHICH QUESTIONS STATISTICAL
PHYLOGENETICS CAN ADDRESS

5. Reconstructing Diversification process
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WHICH QUESTIONS STATISTICAL
PHYLOGENETICS CAN ADDRESS

6.Correlation between Diversification and
traits

Speciation Rate
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MAIN STATISTICAL METHODS

Likelihood and Bayesian inferences

Ronald Fisher Thomas Bayes
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Modeling natural and phylogenetic
ohenomena

Distance

Models are common in physics

Models are sets of rules describing how a system changes over time




Modeling natural and phylogenetic
ohenomena: Bacterial Grow

o Exponential Growth Logistic Growth
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Models are sets of rules describing how a system changes over time




Modeling natural and phylogenetic
ohenomena: Bacterial Grow

Q: Do you know any other models used in biology?
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Modeling natural and phylogenetic
ohenomena

Distance

Models in biology?

Models are common in physics

Models are sets of rules describing how a system changes over time




Parsimony vs. Statistical Phylogenetics

Parsimony Statistical models



Parsimony vs. Statistical Phylogenetics

Parsimony Statistical models
* Strict principle of Occam’s razor
* Not a statistical model

e But can be considered as a
mathematical model

* Some analysis are challenging (e.g.,
tree dating)

FAST



Parsimony vs. Statistical Phylogenetics

Parsimony Statistical models

* Strict principle of Occam’s razor e Can model manifold of natural

 Not a statistical model phenomena & processes

e But can be considered as a * Many different methods available

mathematical model * Many different models to create

* Some analysis are challenging (e.g., * Can be SLOW
tree dating)

FAST



Aim of this part of the course

* Main principles of modeling data
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Modeling principles in phylogenetics

Probability Distribution

PHYLOGENETCIS

Stochastic models of

character evolution (DNA or
Morphology)
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Intro to maximum likelihood (ML) method using
simple Binomial model (coin toss)

* Rules of Probability

* Probability Distribution

* Binomial Model

* Likelihood of Binomial Model




Quick intro to probability: main rules

e AND rule

&) anDp & =0.5%0.5=0.25




Let’s play with a fair dice.

* Q1: Probability of seeing “1” after one trial?
 1/6

* Q2: Probability of seeing “2” AND “4” given two trials?
e 1/6 ¥*1/6=1/36

* Q3: Probability of NOT seeing “3” given one trial?
e 1-1/6=5/6

* Q2: Probability of seeing “1” OR “6” given one trial?
« 1/6+1/6=1/3



Probability distribution

» A probability distribution is a function that provides the probabilities of occurrence of different possible outcomes in
an experiment.

» Distribution usually refers to a distribution of a random variable

* In probability and statistics, a random variable, is a variable whose possible values are outcomes of
a random phenomenon.

z - Normal
5 < Distribution
g "Bell Curve"

\
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Human height



Informal Axioms (rules) of Statistics

* Any measured quantity of any set of objects in the Universe has some
probability distribution

* There are ~20 most common distributions in the Universe (e.g.,

Binomial, Normal, Gamma, Poisson etc.)

* Most likely, the measured quantity falls into one of those ~20
common distributions




Empirical probability distributions

Number of letters in Onthophagus species names (2172 names)

Probability
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Relationships

among probability
distributions

https://en.wikipedia.org/wiki/Relationships_among_probability

distributions
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Classification of probability distributions

p. N
a,b

binomial beta

Discrete vs. Continuous

A c
* By number of parameters X

exponential normal

* By domain [-oo, +2°) vs. [0, +o°) vs. [0,1]

* By shape el e e e, )

(a) Bell-shaped (b) Triangular (c) Uniform (or rectangular)

* By mode: unimodal vs. multimodal "\ /\/\ /\/\/\

* By dimension of random variable: univariate vs. multivariate |

Gy ]
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normal




Binomial model ( and distribution)

Binomial model gives the probability of seeing k
heads in n coin tosses (trials) given that probability

of seeing a head in one coin toss is p.

Let’s consider an example where n=3 and p=0.5

e Coinis fair
* We toss the coin 3 times



Estimating number of heads

Trial 3
Trial 2 i

Trial 1 l

Heads Tails
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Estimating probabilities
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Estimating probabilities

Trial 2

Trial 1 i
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Estimating probabilities

Number k headsin  Probability of seeing k heads
3 trials in 3 trials

Trial 3
n =3 5 Trial 2 i
(k == 3) - 1 P(3) - 1 * 0-5 Trial 1 l Heads Tails
n =3 i o fx]) _3 0
( ):3 P(2) = 3% 0.5 @2
k=2 i
n=3 v o
( ) =3 P()=3%05
= 3 | &=
(Z—O):l P(0) = 1 % 0.53 S
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Estimating probabilities

Pr of seeing k heads in 3 trials

0.35
|

=1 P@B)=1%0.53

0.30
|

Probability
0.25
|

=3 P(2)=3%05>

0.20
1

0.15
1

—1 P(0)=1%053 I B

0.0 0.5 1.0 1.5 2.0

k (number of heads)



Binomial model ( and distribution)

Binomial model gives the probability of seeing k heads in n coin tosses (trials)
given that probability of seeing a head in one coin toss is p.

Number of tosses in

an experiment

B(k|n,p) =

Number of heads in an
experiment

g

(

n
k

)

p"‘(l —p)nk

Probability of seeing heads [

Coin is fair
We toss the coin 3 times



Binomial model

Number of ways to
choose 2 heads in 3

tosses = 3 Probability of seeing 2

heads in 3 trials

Number of tosses in
an experiment

i

3
BZ13,05 = )?.52(1 ~05)""2 =3+052+05 = 0375

Number of heads in an Y
experiment Probability of seeing 2 heads and 1 tail = 0.5 % 0.5

Probability of seeing heads

Probability

0.20 0.25 0.30 0.35

0.15

Pr of seeing k heads in 3 trials

0.0

0.5

1.0 1.5 2.0

k (number of heads)

25

3.0




Binomial model

Pr of seeing k heads in 3 trials

Probability
0.25 0.30 0.35
| | |

0.20
|

I I I I I I
0.0 0.5 1.0 1.5 2.0 25

k (number of heads)

3.0

Probability

0.05 0.10 0.15 0.20 0.25

0.00

Pr of seeing k heads in 10 trials

k (number of heads)

10




Likelihood function of Binomial distribution

In statistics, a likelihood function (often simply the likelihood) is a particular
function of the parameter of a statistical model given data. Likelihood
functions play a key role in statistical inference.

Binomial model: Binomial Likelihood:

P(k) of k heads given n trials and p of Given n and k infer p that maximizes the

seeing a head in a trial likelihood function

B(kIn ) = ;) p(1 = py" Ln(p |n =3,k =2)=()p*(1—p)" ™ = p*A - p)*

* Domain of p is a value between 0 and 1 (since p is a
probability)

* Let’s try all p’s to get a likelihood function

* Likelihood function is not a distribution



Likelihood function of Binomial distribution

In statistics, a likelihood function (often simply the likelihood) is a particular
function of the parameter of a statistical model given data. Likelihood

functions play a key role in statistical inference.

Ln of p give k=2 and n=3 Binomial Likelihood:
Given n and k infer p that maximizes the

likelihood function

0.4

0.3

| Ln(p | n = 3, k = 2) = (Z)pk(l — p)n—k — (2)}92(1 . p)g_z

Likelihood (Ln)
0.2

0.1

* Domain of p is a value between 0 and 1 (since p is a

probability)
| ' ' ' ' | * Let’s try all p’s to get a likelihood function

0.0 0.2 0.4 0.6 0.8 1.0

p parameter e Likelihood function is not a distribution

0.0
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Maximum Likelihood

Ln of p give k=2 and n=3

Maximum value of the ®

likelihood function
Ln=0.44

0.4

0.2 0.3

Likelihood (Ln)

0.1

0.0

T T T T T I
0.0 0.2 0.4 0.6 0.8 1.0

p parameter

Maximum likelihood estimate of the parameter

Ln(p) == = 2=0.667



Maximum Likelihood

Ln of p give k=2 and n=3

Maximum value of the ®
likelihood function 3 -
Ln=0.44
g 3
©
o
Ln of p given 100 trials __g &4
g
-
5 & g 1
> T T | | T T
8 0.0 0.2 0.4 06 08 1.0
E = p parameter
-
- o o - W o Maximum likelihood estimate of the parameter
k2
p parameter Ln 3 — = — 2 - 7
(p) = 0.66

Ln(p) =0. 48



Likelihood properties

* Likelihood is not a probability distribution!
* Log likelihood

likelihood Log likelihood

Ln of p given k=2 and n=3
' Ln of p given k=2 and n=3

Likelihood (Ln)

Likelihood (Ln)

p parameter
p parameter



Summary

 Statistical phylogenetics is about modeling evolutionary process using probability distribution and

stochastic processes
e Every measurement in this world is roughly speaking is a realization of some stochastic process

* In other words: every measurement is an instance that comes from some probability distribution

(= model)
* Models are set of rules that describe how systems evolve
* In modeling data we need to come up with models that realistically describe our world

* Maximum Likelihood method: given that we observe an outcome and know the generating

model, we can estimate the parameters of the process.



Tomorrow’s lecture

Observed data
(DNA & —
Morphology)

\ 4

SN
Inference

<«—8.5-12 mya

<«—9-13 mya




Let’s calculate likelihood of some coin?




