$3 . x i$.

1. home exercise
2. character optimization
3. introduction to direct optimization
4. summary

HOME EXERCISE

characters
000000000111
123456789012
terminals
$\begin{array}{ll}\text { A } & 010111011111 \\ \text { B } & 111000101010 \\ \text { C } & 101100100001 \\ \text { D } & 100011001000 \\ \text { E } & 100001100111\end{array}$

characters

	0	0	0	0	0	0	0	0	0	1	1	1	Σ
trees	1	2	3	4	5	6	7	8	9	0	1	2	
1	1	1	2	2	2	2	2	1	2	2	1	2	20
2	1	1	2	2	2	2	2	1	2	2	2	2	21
3	1	1	2	2	2	2	2	1	1	2	2	2	20
4	1	2	2	1	2	2	2	1	2	2	2	2	21
5	1	2	2	1	2	2	2	1	2	2	2	1	20
6	1	2	2	1	2	2	2	1	2	2	2	2	21
7	1	2	2	2	2	2	2	1	2	1	1	2	20
8	1	2	1	2	2	1	2	1	2	1	2	2	19
9	1	2	2	2	2	2	2	1	2	1	2	1	20
10	1	2	2	2	2	2	2	1	1	2	2	1	20
11	1	2	2	2	2	2	2	1	2	2	1	2	21
12	1	2	1	2	2	1	2	1	2	2	2	2	20
13	1	2	2	2	1	2	1	1	1	2	2	2	19
14	1	2	2	2	1	2	1	1	2	2	2	2	20
15	1	2	1	2	1	1	1	1	2	2	2	2	18

OPTIMIZATION

> HTU, Hypothetical Taxonomic Unit
hypotheses of character states for internal nodes (HTU) of tree

OPTIMIZATION

Farris, J.S. 1970. Methods for computing Wagner trees.
Systematic Zoology19: 83-92.

Fitch, W.M. 1971. Toward defining the course of evolution : minimal change for a specific tree topology.

Systematic Zoology 20: 406-416.

1 character with 4 ch. states coded with $0,1,2 \& 4$

RULE 2: if terminals do not share ch. state (intersection, $\cap=\varnothing$) their (union, \cup) is marked for their ancestor
A

RULE 1: if terminals share character state this will be marked also for their ancestor (intersection, \cap)

RULE 1: if terminals share character state this will be marked also for their ancestor (intersection, \cap)

ATTENTION! LENGTH of diagram, number of ch. state changes, calculated already at this stage. Unions (\cup) add always one ch. state change.

" upward pass" rules (Fitch 1971, Wheeler 2012)

- root final state set $=$ root preliminary state set $(F=P)$

RULE 1. If the intersection of the preliminary state, P, of the node and its ancestor, A, is equal to A, (if $A \cap P=A$) then the final state set, F, is equal to that of the ancestor $(F=A)$.

RULE 2. If Rule 1 does not apply and the union of final/preliminary states of the 2 descendants of the current node (Left and Right) are equal to preliminary states of the current node ($P=L \cup R$), then $F=P \cup A$.

RULE 3. If Rule 1 and 2 do not apply the final state set is the preliminary state set, supplemented by state set that is common to the ancestor and descendants $(F=P \cup(L \cap A) \cup(R \cap A))$.

RULE 1. If the overlap of the preliminary state, P, of the node and its ancestor, A, is equal to A, (if $A \cap P=A$) then the final state set, F, is equal to that of the ancestor $(F=A)$.

A

RULE 2. If Rule 1 does not apply and the union of final/preliminary states of the 2 descendants of the current node (Left and Right) are equal to the preliminary states of the current node ($P=L \cup R$), then $F=P \cap A$.
$\{1,2,4\}$

RULE 1. If the overlap of the preliminary state, P, of the node and its ancestor, A, is equal to A, (if $A \cap P=A$) then the final state set, F, is equal to that of the ancestor $(F=A)$.

A

$\{0,1\}$
$\{2,4\}$

$$
\{1,2,4\}
$$

RULE 1 . If the overlap of the preliminary state, P, of the node and its ancestor, A, is equal to A, (if $A \cap P=A$) then the final state set, F, is equal to that of the ancestor $(F=A)$.

RULE 1 . If the overlap of the preliminary state, P, of the node and its ancestor, A, is equal to A, (if $A \cap P=A$) then the final state set, F, is equal to that of the ancestor $(F=A)$.

RULE 1 . If the overlap of the preliminary state, P, of the node and its ancestor, A, is equal to A, (if $A \cap P=A$) then the final state set, F, is equal to that of the ancestor $(F=A)$.

O
A

RULE 2. If Rule 1 does not apply and union of final/preliminary states of 2 descendants of current node (Left and Right) are equal to preliminary states of current node $(P=L \cup R)$, then $F=P \cup A$.
$\{0,1\}$

Wagner optimization

Farris, J.S. 1970. Methods for computing Wagner trees.
Systematic Zoology 19: 83-92.

Fitch, W.M. 1971. Toward defining the course of evolution : minimal change for a specific tree topology.

Systematic Zoology20: 406-416.

FITCH PARSIMONY
WAGNER PARSIMONY
o <--> 1 <--> 2

RULE 1: if terminals share character state this will be marked also for their ancestor (intersection, \cap)

DOWNWARD

RULE 2: if terminals do not share ch. states (intersection, $\cap=\varnothing$) assign smallest closed interval between states of terminals for their ancestor, i.e.

FITCH PARSIMONY

$A=\{0,1,2,3\}$
$B=\{5,6\}$
$A \cap B=\varnothing$
$A \cup B=\{0,1,2,3,5,6\}$

WAGNER PARSIMONY
$0<-->1<-->2$
$A=\{0,1,2,3\}$
$A \cap B=\varnothing$
$B=\{5,6\}$
$A \cup B=[3,5]=\{x \mid 3 \leq x \leq 5\}$

WAGNER PARSIMONY

$$
0<-->1<-->2
$$

$$
\begin{array}{ll}
A=\{0,1,2,3\} & A \cap B=\varnothing \\
B=\{5,6\} & A \cup B=\{3,4,5\}=\{x \mid 3 \leq x \leq 5\}
\end{array}
$$

SMALLEST closed interval between A \& B

RULE 1: if terminals share character state this will be marked also for their ancestor (intersection, \cap)

RULE 2: if terminals do not share ch. states (intersection, $\cap=\varnothing$) assign smallest closed interval between states of terminals for their ancestor, i.e.
$[a, b]=\{x \mid a \leq x \leq b\}$

RULE 1: if terminals share character state this will be marked also for their ancestor (intersection, \cap)

RULE 2: if terminals do not share ch. states (intersection, $\cap=\varnothing$) assign smallest closed interval between states of terminals for their ancestor, i.e.
$[a, b]=\{x \mid a \leq x \leq b\}$

" upward pass" rules (Goloboff 1993)

- PRELIMINARY (P) state set for root and terminals is their final set

$(P=F)$	
RULE 1. If $A \cap P=\mathrm{A}, F=A$.	A, character state of immediate ancestor

RULE 2. If rule 1 does not apply, and $(L \cup R) \cap A \neq \varnothing$, define X as $X=(L \cup R \cup P) \cap A$. If $X \cap P \neq \varnothing, F=X$. If $X \cap P=\varnothing, F$ equals the LARGEST closed interval between X and state in P closest to X.

RULE 3. If rules 1 \& 2 do not apply, Fequals the LARGEST closed interval between the state in P closest to A and the state in $(L U R)$ closest to A .

Algorithm 9.2: AdditiveUpPass

Data: Tree, $T=(V, E)$, with leaf taxa $L \subset V$
Data: Character set, $c \in \mathbb{N}$ for V initialized by algorithm 9.1 .
Data: Preliminary states are c^{p}, final or up-pass states are c^{f}.
Data: Vertex, v, of T, initially the root. If $v \notin L$ then v has two descendants $v_{\text {left }}$ and $v_{\text {right }}$.
Result: Require that c contain the set of all states consistent with the tree cost
leaf or root;
if $v \in L$ or $v=$ root then

$$
c_{v}^{f} \leftarrow c_{v}^{p}
$$

if $v \notin L$ then

$$
\text { if } c_{v}^{p} \cap c_{v_{\text {parent }}}^{f}=c_{v_{\text {parent }}}^{f} \text { then }
$$

$c_{v}^{f} \leftarrow c_{v_{\text {parent }}}^{f} ;$
else if $\left(c_{v_{\text {left }}}^{p} \cup c_{v_{\text {right }}}^{p}\right) \cap c_{v_{\text {parent }}}^{f} \neq \varnothing$ then
$X=\left(c_{v_{\text {left }}}^{p} \cup c_{v_{\text {rtght }}}^{p} \cup c_{v}^{p}\right) \cap c_{v_{\text {parent }}}^{f} ;$
if $X \cap c_{v}^{p} \neq \varnothing$ then
$c_{v}^{f} \leftarrow X ;$
else
Largest closed interval between X and c_{v}^{p}
$c_{v}^{f} \leftarrow l c i\left\{X, c_{v}^{p}\right\} ;$
else
Largest closed interval between $\left\{c_{v}^{p}\right.$ and $\left.c_{v_{\text {parent }}}^{f}\right\}$
and $\left\{\left(c_{v_{\text {left }}}^{p} \cup c_{v_{\text {rtght }}}^{p}\right)\right.$ and $\left.c_{v_{\text {parent }}}^{f}\right\}$
$c_{v}^{f} \leftarrow$
$l c i\left\{\left[c_{v}^{p}\right.\right.$ closest to $\left.c_{v_{p a r e n t}}^{f}\right],\left[\left(c_{v_{\text {left }}}^{p} \cup c_{v_{r t g h t}}^{p}\right)\right.$ closest to $\left.\left.c_{v_{\text {parent }}}^{f}\right]\right\}$
Recurse up the tree until all $V \notin L$ are updated
AdditiveU $p\left(T, c, v_{l e f t}\right)$;
AdditiveU $p\left(T, c, v_{\text {right }}\right)$;

WARDC. WHEELER

SYSTEMATICS A Course of Lectures

OPTIMIZATION

Goloboff, P. 1993. Character optimization and calculation of tree lengths. Cladistics 9: 433-436.
programs to find ALL equally parsimonious character state reconstructions MacClade, Mesquite

Swofford, D. L. \& Maddison, W. P. 1987. Reconstructing ancestral character states under Wagner parsimony. Mathematical Biosciences 87: 199-229.
...frequently ... we are interested not only in the branching pattern but also in the evolutionary hypothesis: a phylogeny coupled with the reconstructed states of the characters in the hypothetical ancestors...
...when multiple, equally parsimonious character-state reconstructions exist, we must be careful in interpreting any ONE solution...

OPTIMIZATION

HTU, Hypothetical Taxonomic Unit

possible character state hypotheses for internal nodes (HTU) MPR, Most Parsimonious Reconstruction set
practical consequences of different reconstructions?

ACCTRAN optimization

ACCelarated TRANsformation
favors reversals, changes are assumed to have taken place as early as possible

DELTRAN optimization

DELayed TRANsformation
favors parallelism, changes are assumed to have taken place as late as possible

Monocots

Crepet, W.L. ym. 2004. Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. American Journal of Botany 91: 1666-1682.

Wagner optimization

Farris, J.S. 1970. Methods for computing Wagner trees.
Systematic Zoology 19: 83-92. Fitch parsimony Wagner " Dollo " Camin-Sokal " Sankoff
Fitch, W.M. 1971. Toward defining the course of evolution : minimal change for a specific tree topology. Systematic Zoology 20: 406-416.

$3 . x i$.

1. character optimization

2. introduction to direct optimization
3. summary

DNA-sequences

- empirical observations of the nucleotide order of the sequence under study

alignment

1) sequences under comparison are aligned based on guide-tree (hypotheses about homology at the level of nucleotides)
2) phylogenetic analysis (kind of test of individual homology hypotheses)

direct optimizition

alignment \& phylogenetic analyses performed simultaneously

hypothesis of phylogeny

ACTTCCGAATTTGGCT

ACTCGATTGCCT

ACTTCCGAATTTGG-CT $||||||||||\mid$

ACTTCCGAATTTGGCT

$$
\begin{array}{l|l|l|}
|\mid * & *||\mid & *|\mid \\
\text { ACTC--GATT-GCCT }
\end{array}
$$

ACTTCCGAATTTGGCT

 ACT-C-GA-TT-GCCT

Problems \& challenges in alignment

AACGGTTTAAGGTACGGAGAATTAGGCAACCCTAGGATGCGATGCGCAGAGTTAGGTACGGAGAATTAGGCAACCCGGTAGGAT

alignment is difficult \& problematic >
"unalignable" sequences are ignored from analyses
part of the information LOST
Gatesy \& al. 1994. Mol. Phyl. Evol. 2: 152-157
large investments in GETTING this material in the first place
length differences of sequences DO INCLUDE historical information

Problems \& challenges in alignment

AACGGTTTAAGGTACGGAGAATTAGGCAACCCTAGGATGCGATGCGCAGAGTTAGGTACGGAGAATTAGGCAACCCGGTAGGAT

differential "weighting" of different types of transformations indel \& substitutions costs defined
weighting is always ad hoc, but it can dramatically affect results

Problems \& challenges in alignment

differential "weighting" of different types of transformations indel \& substitutions costs defined
weighting is always ad hoc, but it can dramatically affect results

weighting in "manual" alignment is NOT consistent weighting in automatic alignment ad hoc but at least explicit

purines: adenine (A)
guanine (G)
pyrimidins: cytocine (C) thymine (T)

substitution types:

transitions: 4 types
transversions: 8 types

DNA-sequences

- empirical observations of the nucleotide order of the sequence under study

alignment

1) sequences under comparison are aligned based on GUIDE-TREE (hypotheses about homology at the level of nt's)
2) phylogenetic analysis (kind of test of individual homology hypotheses)

hypothesis of phylogeny

DNA-sequences

- empirical observations of the nucleotide order of the sequence under study
alignment

1) sequences under comparison are aligned based on guide-tree (hypotheses about homology at the level of nucleotides)
2) phylogenetic analysis (kind of test of individual homology hypotheses)

direct optimization

alignment \& phylogenetic analyses performed simultaneously
different transformations are treated exactly in the same way ALL THE TIME

hypothesis of phylogeny

C
 C
 G

 A
 A
 B
 C
 D E F

Direct optimization (DO)

Direct optimization (DO)

AACGGTTTAAGGTACGGAGAATTAGGCAACCCTAGGATGCGATGCGCAGAGTTAGGTACGGAGAATTAGGCAACCCGGTAGGAT

 ААСССТТТААССТАСССАСААТТАСССААСССТАССАТСССАТССССАСАСТТАССТАСССАСААТТАСССААСССТАССАТСО

TAAG	
GA	R
GT	K
GC	S
GAT	D
GAC	V
GTC	B
ATC	H
AT	W
AC	M
CT	Y
ACGT	N
ACGT-	X

Direct optimization (DO)

AACGGTTTAAGGTACGGAGAATTAGGCAACCCTAGGATGCGATGCGCAGAGTTAGGTACGGAGAATTAGGCAACCCGGTAGGAT

 ААСССТТТААССТАСССАСААТТАСССААСССТАССАТСССАТССССАСАСТТАССТАСССАСААТТАСССААСССТАССАТСО

TAAG	
GA	R
GT	K
GC	S
GAT	D
GAC	V
GTC	B
ATC	H
AT	W
AC	M
CT	Y
ACGT	N
ACGT-	X

" upward pass" rules (Fitch 1971, Wheeler 2012)

- root final state set $=$ root preliminary state set $(F=P)$

RULE 1. If the overlap of the preliminary state, P, of the node and its ancestor, A, is equal to A, (if $A \cap P=A$) then the final state set, F, is equal to that of the ancestor $(F=A)$.

RULE 2. If Rule 1 does not apply and the union of final/preliminary states of the 2 descendants of the current node (Left and Right) are equal to preliminary states of the current node ($P=\angle \cup R$), then $F=P \cup A$.

RULE 3. If Rule 1 and 2 do not apply the final state set is the preliminary state set, supplemented by state set that is common to the ancestor and descendants $(F=P \cup(L \cap A) \cup(R \cap A))$.
position = character

ATTENTION! nucleotide = ch. state Each nucleotide treated INDEPENDENTLY

Direct optimization (DO)

AACGGITTAAGGTACGGAGAATTAGGCAACCCTAGGATGCGATGCGCAGAGTTAGGTACGGAGAATTAGGCAACCCGGTAGGAT

Direct optimization (DO)

AACGGITTAAGGTACGGAGAATTAGGCAACCCTAGGATGCGATGCGCAGAGTTAGGTACGGAGAATTAGGCAACCCGGTAGGAT

ААСССТТТААССТАСССАСААТТАСССААСССТАССАТСССАТССССАСАСТТАССТАСССАСААТТАСССААСССТАССАТСО

Direct optimization (DO)

AACGGTTTAAGGTACGGAGAATTAGGCAACCCTAGGATGCGATGCGCAGAGTTAGGTACGGAGAATTAGGCAACCCGGTAGGAT

ААСССТТТААССТАСССАСААТТАСССААСССТАССАТСССАТССССАСАСТТАССТАСССАСААТТАСССААСССТАССАТСО

Direct optimization (DO)

AACGGTTTAAGGTACGGAGAATTAGGCAACCCTAGGATGCGATGCGCAGAGTTAGGTACGGAGAATTAGGCAACCCGGTAGGAT

ААСССТТТААССТАСССАСААТТАСССААСССТАССАТСССАТССССАСАСТТАССТАСССАСААТТАСССААСССТАССАТСО

TAAG	
GA	R
GT	K
GC	S
GAT	D
GAC	V
GTC	B
ATC	H
AT	W
AC	M
CT	Y
ACGT	N
ACGT-	X

SUMMARY

optimization has to be used in order to find shortest tree \& to find character states for internal nodes

MULTIPLE equally parsimonious reconstructions are possible affects WHERE changes are posited
pay attention to how different reconstructions affect interpretation of the results obtained
alignments are TOPOLOGY specific

