7.xi.

1. more about dynamic homology
2. search algorithms
3. traditional search strategies
4. new search strategies
5. tree form and consensus \& compromise trees
6. summary

Additional techniques using dynamic homology

AACGGTTTAAGGTACGGAGAATTAGGCAACCCTAGGATGCGATGCGCAGAGTTAGGTACGGAGAATTAGGCAACCCGGTAGGAT

Search-based optimization (SBO) improved/extended FSO
Iterative-pass optimization (IPO)

Search-based optimization (SBO)

1) define the set of possible ancestal states size of this set can vary

Search-based optimization (SBO)

AACGGTTTAAGGTACGGAGAATTAGGCAACCCTAGGATGCGATGCGCAGAGTTAGGTACGGAGAATTAGGCAACCCGGTAGGAT
ААСССТTTAACGTACCGAGAATTACGGAACGCTACGATCGGATCGCGAGACTTACCTACCGAGAATTACGGAACGCTACGATEO

1) define the set of possible ancestal states size of this set can vary
2) evaluate this set on a given tree
compared to FSO also OTHER sequences than those of the terminals will be used

Iterative pass optimization (IPO)

Direct optimization (DO)

AACGGTTTAAGGTACGGAGAATTAGGCAACCCTAGGATGCGATGCGCAGAGTTAGGTACGGAGAATTAGGCAACCCGGTAGGAT ААСССТTTAACCTACCGAGAATTACCGAACCOTACCATCGCATCGCGACACTTACCTACCCACAATTACCGAACCCTACCATCO

total cost $2+1+2=5$

Iterative pass optimization (IPO)

1) initiation: sequences for HTU's obtained e.g with down-pass of DO
2) up-pass is run iteratively, reevaluating each internal node with its 2 descendants \& parental node SIMULTANEOUSLY 3 dimensional N-W algorithm each internal node is connected to 3 other nodes, if 1 is changed also 2 others have to be reevaluated
this is done until solutions stabilize
when initiated with DO normally 3 iterative passes needed
3) cost calculation of the final tree (taking into account int. node sequences inferred using IPO) compared to DO leads to reduction of tree length

3 sequences with 4 nucleotides ---> $4 \times 4 \times 4$ cells in a matrix $=4^{3}$

Size of the matrix N^{M} (N sequence length, M number of sequences)

Dynamic homology analyses in practice

1) CLUSTAL (or other similarily fast) alignment
2) conserved regions easily found
3) sequences cut into fragments using e.g. winclada should be performed cautiously, only WITHIN conserved regions can lead to HUGE speed-up of analyses
analyses of only small materials possible using computers with only 1 CPU parallelization leads to LARGE speed-up of analyses

Cladistics

Comparison of heuristic approaches to the generalized tree alignment problem

Eric Ford ${ }^{\mathrm{a}, \mathrm{b}, *}$ and Ward C. Wheeler ${ }^{\mathrm{b}}$
${ }^{a}$ Department of Mathematics \& Computer Science, Lehman College, CUNY, Bronx, NY 10468, USA; ${ }^{b}$ Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA

Accepted 10 September 2015

Abstract

Two commonly used heuristic approaches to the generalized tree alignment problem are compared in the context of phyloge-

netic

cold all cases examined, DO outperformed MSA+TS with average improvement in parsimony score of ca. 15\%

Abstract

A central goal of biological systematics is mapping the relationships among organisms and groups of organisms-both extant and extinct-based on the reconstruction of phylogenetic trees using comparative character data. The generalized tree alignment problem (GTAP; Sankoff, 1975) is defined as the search for phylogenetic tree(s)-and associated vertex (hypothetical ancestor) sequences-with lowest cost for those data under maximum parsimony.

There has been an ongoing debate in the literature regarding multiple sequence alignment (Katoh et al., 2002; Edgar, 2004; Wheeler, 2007), with several aligners available. In addition, much effort has been expended to improving search on aligned sequences (Goloboff et al., 2003). At the same time, other paradigmata for approaching the GTAP are also available, chief among those being direct optimization (DO) (Wheeler, 1996, 2003; Varón and Wheeler, 2012, 2013). It has been the experience of many investigators that DO gives significantly better results than the two-step process of alignment followed by search for both real and simulated

[^0]Liu et al. 2009• Giribet and Edgecombe, 2013). In addi tion, the high degree of complexity in the settings of the software tools used for alignment and search only confuses the matter, as default settings are often used, and these defaults do not necessarily correspond between aligner and search engine. Here, we compare DO with two-step solutions directly. We also test whether the results of searches where alignment and search setting correspond are better (i.e. more optimal) than those in which they do not. We find that DO results in the discovery of shorter trees, by an average factor of 15%. In addition, using the two-step approach we found significantly (approximately 4\%) shorter trees when using settings on alignment that match the settings of subsequent tree search (as opposed to the default settings of multiple sequence alignment (MSA) implementations).

Software tools

We ran comparisons using several pieces of alignment software. What follows is a brief description of each package.

How GPU Acceleration Works

nvidia.com/object/what-is-gpu-computing.html

CPU
MULTIPLE CORES

haskell.org

GPU
THOUSANDS OF CORES

https://github.com/amnh/PCG

< CodeIssues 43 3
\$\% Pull requests
(-) ActionsProjects
\square Wiki
(!) Security
N Insights

About

Phylogenetic Component Graph 를 Haskell program and libraries for general phylogenetic graph search
haskell bioinformatics
graph-algorithms phylogenetics
comparative-genomics
phylogenetic-networks
comparative-linguistics string-alignment
[1) Readme
18 stars

- 9 watching
\& 1 fork

Releases

$\odot 4$ tags

Packages

$\begin{array}{ll}T & B(T)\end{array}$

3	1 exhaustive search
4	3 possible for only VERY
5	15
6	105
7	945
8	10395
9	135135
10	2×10^{6}
15	8×10^{12}
20	2×10^{20}
50	3×10^{74}

T	$B(T)$	
3	1	
$1,7 \mathrm{GHz}$ processor	3	
$1,65 \times 10^{6}$ trees/second	15	
6	105	BRANCH and BOUND
7	945	algorithm
8	10395	can be used for max. ca. 30 terminals
9	135135	
10	2×10^{6}	
15	8×10^{12}	
20	2×10^{20}	
50	3×10^{74}	

HEURISTIC SEARCH

Wagner algorithm

Kluge, A. G. \& Farris, J. S. 1969. Quantitative phyletics and the evolution of anurans. Systematic Zoology 18:1-32.

Farris, J. S. 1970. Methods for computing Wagner trees. Systematic Zoology 19:83-92.

Basics of Cladistic
W agner Trees
A second way to construct a cladogram is to connect taxa together one at a time until all the taxa have been added. When added, each taxon is joined to the tree to minimize the number of character state changes.

Consider again the small data set:

	Characters				
Outgroup	1	2	3	4	5
A	0	0	0	0	0
B	1	0	0	0	0
C	1	1	0	1	0
	1	0	1	1	1

1. Find the organism with the lowest number of derived character states and connect it to the outgroup.

	Characters				
	1	2	3	4	5
Outgroup	0	0	0	0	0
A	1	0	0	0	0
B	1	1	0	1	0
C	1	0	1	1	1

\#advanced steps

0
1
3
4
Organism A has the lowest number of advanced steps:

2. Now find the organism with the next lowest number of derived character states. Write its name beside the first organisms' name and connect it to the line that joins the outgroup and the first organism. At the point where the two lines intersect, list the most advanced state present in both of the two organisms. For the above character set, the second organism is B:

Diana Lipscomb
George Washington University
Washington D.C.
Copywrite (c) 1998

Wagner algorithm

page 13:

1. Find the organism with the lowest number of derived character states and connect it to the outgroup

Nixon, K. \& Carpenter, J. 1993. On outgroups. Cladistics 9: 413-426.
B

Wagner algorithm

page 13:

1. Find the organism with the lowest number of derived ctiaracter states and connect it to the outgroup
in practice ANY of the organisms can be used as outgroup
next search for a terminal to pair with it so that the number of observed DIFFERENCES between the two are minimized

	1	2	3	4	5	6	7	8	9	10	differences from
outgroup											

the problem of Wagner algorithm is that the order where terminals are added to tree affects the tree finally obtained

continued until all terminals are included

HEURISTIC SEARCH

RAS = random addition sequence

1. starting trees built by adding terminals one by one
matrix/random order
Wagner algorithm
phenetic clustering
all these can be combined to build starting trees
leads RARELY in finding shortest tree

HEURISTIC SEARCH

1. starting trees built by adding terminals one by one WAGNER algorithm
2. after this branches of the tree(s) are moved branch SWAPPING

Nearest-neighbor interchange

HEURISTIC SEARCH algorithms

NNI
O (n) $n=$ no. of Ivs/terminals
SPR
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
TBR
O (n3)
....and in practice if we use RAS + TBR $O\left(n^{4}\right)$

Whidden, C. \& Matsen IV, F.A. 2018. Efficiently inferring pairwise subtree prune-and-regraft adjacencies between phylogenetic trees. Proceedings of the meeting on analytical algorithmics and combinatorics: 77-91.

Wheeler 2017 (lecture notes CP217)

HEURISTIC SEARCH

1. starting trees build by adding terminals one by one Wagner algorithm
2. after this branches of the tree(s) are moved branch SWAPPING with NNI, SPR, TBR
3. current programs include algorithms that allow evaluation of tree length WITHOUT visiting ALL nodes of trees
save processing time

Goloboff, P.A. 1993. Character optimization and calculation of tree lengths. Cladistics 9: 433-436.

Search strategies

 importance of multiple islands of mostparsimonious trees. Syst. Biol. 40: 315-328.islands of trees in tree "space" (landscape)
problem especially in analyses of larger matrices (> 100-200 terminals)

greedy algorithms

GREEDY algorithms simple, do NOT retrace

TRADITIONAL SEARCH STRATEGIES

search repeated SEVERAL TIMES (10-10 000 x) how many times is sufficient?
if first 100x give same result STOP
if only $1 / 100$ give optimal result CONTINUE
moving branches takes time, thus the number of trees
saved at intermediate stages of search kept SMALL, e.g. $\leq 2-10$ WHY?
when starting search potentially VERY DIFFERENT trees, after moving branches this is NOT anymore true, no reason to keep MANY SIMILAR trees most likely will lead finding same optimal tree

TRADITIONAL SEARCH STRATEGIES

if > 10\% of random searches give same result ---> search should be extended by expanding the number of trees saved in cache memory (50-100)
if < 10% random searches give same results ---> continue with NUMEROUS (500-1 000) additional random search repetitions with saving few trees in cache
finally 5-10\% of trees saved in cache (50200) analyzed in more detail

Davis, J. \& al. 2005. The limits of conventional cladistic analysis. In: Albert, V. (ed.) Parsimony, phylogeny and genomics. 229 s. Oxford University Press

TRADITIONAL SEARCH STRATEGIES

NO NEED to find ALL optimal trees (Farris \& al. 1996)

for large matrices > 10^{6} equally parsimonious trees might exist
consensus tree based only on small sample of trees might be identical with the one based on ALL trees if those sampled originate from SEPARATE tree groups (islands) can also be used to "guide" our search, i.e. if consensus does not change, no need to continue

NEW SEARCH STRATEGIES

required for analyses of LARGE (> 500-700 spp.) matrices
in large trees ALL parts should be in optimal arrangement in order to be optimal as a WHOLE

GOLOBOFF 2000: dice comparison

www.weld-re1.k12.co.us/webclass/students/reamj/web/dice.gif

NEW SEARCH STRATEGIES

Moilanen, A. 1999. Searching for most parsimonious trees with simulated evolutionary optimization. Cladistics 15: 39-50.

Nixon, K.C. 1999. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15: 407-414.

Goloboff. P.A. 1999. Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15: 415-428.

Nixon, K. Parsimony ratchet

1a. starting tree (e.g. Wagner algorithm)
1b. continued using fast \& simple branch swapping

```
weight = cost of ch. state change
```

2. weight randomly e.g. 10-30\% of characters
3. try to find shortest tree of this NEW matrix (as in 1b)
4. return ORIGINAL weights
5. search for the shortest tree (as in 1b)
6. return to 2 . and repeat
> 30x faster than traditional search strategies

Goloboff, P. Sectorial search

1. part (a sector) of the tree found by traditional search chosen
2. a LOCAL search performed in this part \& returned to original tree

Goloboff, P. Sectorial search

1. part (a sector) of the tree found by traditional search chosen
2. a LOCAL search performed in this part \& returned to original tree
3. search performed numerous times with different parts
4. leads only rarely in finding optimal solution but

MUCH faster than TBR

alternatives:	RSS (random sectorial searches)
	CSS (consensus-based sectorial s.)
	MSS (mixed sectorial s.)

CPU time increases LINEARLY in relation to number of sectors EXPONENTIALLY in relation to number of terminals in TBR

Goloboff, P. \& Moilanen, A. Tree fusing

1. 2 starting trees chosen
2. trees compared sector by sector
3. all sectors of source tree that make target tree shorter are transferred to this latter tree

Goloboff, P. (\& Moilanen, A.) Tree fusing

1. 2 starting trees chosen
2. trees compared one sector at a time
3. all sectors that reduce tree length transferred from source to target tree
4. a new source tree chosen
initially trees resulting from numerous searches needed efficiency of the method based on the fact that at least one part of the tree is in OPTIMAL configuration

Goloboff, P. Tree drifting

Longer than optimal trees accepted with predefined probability
widely known as "simulated annealing" used for analyses of difficult optimization problems

Cladistics

Phylogenetic analysis of 73060 taxa corroborates major eukaryotic groups

Pablo A. Goloboff ${ }^{\text {a,*, }}$, Santiago A. Catalano ${ }^{\text {b }}$, J. Marcos Mirande ${ }^{\text {b }}$, Claudia A. Szumik ${ }^{\text {a }}$, J. Salvador Arias ${ }^{\text {a }}$, Mari Källersjö ${ }^{\text {c }}$ and James S. Farris ${ }^{\text {d }}$
${ }^{a}$ INSUE (Instituto Superior de Entomología), CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Instituto Miguel Lillo, Miguel Lillo 205, 4000 S.M.Tucumán, Argentina; ${ }^{b}$ CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Fundación Miguel Lillo, Miguel
Lillo 251, 4000 S.M.Tucumán, Argentina; ${ }^{c}$ Göteborgs Botaniska Trädgård (Gothenburgh Botanical Garden), Carl Skottbergs Gata 22A, SE-413
19 Göteborg, Sweden; ${ }^{d}$ Molekylärsystematiska laboratoriet, Naturhistoriska riksmuseet, Box 50007, 104-05 Stockholm, Sweden

Accepted 21 February 2009

Abstract

Obtaining a well supported schema of phylogenetic relationships among the major groups of living organisms requires considering as much taxonomic diversity as possible, but the computational cost of calculating large phylogenies has so far been a major obstacle. We show here that the parsimony algorithms implemented in TNT can successfully process the largest phylogenetic data set ever analysed, consisting of molecular sequences and morphology for 73060 eukaryotic taxa. The trees resulting from molecules alone display a high degree of congruence with the major taxonomic groups, with a small proportion of misplaced species; the combined data set retrieves these groups with even higher congruence. This shows that tree-calculation algorithms effectively

Concluding remarks

solutions to find optimal trees varies according to the data analyzed
e.g. extensive homoplasy vs. randomly sparse matrices
increasingly common with large genetic materials

Wagner algorithm used initially to find starting trees modified selected/informative addition

Goloboff, P.A. 2014. Hide and vanish: data sets where the most parsimonious tree is known but hard to find, and their implications for tree search methods. Mol. Phyl. \& Evol. 79: 118-131.

7.xi.

1. search algorithms
2. traditional search strategies
3. new search strategies
4. tree form and consensus \& compromise trees
5. summary

TREES \& their form

TREES \& their form

TREES \& their form

CLADOGRAMS \& their form

CLADOGRAMS \& their form

CLADOGRAMS \& their form

Venn diagram

CLADOGRAMS \& their form

$\left.\left(E \quad\left[\begin{array}{ll}B & D\end{array}\right)\left(\begin{array}{lll}C & \left(\begin{array}{ll}A & F\end{array}\right)\end{array}\right)\right]\right)$

From Venn diagram ---->

CLADOGRAMS \& their form

(E ((Br $\quad \mathrm{D}) \quad\left(\begin{array}{lll}\mathrm{C} & \left.\left(\begin{array}{ll}A & F\end{array}\right)\right)\end{array}\right)$

parenthetical notation

CLADOGRAMS \& their form

Enables presentation of trees as part of normal text

(E ((B D) (C (A F))))

naturally used also in programming

Consensus \& compromise trees

ONLY trees treated \& compared, NOT CHARACTERS

Consensus trees

Sokal, R. R. \& Rohlf, F. J. 1981. Taxonomic congruence in the Leptopodomorpha re-examined. Systematic Zoology 30: 309-325.

Consensus trees

Consensus trees

$$
(E(B(D C(A F))))
$$

(EBDCAF) (BDCAF) (D (AF) (A F)

Consensus trees

(E (B (D C (A F))))

Consensus trees

consensus tree is ALWAYS ONLY SUMMARY
it is ALWAYS more complicated than any of the original trees

Consensus trees

consensus tree is ALWAYS ONLY SUMMARY

it is ALWAYS more complicated than any of the original trees
groups shared by ALL trees are presented on 1 tree

COMPROMISE TREES

> often referred to as consensus trees

Majority rule compromise

Adams

Combinable component (semistrict)

Nixon, K. C. \& Carpenter, J. 1996. On consensus, collabsibility, and clade concordance. Cladistics 12: 305-321.

COMPROMISE TREES

Majority rule compromise

Margush, T. \& McMorris, F. R. 1981. Consensus n-trees. Bull. Math. Biol. 43: 239-244.

Adams

Combinable component (semistrict)

COMPROMISE TREES

commonly used for presentation of support values
mostly those groups present on $\geq 50 \%$ of original trees included
percentage describing the presence of groups marked on compromise tree (50-100)

COMPROMISE TREES

majority rule compromise
when used as summary of optimal trees it should be noticed that part of the original trees are in CONFLICT with this summary!!
this kind of usage IS NOT RECOMMENDED, simply MISLEADING

SUMMARY

exhaustive \& branch and bound searches can be used only for analyses of SMALL matrices only these two ENSURE
heuristic search is based on rearrangement of branches of tree(s) branch SWAPPING
searches should be planned carefully BEFORE starting them in order to avoid unnecessary analyses of large number of similar trees \& use of CPU time
use of best programs \& efficient algorithms necessary for analyses of LARGE matrices
PARALLELIZATION have enabled analyses of larger and larger materials
trees can be presented as PARENTHETICAL NOTATIONS consensus trees are useful SUMMARIES of many trees

[^0]: *Corresponding author:
 E-mail address: eford@gradcenter.cuny.edu

