ExerciseCosineTwo: Introduction

The **linear** model in **ExerciseCosineOne** is

$$g(t) = M + B\cos t + C\sin t,$$

where $\bar{\beta} = [M, B, C]$ are the free parameters having errors $\sigma_{\bar{\beta}} = [\sigma_M, \sigma_B, \sigma_C]$. The argument units are [t] = radians. In that **ExerciseCosineOne**, you are asked to derive the following **analytical equations (i.e. exact solutions)**.

(a) The peak to peak amplitude A of this model is the difference between the maximum value g_{max} of g(t) and the minimum value g_{\min} of g(t). Solve $A \pm \sigma_A$ from the given known $B \pm \sigma_B$ and $C \pm \sigma_C$ values.

(b) The primary minimum t_{\min} of this model fulfils $g(t_{\min}) = g_{\min}$. Solve $t_{\min} \pm \sigma_{t_{\min}}$ from the given known $B \pm \sigma_B$ and $C \pm \sigma_C$ values.

Your A, σ_A , t_{\min} and $\sigma_{t_{\min}}$ solutions can contain only parameters B, σ_B , C and σ_C .

ExerciseCosineTwo: Problem

Use free parameter values M = M=1, B = B=1, C = C=1, $\sigma_B = eB=0.1$ and $\sigma_c = eC=0.1$. Assume Gaussian B and C distributions, where the standard deviations are σ_B and σ_c .

Edit your **python** program **ExerciseCosineTwo.py**, which solves and prints **numer**ical A, σ_A , t_{\min} and $\sigma_{t_{\min}}$ estimates.

Send your ExerciseCosineTwo.py program to the assistant

Tip 1. In your model simulations, use 10000 time point values $t_i = T$ between 0 and 2π . Tip 2. Your program should give about the same results as those printed below

```
('Results from ', 1000, 'simulated data samples are')
('A=', 2.8311890906257715)
('A error =', 0.19988739465989339)
('tmin=', 3.9286225602115157)
('tmin error=', 0.070263545677305833)
```