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1. home exercise
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characters

terminals

HOME EXERCISE

A    010111011111
B    111000101010
C    101100100001
D    100011001000
E    100001100111



Tree      1  2  3  4  5  6  7  8  9 10 11 12
--------------------------------------------

1      1  1  2  2  2  2  2  1  2  2  1  2
2      1  1  2  2  2  2  2  1  2  2  2  2
3      1  1  2  2  2  2  2  1  1  2  2  2
4      1  2  2  1  2  2  2  1  2  2  2  2
5      1  2  2  1  2  2  2  1  2  2  2  1
6      1  2  2  1  2  2  2  1  2  2  2  2
7      1  2  2  2  2  2  2  1  2  1  1  2
8      1  2  1  2  2  1  2  1  2  1  2  2
9      1  2  2  2  2  2  2  1  2  1  2  1

10      1  2  2  2  2  2  2  1  1  2  2  1
11      1  2  2  2  2  2  2  1  2  2  1  2
12      1  2  1  2  2  1  2  1  2  2  2  2
13      1  2  2  2  1  2  1  1  1  2  2  2
14      1  2  2  2  1  2  1  1  2  2  2  2
15      1  2  1  2  1  1  1  1  2  2  2  2

∑

20
21
20
21
20
21
20
19
20
20
21
20
19
20
18

0  0  0  0  0  0  0  0  0  1  1  1
1  2  3  4  5  6  7  8  9  0  1  2

characters

trees



A    010111011111
B    111000101010
C    101100100001
D    100011001000
E    100001100111

e.g. character 9
2 evolutionary changes

(most) parsimonious,  i.e. 
shortest tree 18 (16+2) 
evolutionary changes

D E

A

C

B



OPTIMIZATION

hypotheses of character states for internal nodes 
(HTU) of tree

HTU, Hypothetical Taxonomic Unit
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A                  B                    C                    D        E         F
0                   0                    3                    2 3         1
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A                  B                    C                    D        E         F
0                   0                    3                    2 3         1



0

3

0

0

3

A                  B                    C                    D        E         F
0                   0                    3                    2 3         1



Farris, J.S. 1970. Methods for computing Wagner trees. 

Systematic Zoology 19: 83-92.

Fitch, W.M. 1971. Toward defining the course of evolution : minimal
change for a specific tree topology. 

Systematic Zoology 20: 406-416.

OPTIMIZATION



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

1 character with 4 ch. states coded with 0, 1, 2 & 4 



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

DOWNWARD
PASS = postorder

{2, 4}
{0, 1}

RULE 1: if terminals share character state this will 
be marked also for their ancestor (intersection, Ç)

RULE 2: if terminals do not share ch. state (intersection, Ç = Æ) 
their (union, È) is marked for their ancestor



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

DOWNWARD
PASS

{2, 4}

{0, 1}

RULE 1: if terminals share character state this will 
be marked also for their ancestor (intersection, Ç)

RULE 2: if terminals do not share ch. state (intersection, Ç = Æ) 
their (union, È) is marked for their ancestor

{1}

{1, 2, 4}



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

DOWNWARD
PASS

{2, 4}

{0, 1}

RULE 1: if terminals share character state this will 
be marked also for their ancestor (intersection, Ç)

{1}

{1, 2, 4}
RULE 2: if terminals do not share ch. state 
(intersection, Ç = Æ) their (union, È) is 
marked for their ancestor

{0, 1}



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

DOWNWARD
PASS

{2, 4}

{0, 1}

{1}

{1, 2, 4}

{0, 1}

ATTENTION! LENGTH of diagram, number of ch. state changes, calculated
already at this stage. Unions (È) add always one ch. state change.

PRELIMINARY state sets (P)

tree length= 4 



- root final state set = root preliminary state set (F = P)

RULE 2. If Rule 1 does not apply and the union of final/preliminary states of 
the 2 descendants of the current node (Left and Right) are equal to 
preliminary states of the current node (P = L ∪ R), then F = P ∪ A.

“ upward pass” rules (Fitch 1971, Wheeler 2012)

RULE 1. If the intersection of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final state set, F, 
is equal to that of the ancestor (F = A).

RULE 3. If Rule 1 and 2 do not apply the final state set is the preliminary state 
set, supplemented by state set that is common to the ancestor and 
descendants (F = P ∪ (L ∩ A) ∪ (R ∩ A)).



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS = preorder

{2, 4}

{0, 1}

{1}

{1, 2, 4}

{0, 1}

root final state set = root 
preliminary state set (F = P)



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{2, 4}

{0, 1}

{1}

{1, 2, 4}

{0, 1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final 
state set, F, is equal to that of the ancestor (F = A).

RULE 2. If Rule 1 does not apply and the union of 
final/preliminary states of the 2 descendants of the 
current node (Left and Right) are equal to the  

preliminary states of the current node (P = L ∪ R), 
then F = P ∩ A.



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{2, 4}

{0, 1}

{1}

{1, 2, 4}

{0, 1}

RULE 3. If Rules 1 and 2 do not apply the final state set is the 
preliminary state set, supplemented by state set that is 
common to the ancestor and descendants 
(F = P ∪ (L ∩ A) ∪ (R ∩ A)). = 1 ∪ (0,1 ∩ 0,1) ∪ (1,2,4 ∩ 0,1) 

= 1 ∪ (0,1) ∪ (1) 
= 1 ∪ 0

0,1



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{2, 4}

{0, 1}

{0, 1}

{1, 2, 4}

{0, 1}



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{2, 4}

{0, 1}

{0, 1}

{1, 2, 4}

{0, 1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final 
state set, F, is equal to that of the ancestor (F = A).



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{2, 4}

{0, 1}

{0, 1}

{1, 2, 4}

{0, 1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final 
state set, F, is equal to that of the ancestor (F = A).

RULE 2. If Rule 1 does not apply and union of 
final/preliminary states of 2 descendants of current 
node (Left and Right) are equal to preliminary 
states of current node (P = L ∪ R), then F = P ∪ A.



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{2, 4}

{0, 1}

{0, 1}

{0, 1, 2, 4}

{0, 1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final 
state set, F, is equal to that of the ancestor (F = A).

RULE 2. If Rule 1 does not apply and union of 
final/preliminary states of 2 descendants of current 
node (Left and Right) are equal to preliminary 
states of current node (P = L ∪ R), then F = P ∪ A.



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{0, 1}

{0, 1}

{0, 1, 2, 4}

{0, 1}

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final 
state set, F, is equal to that of the ancestor (F = A).

RULE 2. If Rule 1 does not apply and union of 
final/preliminary states of 2 descendants of current 
node (Left and Right) are equal to preliminary 
states of current node (P = L ∪ R), then F = P ∪ A.

{0, 1, 2, 4}



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{1, 0}

{0, 1}

{0, 1, 2, 4}

{0, 1}

FINAL state sets (F)

{0, 1, 2, 4}



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{1, 0}

{0, 1}

{0, 1, 2, 4}

{1, 0}

0 > 1 0 > 1 {0, 1, 2, 4}

0 > 2 0 > 4



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{1, 0}

{0, 1}

{0, 1, 2, 4}

{1, 0}

{0, 1, 2, 4}



0                  1                      0                    1 2         4
A                 B                     C                    D        E         F

UPWARD
PASS

{1, 0}

{0, 1}

{0, 1, 2, 4}

{1, 0}

{0, 1, 2, 4}

1 > 0

1 > 0

1 > 2 1 > 4



A                 B                     C                    D        E         F
A                 A                      T                    G T         C

A = 0

C = 1

G = 2

T = 3



A                 B                     C                    D        E         F
A                 A                      T                    G T         C

{A,T}

{A,C,T}
{A,G,T}

{A,T}

{A,T}



A                 B                     C                    D        E         F
A                 A                      T                    G T         C

A > G
A > C

G > T C > T



A                 B                     C                    D        E         F
A                 A                      T                    G T         C

T > A

T > A

T > G T > C



A                 B                     C                    D        E         F
A                 A                      T                    G T         C

A > T
A > T

T > G T > C

11 EQUALLY parsimonious 
optimizations



Farris, J.S. 1970. Methods for computing Wagner trees. 

Systematic Zoology 19: 83-92.

Fitch, W.M. 1971. Toward defining the course of evolution : minimal
change for a specific tree topology. 

Systematic Zoology 20: 406-416.

Wagner optimization



FITCH PARSIMONY

WAGNER PARSIMONY 

0
2

1

0 <--> 1 <--> 2



A                  B                    C             D          E              F
0                   1                    0             1 2              4

DOWNWARD
PASS

RULE 1: if terminals share character state this will 
be marked also for their ancestor (intersection, Ç)

[2,4]
2,3,4

RULE 2: if terminals do not share ch. states 
(intersection, Ç = Æ) assign smallest 
closed interval between states of 
terminals for their ancestor, i.e. 

[a, b] = {x|a<x<b}



FITCH PARSIMONY

WAGNER PARSIMONY 

0
2

1

0 <--> 1 <--> 2

A = {0,1,2,3}  
B = {5,6}  

A Ç B= Æ
A È B= {0,1,2,3,5,6}

A = {0,1,2,3}  
B = {5,6}  

A Ç B= Æ
A È B= {3,4,5}[3,5] = {x|3<x<5}



WAGNER PARSIMONY 0 <--> 1 <--> 2

0        1         2        3        4       5      6

A

A = {0,1,2,3}  
B = {5,6}  

A Ç B= Æ
A È B= {3,4,5} = {x|3<x<5}

B

SMALLEST closed interval between A & B



A                  B                    C             D          E              F
0                   1                    0             1 2              4

DOWNWARD
PASS

[2,4]
2,3,4

[1,2]
RULE 1: if terminals share character state this will 

be marked also for their ancestor (intersection, Ç)
RULE 2: if terminals do not share ch. states 

(intersection, Ç = Æ) assign smallest 
closed interval between states of 
terminals for their ancestor, i.e. 

[a, b] = {x|a<x<b}



A                  B                    C             D          E              F
0                   1                    0             1 2              4

DOWNWARD
PASS

[2,4]
2,3,4

[1,2]
[0,1]

RULE 1: if terminals share character state this will 
be marked also for their ancestor (intersection, Ç)

RULE 2: if terminals do not share ch. states 
(intersection, Ç = Æ) assign smallest 
closed interval between states of 
terminals for their ancestor, i.e. 

[a, b] = {x|a<x<b}



A                  B                    C             D          E              F
0                   1                    0             1 2              4

DOWNWARD
PASS

[2,4]

[1,2]
[0,1]

[1]

RULE 1: if terminals share character state this will 
be marked also for their ancestor (intersection, Ç)



A                  B                    C             D          E              F
0                   1                    0             1 2              4

DOWNWARD
PASS

[2,4]

[1,2]
[0,1]

[1]

[0,1]

L = 1 + 1 + 1 + 2  = 5

2,3,4
PRELIMINARY set of 
character states (P)

RULE 2: if terminals do not share ch. states 
(intersection, Ç = Æ) assign smallest 
closed interval between states of 
terminals for their ancestor, i.e. 

[a, b] = {x|a<x<b}



A                  B                    C             D          E              F
0                   1                    0             1 2              4

DOWNWARD
PASS

{2,4}

{1,2,4}
{0,1}

{1}

{0,1}

Fitch parsimony

L = 1 + 1 + 1 +1 = 4



- PRELIMINARY (P) state set for root and terminals is their final set  
(P = F)

“ upward pass” rules (Goloboff 1993)

RULE 1. If A Ç P = A, F = A. 

RULE 2. If rule 1 does not apply, and (L ∪ R) Ç A ≠ Æ, define X as 
X = (L ∪ R ∪ P) Ç A. If X Ç P ≠ Æ, F = X. If X Ç P = Æ, F equals 
the LARGEST closed interval between X and state in P closest to X.  

A, character state of 
immediate ancestor

RULE 3. If rules 1 & 2 do not apply, F equals the LARGEST closed interval 
between the state in P closest to A and the state in (L ∪ R) closest 
to A.



Wheeler 2012





[0,1]

0                   1                    0           1 2          4
A                  B                    C           D                 E          F

[1]

[0,1]

[0,1]    

[1]    

[2]    

FINAL character state sets (F)



0                   1                    0           1 2          4
A                  B                    C           D                 E          F

1

1

1

1

2



0                   1                    0           1 2          4
A                  B                    C           D                 E          F

1

1

1

1

2
1 change

1 evolutionary
change L = 1 + 1 +  1 + 2 = 5

2 changes

1 change



[0,1]

A                  B                    C           D                 E          F

[1]

[0,1]

[0,1]    

[1]    

[2]    

0                   1                    0           1 2          4



0                   1                    0           1 2          4
A                  B                    C           D                 E          F

1

2
1 change

1 evolutionary
change

L = 1 + 1 +  1 + 2 = 5

2 changes

1 change
0

0

0



Swofford, D. L. & Maddison, W. P. 1987. Reconstructing 
ancestral character states under Wagner parsimony. 
Mathematical Biosciences  87: 199-229.

programs to find ALL equally parsimonious character 
state reconstructions

…frequently … we are interested not only in the branching pattern but
also in the evolutionary hypothesis: a phylogeny coupled with the
reconstructed states of the characters in the hypothetical ancestors…

…when multiple, equally parsimonious character-state reconstructions
exist, we must be careful in interpreting any ONE solution…

MacClade, Mesquite

OPTIMIZATION
Goloboff, P. 1993. Character optimization and 
calculation of tree lengths. Cladistics 9: 433-436.



possible character state hypotheses for internal 
nodes (HTU)

HTU, Hypothetical Taxonomic Unit

MPR, Most Parsimonious Reconstruction set

practical consequences of different reconstructions?

OPTIMIZATION



ACCTRAN optimization

favors reversals, changes are assumed to have taken 
place as early as possible

ACCelarated TRANsformation



A                  B                    C                    D       E          F
1                    0                    0                   0 1          1

1 > 0

0 > 1



DELTRAN optimization
DELayed TRANsformation

favors parallelism, changes are assumed to have taken 
place as late as possible



A                  B                    C                    D       E          F
1                   0                     0                    0 1         1

1 > 0

1 > 0

EQUALLY parsimonious
optimizations might posit changes
on a tree that are VERY FAR from
each other IN TIME



Angiosperms

Magnolids

Monocots

Asterids

Eudicots
(Tricolpates)

Core Eudicots

Rosids

Eurosids I

Eurosids II

Bremer, K. ym. 2003. Introductionto phylogeny and systematics of flowering plants. 

Acta Univ. Upsal. 33: 2.

> 113 Ma BP

Crepet, W.L. ym. 2004. Fossil evidence and 
phylogeny: the age of major angiosperm 
clades based on mesofossil and macrofossil 
evidence from Cretaceous deposits. American 
Journal of Botany 91: 1666-1682.

~90 Ma BP



Wagner optimization

Farris, J.S. 1970. Methods for computing Wagner trees. 
Systematic Zoology 19: 83-92.

Fitch, W.M. 1971. Toward defining the course of evolution : 
minimal change for a specific tree topology. 
Systematic Zoology 20: 406-416.

Fitch parsimony
Wagner       ”
Dollo ”
Camin-Sokal ”
Sankoff ”



3.xi.

1. character optimization

2. introduction to direct optimization

3. summary



alignment direct optimizition

DNA-sequences
- empirical observations of the nucleotide order 

of the sequence under study

1) sequences under comparison are aligned   
based on guide-tree (hypotheses about   
homology at the level of nucleotides)

2) phylogenetic analysis (kind of test of  
individual homology hypotheses)

hypothesis of phylogeny

alignment & phylogenetic analyses 
performed simultaneously



ACTTCCGAATTTGGCT

ACTCGATTGCCT



ACTTCCGAATTTGG-CT
|||  |||  |||  ||
ACT--CGA--TTG-CCT

ACTTCCGAATTTGGCT
|||* *||| |*||
ACTC---GATT-GCCT

ACTTCCGAATTTGGCT
||| | || || |*||
ACT-C-GA-TT-GCCT



alignment is difficult & problematic >

part of the information LOST

length differences of sequences DO INCLUDE historical
information

”unalignable” sequences are ignored from analyses

Gatesy & al. 1994. Mol. Phyl. 
Evol. 2: 152-157

Problems & challenges in alignment

large investments in GETTING this material in the first
place



differential ”weighting” of different types of 
transformations

weighting is always ad hoc, but it can dramatically
affect results

Problems & challenges in alignment

indel & substitutions costs defined



differential ”weighting” of different types of 
transformations

differential weighting

different alignment

different hypotheses about phylogeny

Problems & challenges in alignment

weighting is always ad hoc, but it can dramatically
affect results

weighting in ”manual” alignment is NOT consistent
weighting in automatic alignment ad hoc but at least

explicit

indel & substitutions costs defined



TTTACTTT
TTTG-TTT

TTTACTTT
TTT-GTTT

TTT-ACTTT
TTTG--TTT

Gap = 2
Tv =    2
Ts =    1

Cost = 3

Cost = 4 Cost = 3

Cost = 4

Gap = 2
Tv =    1 
Ts =    2

Gap = 1
Tv =    2
Ts =    2

Cost = 3

Cost = 6 Cost = 6

Gap =   1
Tv/Ts = 1 Cost = 2

original example by G. Giribet (Harvard Univ.)



purines: adenine (A) guanine (G)

pyrimidins: cytocine (C) thymine (T)

substitution types:

A

C

G

T

transitions:      4 types
transversions:  8 types



alignment direct optimizition

DNA-sequences
- empirical observations of the nucleotide order 

of the sequence under study

1) sequences under comparison are aligned   
based on GUIDE-TREE (hypotheses   
about   homology at the level of  nt´s)

2) phylogenetic analysis (kind of test of  
individual homology hypotheses)

hypothesis of phylogeny

alignment & phylogenetic analyses 
performed simultaneously



alignment direct optimization

DNA-sequences
- empirical observations of the nucleotide order 

of the sequence under study

hypothesis of phylogeny

alignment & phylogenetic analyses 
performed simultaneously

different transformations are treated 
exactly in the same way ALL THE TIME

1) sequences under comparison are aligned   
based on guide-tree (hypotheses about   
homology at the level of nucleotides)

2) phylogenetic analysis (kind of test of  
individual homology hypotheses)



A                  B                    C                    D        E         F
C                   C                    G T T         A

? ?

?

?



ACGT ACGC AAAT TAAG

ACGY

AMRT

WAAK

ACGT

ACGC

RULE 2: if terminals have different character states 
(intersection, Ç = Æ) mark their union (È) for their 
common ancestor

RULE 1: if both terminals share the charater
state this is also marked for their common 
ancestor (intersection, Ç)

Direct optimization (DO)
down pass

GA R
GT K
GC S
GAT D
GAC V
GTC B
ATC H
AT W
AC M
CT Y
ACGT N
ACGT- X

ACGY

AAAT



ACGT ACGC AAAT TAAG

ACGY

AMRT

WAAK

AMRT

TAAG

Direct optimization (DO)

GA R
GT K
GC S
GAT D
GAC V
GTC B
ATC H
AT W
AC M
CT Y
ACGT N
ACGT- X



ACGT ACGC AAAT TAAG

ACGY

AMRT

WAAK

AMRT

WAAK

ACGY

Direct optimization (DO)

GA R
GT K
GC S
GAT D
GAC V
GTC B
ATC H
AT W
AC M
CT Y
ACGT N
ACGT- X

length of the tree 5 
changes



- root final state set = root preliminary state set (F = P)

RULE 2. If Rule 1 does not apply and the union of final/preliminary states of 
the 2 descendants of the current node (Left and Right) are equal to 
preliminary states of the current node (P = L ∪ R), then F = P ∪ A.

“ upward pass” rules (Fitch 1971, Wheeler 2012)

RULE 1. If the overlap of the preliminary state, P, of the node and
its ancestor, A, is equal to A, (if A ∩ P = A) then the final state set, F, 
is equal to that of the ancestor (F = A).

RULE 3. If Rule 1 and 2 do not apply the final state set is the preliminary state 
set, supplemented by state set that is common to the ancestor and 
descendants (F = P ∪ (L ∩ A) ∪ (R ∩ A)).

ATTENTION!
Each nucleotide treated INDEPENDENTLY

position = character
nucleotide = ch. state



ACGT ACGC AAAT TAAG

ACGY

AMRT

WAAK

G > T

A > C
A > G

T > C

Direct optimization (DO)

GA R
GT K
GC S
GAT D
GAC V
GTC B
ATC H
AT W
AC M
CT Y
ACGT N
ACGT- X

length of the tree 5 
changes

AAAT

AAAG

ACGT

A > T



ACGT ACGC AAAT TAAG

ACGY

AMRT

WAAK

A > T

T > G

T > C

length of the tree 5 
changes

Direct optimization (DO)

GA R
GT K
GC S
GAT D
GAC V
GTC B
ATC H
AT W
AC M
CT Y
ACGT N
ACGT- X

AAAT

AAAT

ACGT

A > C
A > G



ACGT ACGC AAAT TAAG

ACGY

AMRT

WAAK

T > A

T > G

T > C

length of the tree 5 
changes

Direct optimization (DO)

GA R
GT K
GC S
GAT D
GAC V
GTC B
ATC H
AT W
AC M
CT Y
ACGT N
ACGT- X

AAAT

TAAT

ACGT

A > C
A > G



ACGT ACGC AAAT TAAG

ACGY

AMRT

WAAK

T > A
G > T

T > C

length of the tree 5 
changes

Direct optimization (DO)

GA R
GT K
GC S
GAT D
GAC V
GTC B
ATC H
AT W
AC M
CT Y
ACGT N
ACGT- X

AAAT

TAAG

ACGT

A > C
A > G



optimization has to be used in order to find shortest tree & 
to find character states for internal nodes

SUMMARY

MULTIPLE equally parsimonious reconstructions are possible

alignments are TOPOLOGY specific

pay attention to how different reconstructions affect 
interpretation of the results obtained

affects WHERE changes are posited


