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1. more about dynamic homology



Additional techniques using dynamic homology

Search-based optimization (SBO)

Iterative-pass optimization (IPO)
improved/extended FSO

improved/extended DO



1) define the set of possible ancestal states

Search-based optimization (SBO)

size of this set can vary

FSO state set

extended set (more 
thorough heuristics)

exact 
solution



1) define the set of possible ancestal states

Search-based optimization (SBO)

size of this set can vary

2) evaluate this set on a given tree

compared to FSO also OTHER sequences than those
of the terminals will be used

leads to CONSIDERABLE 
reduction of tree length 



Wheeler, W.C. 2003. Cladistics 19: 254-260
Iterative pass optimization (IPO)

WHY ? 



GG A AAG

Direct optimization (DO)

R

A A/-

G -/G

total cost 2+1+2=5

obtained after down pass 



Iterative pass optimization (IPO)

1) initiation: sequences for HTU´s obtained e.g with 
down-pass of DO

each internal node is connected to 3 other nodes, if 1 
is changed also 2 others have to be reevaluated

this is done until solutions stabilize

3 dimensional N-W algorithm

when initiated with DO normally 
3 iterative passes needed

3) cost calculation of the final tree (taking into 
account int. node sequences inferred using IPO )

compared to DO leads to reduction of tree length

2) up-pass is run iteratively, reevaluating each
internal node with its 2 descendants & parental
node SIMULTANEOUSLY
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3 sequences with 4 nucleotides ---> 4 x 4 x 4 cells in a matrix = 43

Size of the matrix NM (N sequence length, M number of  sequences)

VERY costly in terms of time
(ca. 30x) & memory (ca. 9x) 
as compared to DO



should be performed cautiously, only WITHIN conserved
regions

1) CLUSTAL (or other similarily fast) alignment

2) conserved regions easily found

3) sequences cut into fragments using e.g. winclada

can lead to HUGE speed-up of analyses

analyses of only small materials possible using 
computers with only 1 CPU

parallelization leads to LARGE speed-up of analyses

Dynamic homology analyses in practice



Comparison of heuristic approaches to the generalized tree
alignment problem

Eric Forda,b,* and Ward C. Wheelerb

aDepartment of Mathematics & Computer Science, Lehman College, CUNY, Bronx, NY 10468, USA; bDivision of Invertebrate Zoology, American
Museum of Natural History, New York, NY 10024, USA

Accepted 10 September 2015

Abstract

Two commonly used heuristic approaches to the generalized tree alignment problem are compared in the context of phyloge-
netic analysis of DNA sequence data. These approaches, multiple sequence alignment + phylogenetic tree reconstruction
(MSA+TR) and direct optimization (DO), are alternative heuristic procedures used to approach the nested NP-Hard optimiza-
tions presented by the phylogenetic analysis of unaligned sequences under maximum parsimony. Multiple MSA+TR implementa-
tions and DO were compared in terms of optimality score (phylogenetic tree cost) over multiple empirical and simulated
datasets with differing levels of heuristic intensity. In all cases examined, DO outperformed MSA+TR with average improvement
in parsimony score of 14.78% (5.64–52.59%).
© The Willi Hennig Society 2015.

A central goal of biological systematics is mapping
the relationships among organisms and groups of
organisms—both extant and extinct—based on the
reconstruction of phylogenetic trees using comparative
character data. The generalized tree alignment problem
(GTAP; Sankoff, 1975) is defined as the search for
phylogenetic tree(s)—and associated vertex (hypotheti-
cal ancestor) sequences—with lowest cost for those
data under maximum parsimony.
There has been an ongoing debate in the literature

regarding multiple sequence alignment (Katoh et al.,
2002; Edgar, 2004; Wheeler, 2007), with several aligners
available. In addition, much effort has been expended to
improving search on aligned sequences (Goloboff et al.,
2003). At the same time, other paradigmata for
approaching the GTAP are also available, chief among
those being direct optimization (DO) (Wheeler, 1996,
2003; Var!on and Wheeler, 2012, 2013). It has been the
experience of many investigators that DO gives signifi-
cantly better results than the two-step process of align-
ment followed by search for both real and simulated

data (e.g. Lindgren and Daly, 2007; Lehtonen, 2008;
Liu et al., 2009; Giribet and Edgecombe, 2013). In addi-
tion, the high degree of complexity in the settings of the
software tools used for alignment and search only con-
fuses the matter, as default settings are often used, and
these defaults do not necessarily correspond between
aligner and search engine. Here, we compare DO with
two-step solutions directly. We also test whether the
results of searches where alignment and search setting
correspond are better (i.e. more optimal) than those in
which they do not. We find that DO results in the dis-
covery of shorter trees, by an average factor of 15%. In
addition, using the two-step approach we found signifi-
cantly (approximately 4%) shorter trees when using set-
tings on alignment that match the settings of subsequent
tree search (as opposed to the default settings of multi-
ple sequence alignment (MSA) implementations).

Software tools

We ran comparisons using several pieces of align-
ment software. What follows is a brief description of
each package.

*Corresponding author:
E-mail address: eford@gradcenter.cuny.edu

Cladistics
Cladistics (2015) 1–9

10.1111/cla.12142

© The Willi Hennig Society 2015

MSA+TS implementations and DO were compared... in 
all cases examined, DO outperformed MSA+TS with 
average improvement in parsimony score of ca. 15%



nvidia.com/object/what-is-gpu-computing.html haskell.org



https://github.com/amnh/PCG



T B(T)
----------------------
3 1
4 3
5 15
6 105
7 945
8 10 395
9 135 135
10 2 x 106

15 8 x 1012
20 2 x 1020
50 3 x 1074

exhaustive search
possible for only VERY 
limited no. of terminals
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I
IIa

IIb

IIIa-e

If tree IIb > IIIa-e, 
no reason to follow
this path longer

BRANCH & BOUND 
algorithm

ensures finding
shortest tree

Land, A.H. & Doig, A.G. 1960. An automated method of solving
discrete programming problems. Econometrica 28: 497-520

IIIa-a
IIIa-b

IIIa-c

IIIa-d



T B(T)
----------------------
3 1
4 3
5 15
6 105
7 945
8 10 395
9 135 135
10 2 x 106

15 8 x 1012
20 2 x 1020
50 3 x 1074

1,7 GHz processor

1,65 x 106 trees/second
BRANCH and BOUND 
algorithm

can be used for max. 
ca. 30 terminals



Wagner algorithm

Farris, J. S. 1970. Methods for computing Wagner trees. Systematic Zoology 
19:83-92.

Kluge, A. G. & Farris, J. S. 1969. Quantitative phyletics and the evolution of
anurans. Systematic Zoology 18:1-32.

HEURISTIC SEARCH 



pp. 13-18



page 13:

1. Find the organism with the lowest
number of derived character states and 
connect it to the outgroup

Wagner algorithm

in practice ANY of the organisms can be used as outgroup



C A

B

E

D
Nixon, K. & Carpenter, J. 1993. On outgroups. Cladistics 9: 413-426. 

EA

B

outgroup terminals should be treated in 
the analyses AS ANY OTHER TERMINAL

they should be included in the 
analyses FROM THE VERY START

D A    E   B C

C

D



page 13:

1. Find the organism with the lowest
number of derived character states and 
connect it to the outgroup

Wagner algorithm

in practice ANY of the organisms can be used as outgroup

next search for a terminal to pair with it so 
that the number of observed DIFFERENCES
between the two are minimized



ogC BA

continued until 
all terminals are 

included

the problem of Wagner algorithm is that 
the order where terminals are added to 
tree affects the tree finally obtained

1  2  3  4  5  6  7  8  9  10         differences from
outgroup

og 0  0  0  0  0  0  0  0  0  0  -
A  1  0  0  0  1  1  0  0  0  1   4 
B 1  0  0  1  0  0  0  0  0  1 3 
C 0  0  0  0  0  0  0  0  1  1 2
D 0  1  1  0  0  0  1  1  0  1 5
E 0  1  1  1  0  0  0  1  0  1 5
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ONLY optimal tree retained at EACH STAGE of search

alternative paths NOT EVALUATED

GREEDY algorithm, NO trace back



HEURISTIC SEARCH 

all these can be combined to build starting trees
leads RARELY in 
finding shortest tree

Wagner algorithm

phenetic clustering

1. starting trees built by adding terminals one by one

matrix/random order

RAS = random addition sequence



2. after this branches of the tree(s) are moved

branch SWAPPING

HEURISTIC SEARCH 

1. starting trees built by adding terminals one by one
WAGNER algorithm
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Swofford, D.L. 1996. PAUP: 
Phylogenetic Analysis Using 
Parsimony, version 3.1. Programme 
manual. Illinois Natural History 
Survey.

Nearest-neighbor
interchange

NNI

Camin & Sokal 1965



Subtree pruning -
regrafting

SPRE

D
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C F

E

D

F
A

B
C

ED

A

B
C F

Swofford, D.L. 1996. PAUP: 
Phylogenetic Analysis Using 
Parsimony, version 3.1. Programme 
manual. Illinois Natural History 
Survey.
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for small matrices (< 50 spp.) 
surprisingly efficient

despite of the fact that only an 
extremely SMALL FRACTION 
of all possible trees considered

(50 spp.  1.0 x 10-69)
Swofford, D.L. 1996. PAUP: 
Phylogenetic Analysis Using 
Parsimony, version 3.1. Programme
manual. Illinois Natural History
Survey.

Branch breaking

BB (Farris 1970)

Tree bisection-
reconnection

TBR (Swofford 1990)



St. John, K. 2017. Review paper: the 
shape of phylogenetic treespace. Syst. 
Biol. 66: e83-e94



HEURISTIC SEARCH algorithms 

NNI O (n)

SPR O (n2)

TBR O (n3)

….and in practice if we use RAS+TBR   O (n4)

n = no. of lvs/terminals

Whidden, C. & Matsen IV, F.A. 2018. Efficiently inferring pairwise subtree prune-and-regraft adjacencies
between phylogenetic trees. Proceedings of the meeting on analytical algorithmics and combinatorics: 77-91. 

Wheeler 2017 (lecture notes CP217)



2. after this branches of the tree(s) are moved
branch SWAPPING with NNI, SPR, TBR

HEURISTIC SEARCH 

1. starting trees build by adding terminals one by one

3. current programs include algorithms that allow 
evaluation of tree length WITHOUT visiting ALL 
nodes of trees save processing time

Goloboff, P.A. 1993. Character optimization and calculation of 
tree lengths. Cladistics 9: 433-436.

Wagner algorithm



islands of trees in tree “space” (landscape)

Search strategies 

problem especially in analyses of 
larger matrices (> 100-200 terminals)

Maddison, D.R. 1991. The discovery and 
importance of multiple islands of most-
parsimonious trees. Syst. Biol. 40: 315-328.



http://genealogyreligion.net/wp-content/uploads/2010/04/intelligencelandscape.jpg

Search landscape

GLOBAL OPTIMUM

local optimum

local optimum



greedy algorithms

example 2 dimensional real tree space
MULTI dimensional

best way to move around in treespace?

GREEDY algorithms simple, do NOT retrace



TRADITIONAL SEARCH STRATEGIES

search repeated SEVERAL TIMES (10 - 10 000 x)
how many times is sufficient? has optimal tree be found?

if first 100x give same result

if only 1/100 give optimal result
moving branches takes time, thus the number of trees 

saved at intermediate stages of search kept 
SMALL, e.g. < 2-10

when starting search potentially VERY DIFFERENT 
trees, after moving branches this is NOT
anymore true, no reason to keep MANY 
SIMILAR trees

WHY?

most likely will lead finding same optimal tree

CONTINUE

STOP



finally 5-10% of trees saved in cache (50-
200) analyzed in more detail

if < 10% random searches give same results ---> 
continue with NUMEROUS (500-1 000) additional 
random search repetitions with saving few trees in 
cache

if > 10% of random searches give same result ---> 
search should be extended by expanding the 
number of trees saved in cache memory (50-100)

Davis, J. & al. 2005. The limits of conventional cladistic analysis. In: Albert, V. (ed.) 
Parsimony, phylogeny and genomics. 229 s. Oxford University Press

TRADITIONAL SEARCH STRATEGIES



for large matrices > 106 equally parsimonious trees
might exist

NO NEED to find ALL optimal trees (Farris & al. 1996)

consensus tree based only on small sample of trees 
might be identical with the one based on ALL trees if 
those sampled originate from SEPARATE tree groups 
(islands)

TRADITIONAL SEARCH STRATEGIES

can also be used to ”guide” our search, i.e. if consensus
does not change, no need to continue



in large trees ALL parts should be in optimal arrangement 
in order to be optimal as a WHOLE

NEW SEARCH STRATEGIES
required for analyses of LARGE (> 500-700 spp.) matrices



500 spp.

5 x 100 spp. 
if probability for optimal arrangement of 100 
terminals is 0.5  for whole tree it is  0.55 < 0.016!



GOLOBOFF 2000: dice comparison

www.weld-re1.k12.co.us/webclass/students/reamj/web/dice.gif



Moilanen, A. 1999. Searching for most parsimonious trees
with simulated evolutionary optimization. Cladistics 15: 
39-50. 

Nixon, K.C. 1999. The parsimony ratchet, a new method
for rapid parsimony analysis. Cladistics 15: 407-414.

Goloboff. P.A. 1999. Analyzing large data sets in 
reasonable times: solutions for composite optima. 
Cladistics 15: 415-428.

NEW SEARCH STRATEGIES



Nixon, K.  Parsimony ratchet

1a. starting tree (e.g. Wagner algorithm)
1b. continued using fast & simple branch swapping

2. weight randomly e.g. 10-30% of characters
3. try to find shortest tree of this NEW matrix (as in 1b)

4. return ORIGINAL weights

5. search for the shortest tree (as in 1b)
6. return to 2. and repeat

> 30x faster than traditional search strategies

diversityoflife.org/winclada/

weight = cost of ch. state change



http://genealogyreligion.net/wp-content/uploads/2010/04/intelligencelandscape.jpg

Search landscape

ratchet enables ”jumps” around
tree space/landscape

enables search to start over in 
other parts of the space
because space itself is 
deformed between 2 searches
by DIFFERENTIAL weighting



Goloboff, P.  Sectorial search

1. part (a sector) of the tree found by traditional search 
chosen

2. a LOCAL search performed in this part & returned to 
original tree



local search
of the sector

return of the
sector in a new
configuration





3. search performed numerous times with different parts
4. leads only rarely in finding optimal solution but

MUCH faster than TBR
alternatives: RSS (random sectorial searches)

CSS (consensus-based sectorial s.)

MSS (mixed sectorial s.)

CPU time increases LINEARLY in relation to number of sectors

EXPONENTIALLY in relation to number of terminals in TBR

Goloboff, P.  Sectorial search

1. part (a sector) of the tree found by traditional search 
chosen

2. a LOCAL search performed in this part & returned to 
original tree



1. 2 starting trees chosen
2. trees compared sector by sector

3. all sectors of source tree that make target tree shorter 
are transferred to this latter tree

Goloboff, P. & Moilanen, A.  Tree fusing



target tree

source tree



4. a new source tree chosen

initially trees resulting from numerous searches needed

efficiency of the method based on the fact that at least 
one part of the tree is in OPTIMAL configuration

Goloboff, P. (& Moilanen, A.)  Tree fusing

1. 2 starting trees chosen
2. trees compared one sector at a time

3. all sectors that reduce tree length transferred from 
source to target tree



longer than optimal trees accepted with predefined
probability

Goloboff, P. Tree drifting

widely known as “simulated annealing” used for analyses of 
difficult optimization problems



http://genealogyreligion.net/wp-content/uploads/2010/04/intelligencelandscape.jpg

Search landscape

Form of tree landscape/space NOT fixed

TOTALLY dependent of used ALGORITHMS



Phylogenetic analysis of 73 060 taxa corroborates major eukaryotic
groups

Pablo A. Goloboff a,*, Santiago A. Catalanob, J. Marcos Mirandeb, Claudia A. Szumika,
J. Salvador Ariasa, Mari Källersjöc and James S. Farrisd

aINSUE (Instituto Superior de Entomologı́a), CONICET (Consejo Nacional de Investigaciones Cientı́ficas y Técnicas), Instituto Miguel Lillo, Miguel
Lillo 205, 4000 S.M.Tucumán, Argentina; bCONICET (Consejo Nacional de Investigaciones Cientı́ficas y Técnicas), Fundación Miguel Lillo, Miguel
Lillo 251, 4000 S.M.Tucumán, Argentina; cGöteborgs Botaniska Trädgård (Gothenburgh Botanical Garden), Carl Skottbergs Gata 22A, SE-413

19 Göteborg, Sweden; dMolekylärsystematiska laboratoriet, Naturhistoriska riksmuseet, Box 50007, 104-05 Stockholm, Sweden

Accepted 21 February 2009

Abstract

Obtaining a well supported schema of phylogenetic relationships among the major groups of living organisms requires
considering as much taxonomic diversity as possible, but the computational cost of calculating large phylogenies has so far been a
major obstacle. We show here that the parsimony algorithms implemented in TNT can successfully process the largest phylogenetic
data set ever analysed, consisting of molecular sequences and morphology for 73 060 eukaryotic taxa. The trees resulting from
molecules alone display a high degree of congruence with the major taxonomic groups, with a small proportion of misplaced species;
the combined data set retrieves these groups with even higher congruence. This shows that tree-calculation algorithms effectively
retrieve phylogenetic history for very large data sets, and at the same time provides strong corroboration for the major eukaryotic
lineages long recognized by taxonomists.

! The Willi Hennig Society 2009.

After publication of Darwin!s theory in 1859, estab-
lishing the lines of descent for the major groups of
organisms became one of the most important goals in
biology. Solving a problem of such magnitude requires
consideration of as much relevant evidence as possible,
especially in terms of taxonomic diversity, but significant
efforts so far have concentratedmostly in assembling data
sets with large numbers of genes for reduced numbers of
representative taxa (Bapteste et al., 2002; Dunn et al.,
2008). Attempts at large taxon samples have been much
less common, one of the reasons for that difference being
that the complexity of phylogenetic analysis increases
linearly with characters or genes, but superexponentially
with taxa. Thus data sets beyond a thousand species (e.g.
the studies of Källersjö et al., 1999; McMahon and
Sanderson, 2006) continue to be exceptional.

Data sets with more than a few thousand taxa had
been considered basically intractable until very recently.
Some large data sets have been analysed only experi-
mentally, to test specific computer programs and with-
out publication of taxonomic results (e.g. Goloboff and
Pol, 2007). The largest phylogenetic data set analysed to
date (Smith et al., 2009) used all available rbcL data for
about 13 000 plant taxa. This analysis used RAxML
(Stamatakis, 2006), a program for rapid maximum
likelihood analysis. However, the impressive speed-ups
in RAxML come not only from using shortcuts for
faster (‘‘lazy’’) evaluation of rearrangements (similar to
those suggested by Goloboff, 20031), but also from

*Corresponding author:
E-mail address: pablogolo@csnat.unt.edu.ar

1Goloboff (2003, p. 95) actually stated that, after regrafting a clade,
the branch-length optimization of the three branches around the new
node—as in the ‘‘lazy’’ optimization used in RAxML—produces too
much error, and suggested extending optimization to adjacent branches
as well for more accurate calculations. Goloboff (2003) based his
observations on his own unpublished maximum-likelihood program.

! The Willi Hennig Society 2009

Cladistics

10.1111/j.1096-0031.2009.00255.x

Cladistics 25 (2009) 1–20



Concluding remarks

solutions to find optimal trees varies according to the data
analyzed

e.g. extensive homoplasy vs. randomly sparse matrices

Goloboff, P.A. 2014. Hide and vanish: data sets where the most parsimonious tree 
is known but hard to find, and their implications for tree search methods. 
Mol. Phyl.& Evol. 79: 118-131.

Wagner algorithm used initially to find starting trees
modified selected/informative addition

increasingly common with large 
genetic materials
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TREES & their form
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TREES & their form



E           B   D          A    F        C

cladogram:

only branching ORDER 
matter

TREES & their form
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CLADOGRAMS & their form



E         B      D         C        A     F

CLADOGRAMS & their form



E          B      D       C        A     F

Venn diagram

CLADOGRAMS & their form



E          B      D        C       A     F

From Venn diagram ---->

CLADOGRAMS & their form



(E        ((B      D)       (C      (A     F))))

parenthetical notation

CLADOGRAMS & their form



(E ((B D) (C (A F))))

Enables presentation of trees as part of normal text

naturally used also in programming

CLADOGRAMS & their form



KONSENSUSDIAGRAMMIConsensus & compromise trees

ONLY trees treated & compared, NOT CHARACTERS



E         B       D      C         A     F

E         B        D       C       A     F

KONSENSUSDIAGRAMMIConsensus trees
Sokal, R. R. & Rohlf, F. J. 1981. Taxonomic congruence in the Leptopodomorpha
re-examined. Systematic Zoology 30: 309-325. 
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Consensus trees
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Consensus trees
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Consensus trees
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Consensus trees
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Consensus trees
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Consensus trees
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Consensus trees
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E         B        D       C       A     F

KONSENSUSDIAGRAMMI

(E (B (D C) (A F))))

Consensus trees
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KONSENSUSDIAGRAMMI

(E B D C A F)
(B D C A F)
(D C A F)
(D C)
(A F)

Consensus trees
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E         B        D       C       A     F

KONSENSUSDIAGRAMMI

(E B D C A F)
(B D C A F)
(D C A F)
(D C)
(A F)

(E B D C A F)
(B D C A F)
(D C A F)
(C A F)
(A F)

Consensus trees



E         B       D      C         A     F

E         B        D       C       A     F

KONSENSUSDIAGRAMMI

(E B D C A F)
(B D C A F)
(D C A F)
(D C)
(A F)

(E B D C A F)
(B D C A F)
(D C A F)
(C A F)
(A F)

Consensus trees



KONSENSUSDIAGRAMMI

(E B D C A F)
(B D C A F)
(D C A F)
(A F)

(E (B (D C (A F))))

Consensus trees



E         B       D      C         A     F

KONSENSUSDIAGRAMMI

(E B D C A F)
(B D C A F)
(D C A F)
(A F)

(E (B (D C (A F))))

Consensus trees



consensus tree is ALWAYS ONLY SUMMARY

it is ALWAYS more complicated than any of the original 
trees

Consensus trees
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E          B      D       C         A     F
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groups shared  by ALL trees are presented on 1 tree

Consensus trees

consensus tree is ALWAYS ONLY SUMMARY

it is ALWAYS more complicated than any of the original 
trees



Adams

Combinable component (semistrict)

often referred to 
as consensus trees

Majority rule compromise

Nixon, K. C. & Carpenter, J. 1996. On consensus, 
collabsibility, and clade concordance. Cladistics 12: 305-321. 

COMPROMISE TREES



Majority rule compromise

Adams

Combinable component (semistrict)

Margush, T. & McMorris, F. R. 1981. Consensus n-trees. Bull. Math. Biol. 43: 239-244.

COMPROMISE TREES



commonly used for presentation of support values

mostly those groups present on > 50% of original trees 
included

percentage describing the presence of groups marked on 
compromise tree (50-100) 

COMPROMISE TREES



when used as summary of optimal trees it should be 
noticed that part of the original trees are in 
CONFLICT with this summary!! 

this kind of usage IS NOT RECOMMENDED, simply
MISLEADING

majority rule compromise

COMPROMISE TREES



exhaustive & branch and bound searches can be used 
only for analyses of SMALL matrices

use of best programs & efficient algorithms 
necessary for analyses of LARGE matrices

SUMMARY

heuristic search is based on rearrangement of branches 
of tree(s)

searches should be planned carefully BEFORE starting 
them in order to avoid unnecessary analyses of 
large number of similar trees & use of CPU time

only these two ENSURE  
finding the optimal tree

PARALLELIZATION have enabled analyses of larger 
and larger materials 

branch SWAPPING

trees can be presented as PARENTHETICAL NOTATIONS
consensus trees are useful SUMMARIES of many trees


