ExerciseCosineOne: Introduction

If the linear model $g(t)$ has the free parameters $\bar{\beta}=[A, B, C, \ldots]$, the error for $g(t)$ is

$$
\begin{equation*}
\sigma_{g(t)}^{2}=\left[\frac{\partial g(t)}{\partial A}\right]^{2} \sigma_{A}^{2}+\left[\frac{\partial g(t)}{\partial B}\right]^{2} \sigma_{B}^{2}+\left[\frac{\partial g(t)}{\partial C}\right]^{2} \sigma_{C}^{2}+\ldots \tag{1}
\end{equation*}
$$

For example, the error of

$$
g(t)=A+B t
$$

is obtained from

$$
\begin{aligned}
\frac{\partial g(t)}{\partial A}=1, & \frac{\partial g(t)}{\partial B}=t \\
\sigma_{g(t)}= & \sqrt{\left(\frac{\partial g(t)}{\partial A}\right)^{2} \sigma_{A}^{2}+\left(\frac{\partial g(t)}{\partial B}\right)^{2} t^{2} \sigma_{B}^{2}} \\
= & \sqrt{1^{2} \sigma_{A}^{2}+t^{2} \sigma_{B}^{2}} \\
= & \sqrt{\sigma_{A}^{2}+t^{2} \sigma_{B}^{2}}
\end{aligned}
$$

Note that this $\sigma_{g(t)}$ error depends on the argument t.

ExerciseCosineOne: Problem

The model is

$$
g(t)=M+B \cos t+C \sin t
$$

where $\bar{\beta}=[M, B, C]$ are the free parameters having errors $\sigma_{\bar{\beta}}=\left[\sigma_{M}, \sigma_{B}, \sigma_{C}\right]$. The argument units are $[t]=$ radians.
(a) The peak to peak amplitude A of this model is the difference between the maximum value $g_{\max }$ of $g(t)$ and the minimum value $g_{\min }$ of $g(t)$.
Solve $A \pm \sigma_{A}$ from the given known $B \pm \sigma_{B}$ and $C \pm \sigma_{C}$ values.
(b) The primary minimum $t_{\min }$ of this model fulfils $g\left(t_{\min }\right)=g_{\text {min }}$.

Solve $t_{\min } \pm \sigma_{t_{\min }}$ from the given known $B \pm \sigma_{B}$ and $C \pm \sigma_{C}$ values.
Your $A, \sigma_{A}, t_{\min }$ and $\sigma_{t_{\min }}$ solutions can contain only parameters B, σ_{B}, C and σ_{C}.
Send your full solution to the assistant via email. Your solution can be a scanned handwritten pdf-file, or even better, a pdf-file compiled from a latex-file.

