

Binary stars in general and

Two case studies

Lauri Jetsu

UNIVERSITY OF HELSINKI

Department of Physics

Jetsu

Structure of lecture

All links to web-sites marked with magenta colour

- General part from text book version
 - Binary Stars and Stellar Masses (p241-p246)
 - Evolution of Close Binary stars (p273, Fig. 12.10)
 - Main point: Binary star observations give direct estimates for stellar masses.
- Two case studies: Case I & II (Own research)
 - Ancient Egyptians recorded period of eclipsing binary Algol 3000 years before modern astronomers.
 - Currently accepted **three members** of Algol system are Algol A, Algol B and Algol C. I claim that there are many more members in this system.
 - Other **extra** material outside text book = extra
- Ambitious goal: 70 p/90 min \rightarrow Ideal pace \rightarrow 1 min

Single stars and multiple systems

Optical binary stars

- Two stars close in sky, but far is space: single stars
- Two stars orbit each other: **binary stars = binaries**

Single stars

- Like the Sun, less than 50% of all stars

Multiple systems

- Over 50% of all stars in hierachial structures:
- Two or more members
- Binary: two stars
- Triple system: binary and single star
- Quadruple system: two binaries
- Case study II: Undetected members? [7, 8]

Binary classification

- Binary classification: based on discovery method Not on physical properties of binaries
- 1. Visual binaries

Both members seen \equiv separation \geq 0.1 arc sec Relative position changes can also be seen

2. Astrometric binary stars

One member can only be seen Proper motion reveals invisible member

Spectroscopic binary stars
 Spectral line Doppler shifts follow P_{orb}
 Lines of both members seen (SB2)
 Lines of only one member seen (SB1)

Binary classification **5 min**

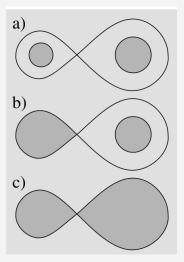
- Photometric binary stars or Eclipsing variables
 Members pass in front of each other during P_{orb}
 Total or partial eclipses change apparent magnitude
 - Alternative classification: mutual separation
- 1. Distant binaries

 $\textbf{Separation} \geq 1 \text{ AU}$

 $P_{\rm orb} =$ tens to thousands years

2. Close binaries

 $1 \mathrm{AU} > \text{separation} > \text{stellar radius}$

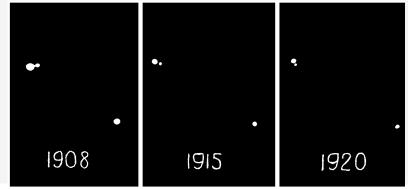

years $> P_{\rm orb} >$ hours

3. Contact binaries

No separation: members touch each other

Separation versus Roche lobe

- Roche lobe concept: **Region around** binary member where orbiting material is gravitationally bound to this member \rightarrow Material outside Roche lobe can escape \rightarrow Member may, or may not, fill its Roche lobe
- a) Detached binary
- b) Semi-detached binary
- c) Contact binary



Jetsu

Visual binaries

Fig. 10.1 Visual binary Krüger 60:

- Two red dwarfs orbit each other in 44.6 years
- Red dwarf is a faint K or M type main-sequence star
- Distance 13.18 \pm 0.08 ly = 4.04 \pm 0.02 pc

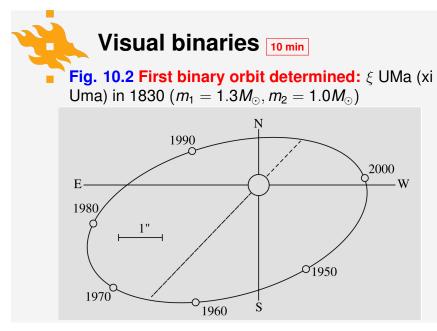
UNIVERSITY OF HELSINKI

Department of Physics

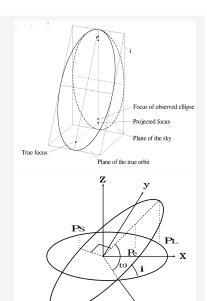
Jetsu

November 6, 2022

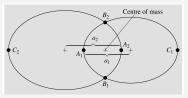
Visual binaries


- Real motion

Both members elliptic orbit around common centre of mass of system (barycentre)


- Relative motion

One member relative elliptic orbit around other member


- \rightarrow Assume brighter **primary stationary**
- \rightarrow Measure fainter secondary separation and direction with respect to primary
- \rightarrow Long-term observations
- \rightarrow Relative orbit of secondary

Visual binaries **Observed ellipse** is a **projection** \rightarrow Primary should be at relative orbit focal point → **Deviation** gives true orbit orientation - extra Solutions for i = inclination $\omega =$ orientation are not trivial (Asada et al. 2004 Fig. 1, Eqs. 38 and 41)

- Simultaneous positions A₁ and A₂, B₁ and ...
- **Real orbits** around **centre of mass** give true semimajor axes *a*₁ and *a*₂
- Centre of mass relation

$$\frac{a_1}{a_2}=\frac{m_1}{m_2}$$

 $m_1 =$ **primary** mass, $m_2 =$ **secondary** mass

UNIVERSITY OF HELSINKI

Department of Physics

Visual binaries 15 min

- Observations: Orbital period P
- Observations: Real orbit semimajor axes a1 and a2
- Relative orbit semimajor axis (primary stationary)

$$a = a_1 + a_2$$

If inclination and distance known

- \rightarrow a known
- → Kepler's third law gives total mass relation

$$m_{\rm tot}=m_1+m_2=\frac{a^3}{P^2},$$

where [a] = AU, [P] = y, $[m_{tot}] = [m_1] = [m_2] = M_{\odot}$

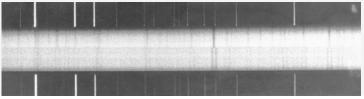
Visual binaries

 Masses of both members from pair of equations centre mass relation and

total mass relation

$$\left\{ egin{array}{ll} m_1 = & (a_2/a_1)m_2 \ m_1 = & m_{
m tot}-m_2, \end{array}
ight.$$

where $m_{\rm tot} = {a^3}/{P^2}$ is total mass of system


Astrometric binary stars

- Only alternating proper motion of brighter member seen, fainter invisible
- Fig. 10.4 Sirius first astrometric binary discovered in 1830's: Alternating proper motion

- Sirius A (A0 V) brightest star in sky
- Sirius B (white dwarf = stellar core remnant)
- Highly eccentric orbit ($e = 0.59, P_{orb} = 50.^{y}1$)
- First exoplanets not detected from proper motion of nearby stars, but from radial velocity observations (Mayor & Queloz, 1995, Nature, 51 Pegasi b)

- Appear as single: members can not be separated
- Spectra show regular variation
- First discovered spectroscopic binary ζ UMa (zeta UMa) discovered in 1880's
- Doppler shifts → Lines split regularly → Largest split when other approaching and other receding
 Fig. 10.5 Spectrum of κ Arietis.
 Upper: single lines, Lower: double lines

Spectroscopic binaries 20 min

- **SB2** = **double-lined** spectroscopic binary
- spectral lines of both members observed
- **SB1** = **single-lined** spectroscopic binary
- spectral lines of only one member observed
- Observed velocity

$$\boldsymbol{v} = \boldsymbol{v}_0 \sin \boldsymbol{i}, \tag{1}$$

$v_0 =$ True velocity

i = inclination = Angle between line of sight and normal of orbital plane

 For example, no radial velocity changes are observed in spectroscopic binaries having *i* = 0°.

Combining $m_1a_1 = m_2a_2$ and $a = a_1 + a_2$ gives primary semimajor axis

$$\mathbf{a_1} = \frac{\mathbf{a}m_2}{m_1 + m_2} \tag{2}$$

- Assuming both orbits circular with radii a_1 and a_2
- True orbital velocity of primary

$$v_{0,1}=\frac{2\pi a_1}{P}$$

where *P* is orbital period → Observed radial velocity of primary $v_1 = \frac{2\pi a_1 \sin i}{P} = \frac{2\pi a}{P} \frac{m_2 \sin i}{m_1 + m_2}$ (3)

- This relation gives primary semimator axis a₁, except that inclination i remains unknown

VERSITY OF HELSINKI

Department of Physics

Jetsu

From this relation, one obtains solution for semimajor axis of relative orbit

$$\mathbf{a} = \frac{\mathbf{v}_1 \mathbf{P}}{2\pi} \; \frac{\mathbf{m}_1 + \mathbf{m}_2}{\mathbf{m}_2 \; \sin i}$$

- Inserting this a into Kepler's third law gives

$$P^{2} = \frac{4\pi^{2}}{G(m_{1} + m_{2})} \mathbf{a}^{3} = \frac{4\pi^{2}}{G(m_{1} + m_{2})} \left[\frac{v_{1}P}{2\pi} \frac{m_{1} + m_{2}}{m_{2} \sin i} \right]^{3}$$

- Re-arranging this, gives mass function equation

$$\frac{m_2^3 \sin^3 i}{(m_1 + m_2)^2} = \frac{v_1^3 P}{2\pi G} \tag{4}$$

determined only by observed v_1 and P

UNIVERSITY OF HELSINKI

Case 1. If only primary lines observed, radial velocities give v₁ and P, and mass function value

$$\frac{m_2^3 \sin^3 i}{(m_1 + m_2)^2} = \frac{v_1^3 P}{2\pi G}$$

 \rightarrow Masses m_1 , m_2 and $m_{tot} = m_1 + m_2$ unknown Case 1: One way to proceed

- **Primary mass estimate** *m*₁ for example from **its spectral class**

 \rightarrow Secondary mass m_2 can be solved for different inclinations *i*

 \rightarrow Numerical value of m_2 usually solved iteratively

- Solution for inclination $i = 90^{\circ}$, gives lower limit for secondary mass m_2

Spectroscopic binaries 25 min

- Case 2. If lines of both members observed, radial velocity measuments give v_1 , v_2 and P.
 - One can combine

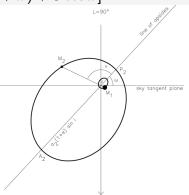
 $v_1/v_2 = a_1/a_2$ from circular orbit relation $a_1/a_2 = m_2/m_1$ from centre of mass relation

- This gives $\mathbf{m}_1 = \frac{m_2 v_2}{v_4}$
- Substitution of m1 into mass function of Eq. 4 gives

$$m_2 \sin^3 i = \left[\frac{v_2}{v_1} + 1\right]^2 \frac{v_1^3 P}{2\pi G}$$

- Observed v_1 , v_2 and P give value of $m_2 \sin^3 i$
- Only inclination *i* remains unknown
- Similar substitution of m₂ gives value of m₁ sin³ i

Spectroscopic binaries extra


- Former equations assumed circular orbit e = 0
- All binary orbits not circular, eccentricity e > 0
- Observed radial velocity [12](Karami&Mohebi, 2007)

$$\mathbf{v}_r(t) = \mathbf{v}_{\odot} + \mathbf{K}[\cos(\nu + \omega) + \mathbf{e}\cos\omega]$$

- Amplitude (Constant!)

$$K = [(2\pi) / P] [(a \sin i) / (\sqrt{1 - e^2})]$$

- **Time** t
- Barycentre velocity v_{\odot}
- Semimajor axis a
- Inclination i
- Eccentricity e
- Periastron longitude ω
- True anomaly ν

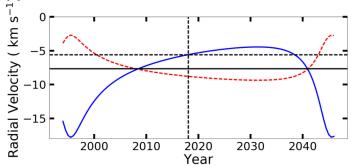
Spectroscopic binaries extra

- Eccentric *e* > 0 radial velocity curves **not sinusoids**
- Computation of time dependence $v_r(t)$
- 1. Mean anomaly computed from

$$M=\frac{2\pi(t-t_{p})}{P_{\rm orb}},$$

where t_p is pericentre epoch

2. True anomaly computed from Fourier expansion


$$\nu = M + (2e - \frac{1}{4}e^3) \sin M + \frac{5}{4}e^2 \sin 2M + \frac{13}{12}e^3 \sin 3M + O(e^4).$$

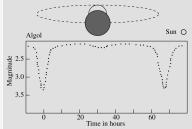
where $O(e^4)$ refers to omitted fourth order terms

UNIVERSITY OF HELSINKI

Department of Physics

High eccentricity: Radial velocity curves of Sirius A (red) and Sirius B (blue) having e = 0.59 [11].

- Definitely not pure sinusoids
- Velocity curve shape can be used to estimate eccentricity *e* and periastron longitude ω,
- Only **inclination** sin³ *i* remains unknown

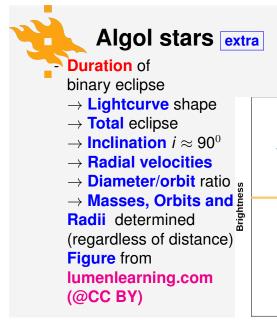

Photometric binary stars 30 min

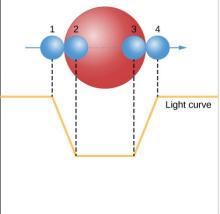
Variability caused by motions of members Eclipsing binaries

- Members pass each other \rightarrow Variable brightness
- Inclination close to 90°
- Inclination of these spectroscopic binaries known \rightarrow masses known, because inclination sin³ *i* known
- Lightcurve shape defines type
 Algol
 β Lyrae
 - W Ursae Majoris

- Secondary minimum

- **Member A** = smaller, hotter, brighter, main sequence
- Member B = larger, cooler, dimmer, giant/subgiant
- Primary eclipse = B covers A totally or partially
- Secondary eclipse = A covers B totally or partially

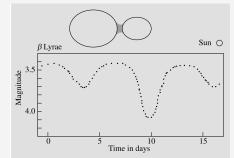




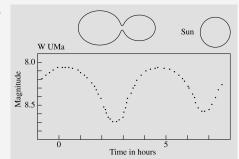
UNIVERSITY OF HELSINKI

Department of Physics

Jetsu

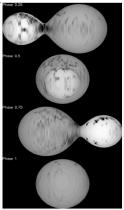


β Lyrae Stars 35 min


Note: Size of the Sun
 Prototype: β Lyrae
 Roche lobe of
 one member filled
 → Mass transfer
 to other member

- Close in space
 - \rightarrow Gravitational pull
 - \rightarrow Ellipsoidal shape
 - \rightarrow **Projected** area changes continuously
 - \rightarrow Magnitude varies continuously
 - \rightarrow **Smooth** lightcurve

- Prototype: W UMa F8 V + F8 V $P_{\rm orb} = 0.3336$ days
- Both members fill their Roche lobe
 - \rightarrow Contact binary
 - \rightarrow **Ellipsoida**l shape
 - \rightarrow Projected area changes continuously
 - \rightarrow Brightness changes continuously
 - \rightarrow Lightcurve minima round and almost identical



Confusing classification

- Roche lobe filled ightarrow Drop-like shape
- Limb darkening \rightarrow Disk edges darker
- Elongated shape
 - \rightarrow Gravitational darkening
- Reflection effect
 - \rightarrow Heating each other's surfaces
- Mass transfer
 - \rightarrow Changes surface temperature
- Starspots and other actitivy
 - \rightarrow Dark and/or bright structures

Figure: Contact binary AE Phe ([1] Barnes et al. 2004, Fig. 4)

2002 Nov 11

UNIVERSITY OF HELSINKI

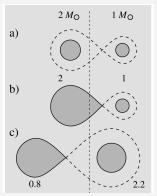
Algol paradox 40 min

- Rule of thumb: "More massive stars evolve faster"

Evolution of binaries can differ from evolution of single stars

- Eclipsing binary Algol
- $P_{
 m orb} = 2.867 \; days$
- B8 main sequence Algol A has $3.2M_{\odot}$
- K0 subgiant Algol B has $0.7 M_{\odot}$

 Paradox: If ages same, why has less massive Algol B evolved away from main sequence, but not more massive Algol A? → Solution: Mass transfer

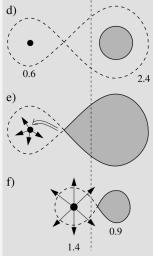

Jetsu

One binary evolution example

Example of one binary evolution case

a) Detached binary A+B formed. Initial masses $m_A = 2M_{\odot}$ and $m_B = 1M_{\odot}$ b) B remains in main sequence but A evolves away from main sequence, \rightarrow Roche lobe filled \rightarrow Mass transfer from A to B

 \rightarrow Semidetached binary



- c) B becomes more massive than A
- \rightarrow Mass transfer weakens \rightarrow Detached binary

One binary evolution example ...

- d) Mass transfer ends B contracts to $0.6M_{\odot}$ white dwarf
 - e) 2.4 M_{\odot} mass B evolves to a giant
 - \rightarrow Roche lobe of B filled
 - \rightarrow Mass transfer from B to A
 - \rightarrow Nova outburst **explosions**

f) Mass of A may exceed Chandrasekhar mass limit $1.4M_{\odot}$ \rightarrow A explodes as type I supernova

Own binary research: Case I

Short modern history of variable stars

1. Mira

Fabricius 1596: variability Holwarda 1638: 11 months period Pulsations: expands and contracts

2. Algol

Montanari 1669: variability Goodricke 1783: 2.867 days period Eclipsing binary

- 10h primary eclipse: observable with naked eyes

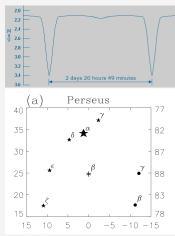
- Secondary eclipse: observable only with telescope

Our main result: Ancient Eqyptians detected Algol's variability and periodicity three millennia earlier.

Own binary research: Case I

John Goodricke (17 September 1764 - 20 April 1786)

UNIVERSITY OF HELSINKI


Department of Physics

Jetsu

Own binary research: Case I 45 min

- In 3 hours, Algol becomes dimmer than all six * & •
- For 4 hours, Algol the dimmest
- In 3 hours, Algol becomes
 brighter than all six * & •
- Goodricke's discovery:
 - Tabulated eclipse epochs
 - \rightarrow Epochs multiples of 2.867^d

\star	α Per	1. ^m 79
*	β Per	$2.^{\mathrm{m}}12 \leftrightarrow 3.^{\mathrm{m}}37$
*	ζ Per	2. ^m 85
*	ϵ Per	2. ^m 88
*	γ Per	2. ^m 93
*	δ Per	3. ^m 01
•	γ And	2. ^m 26
•	$\dot{\beta}$ Tri	3. ^m 00
(Upper figure: @nightskvinfo.com)		

(Upper figure: @nightskyinfo.com)

Whole 10h eclipse observed only every 19th night.

General results presented here. Details in papers

- [15] Porceddu et al. (2008), "Evidence of Periodicity in Ancient Egyptian Calendars of Lucky and Unlucky Days", Cambridge Archaeological Journal
- [10] Jetsu et al. (2013), "Did the Ancient Egyptians Record the Period of the Eclipsing Binary Algol—The Raging One?", The Astrophysical Journal
- [9] Jetsu & Porceddu (2015), "Shifting Milestones of Natural Sciences: The Ancient Egyptian Discovery of Algol's Period Confirmed", Plos One
- [14] **Porceddu et al. (2018),** "Algol as Horus in the Cairo Calendar: The Possible Means and the Motives of the Observations", **Open Astronomy**

Analysed data

Ancient Egyptian "Calendar of Lucky and Unlucky days" in Papyrus Cairo 86637

- Written by Ancient Egyptian scribes
- Dated to 1271-1163 B.C.
- Prognoses: Lucky = Good and Unlucky = Bad
- One year: Three prognoses for each day
- Additional prognosis descriptive texts
- "Hour-watchers" measured time from stars for religious purposes
 - \rightarrow **Describe** astronomical and mythological events
 - \rightarrow Thousands of years: 300 clear nights every year
- **Descriptions** of other events: Flood of Nile, weather, seasons, human activity, animals, ...

Own binary research: Case I 50 min

UNIVERSITY OF HELSINKI

19:21

ATTIES L

- I year = 3 Seasons = 12 months (M) = 360 days (D)
- Every year: 5 epagomenal days \rightarrow 365 days
- "G"=Gut=Good, "S"=Schlecht=Bad and "-" = Lost
- Each month 19 days regularity:
- Always $D = 1 \equiv GGG$
- $D = 1 \equiv GGG$ - Always $D = 20 \equiv SSS$

	Day D	Akhet I M = 1	Akhet II M = 2	Akhet III M = 3	Akhet IV M = 4	Peret I M = 5	Peret II M = 6	Peret III M = 7	Peret IV M = 8	Shemu I M = 9	Shemu II M = 10	Shemu III M = 11	Shemu IV M = 1
	1	GGG	GGG	GGG	GGG	GGG	GGG	GGG	GGG	GGG	GGG	GGG	GGG
	2	GGG	GGG	-	GGG	GGG	GGG	GGG	GGG	-	-	GGG	GGG
	3	GGS	GGG	GGG	SSS	GGG	-	-	SSS	GGG	GGG	SSS	SSS
	4	GGS	SGS	-	GGG	GGG	GGG	GSS	GGG	SSS	SSS	GGG	SSG
	5	GGG	SSS	-	GGG	GSS	GGG	GGG	SSS	-	GGG	SSS	GGG
	6	SSG	GGG	GGG	SSS	GGG	-	GGG	SSS	GGG	-	-	SSS
	7	GGG	SSS	GGG	SSS	SSS	GGG	SSS	GGG	GGG	SSS	SSS	-
	8	GGS	GGG	-	GGG	GGG	GGG	GGG	GGG	-	GGG	SSS	GGG
	9	GGG	GGG	SSS	GGG	GGG	GGG	GGG	-	GGG	GGG	GGG	GGG
	10	GGG	GGG	GGG	GGG	SSS	SSS	SSS	-	-	GGG	SSS	GGG
	11	SSS	GGG	GGG	GGG	SSS	GGG	GGG	SSS	-	SSS	SSS	SSS
	12	SSS	SSS	-	SSS	-	GGG	GGG	SSS	-	GGG	-	GGG
	13	GSS	GGG	SSS	GGG	GGG	SSS	GGG	SSS	-	GGG	-	GGG
	14	-	GGG	SSS	GGG	SSS	SGG	-	-	-	GGG	SSS	GGG
	15	GSS	GSS	SSS	-	GGG	-	SSS	GGG	-	SSS	GGG	SSS
	16	SSS	GGG	GGG	GGG	GGG	-	SSS	GGG	GGG	GGG	SSS	GGG
	17	SSS	GGG	-	-	SSS	GGG	SSS	SSS	GGG	SSS	-	GGG
	18	GGG	SSS	SSS	SSS	GGG	SSS	GGG		GGG	SSS	SSS	SSG
	19	GGG	GGG	SSS	SSS	SSS	GSS	-	GGG	GGG	SSS	SSS	GGG
•	20	SSS	SSS	SSS	SSS	SSS	SSS	SSS		SSS	SSS	SSS	-
5	21	GGG	SSG	GGG	SSG	GGG	-	-		SSS	SSG	GGG	GGG
•	22	SSS	-	-	GGG	GGG	GGG	SSS	SSS	GGG	SSS	SSS	GGG
	23	SSS	-	SSS	GGS	GGG	GGG	GGG		GGG	GGG	SSS	SSS
	24	GGG	SSS	GGG	-	GGG	SSS	SSS	SSS	-	GGG	GGG	GGG
	25	GGS	SSS	GGG	-	GGG	GGG	-	SSS	GGG	GGG	GSG	GGG
	26	SSS	SSS	GGG	GGG	SSS	-	SSS	-	GGG	SSS	GGG	GSG
	27	GGG	SSS	GGG	GGS	GGG	-	SSS	SSS	-	SSS	SSS	SSS
	28	GGG	GGG	GGG	SSS	GGG	GGG	GGG	GGG	-	GGG	SSS	GGG
	29	SGG	GGG	GGG	SSS	GGG	SSS	GGG	GGG	GGG	GGG	GGG	GGG
	30	GGG	GGG	GGG	GGG	GGG	SSS	GGG	GGG	GGG	GGG	GGG	GGG

Computing series of time points t_i

- t_i integer part: $N_E = 30(M 1) + D$
- *t_i* decimal part:

Texts suggest: morning, day, evening/night Alternative 1: Three daytime Alternative 2: Two daytime and one night-time

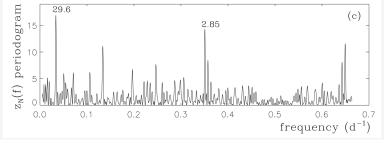
- Integer part + Decimal part = Final time points t_i
- Exact computation [10] (Jetsu et al. 2013: Eqs. 1-3) 24 alternative samples $3 \times 2 \times 4$:
 - 3 alternatives: Transformation to Gregorian days
 - \rightarrow Daytime and night-time length
 - 2 alternatives: Analyse G and S separately
 - **4 alternatives**: Analyse also D = 1 and D = 20, or reject them

- Time points $t_i = t_1, t_2, ..., t_n$
 - Phase angles $\Theta_i = 2\pi (t_i/P)$
 - This gives one round during P If time, draw!
 - Unit vectors $\bar{r}_i = [\cos \Theta_i, \sin \Theta_i]$
 - Sum of unit vectors $\bar{R} = \sum_{i=1}^{n} \bar{r}_i$
 - Rayleigh test statistic

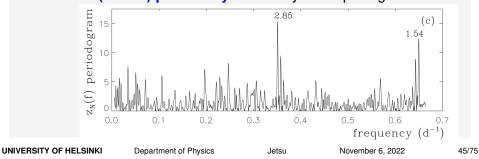
$$Z = \frac{|\mathbf{R}|^2}{n} = \frac{|\sum_{i=1}^n \bar{r}_i|^2}{n} = \frac{1}{n} \left[\left(\sum_{i=1}^n \cos \Theta_i \right)^2 + \left(\sum_{i=1}^n \sin \Theta_i \right)^2 \right]$$

- Vectors \overline{r}_i point to same direction $\rightarrow |R|$ large $\rightarrow |z|$ large $\rightarrow t_i$ spacing regular with $P \equiv$ Periodicity
- Vectors \bar{r}_i point to **different** direction $\rightarrow |R|$ small $\rightarrow |z|$ small $\rightarrow t_i$ spacing irregular with $P \equiv No$ periodicity

Own binary research: Case I 55 min


Finding the best period with Rayleigh test Since best period unkown, we test many possible periods.

- Select minimum tested period P_{min}.
- Select maximum tested period P_{max}.
- Create a **dense grid of tested periods** P_j between P_{\min} and P_{\max} .
- Compute **periodogram** $z = z(P_j)$ for every P_j .
- Best period P_{best} gives highest peak of periodogram, $z_{\text{max}} = z(P_{\text{best}})$ maximum.
- Probability (significance=critical level) for this z_{max} peak can be computed [10] Jetsu et al. (2013, Eq. 4)
- We tested periods from 1.5 days (exceeds *t_i* spacing) to 90 days (at least four rounds during 360 days).


UNIVERSITY OF HELSINKI

All good n = 564 prognoses G

- **Best period** $P_1 = 29.6$ **days** reaches simulated critical level $Q^* = 0.000012$
- Second best period $P_1 = 2.850$ days reaches simulated critical level $Q^* = 0.00014$
- Exact computation of these **simulated critical levels** explained in [10](Jetsu et al. 2013: Eqs. 7 and 8)

- Good n = 528 prognoses G, where D=1 removed
 - Period P₁ = 29.6 days vahishes
 - Best period $P_1 = 2.850$ days reaches simulated critical level $Q^* = 0.000094 \rightarrow$ significance increased!
 - Second best period P₁ = 1.540 days reaches simulated critical level Q^{*} = 0.00059 → spurious (unreal) periodicity caused by data spacing

- Bad n = 351 prognoses S
 - No significant periodicity
 - D = 20 removed \rightarrow No significant periodicity
- All 24 tested samples
 - Only significant periods are 29.6 and 2.850 days in G prognoses
 - This result does not depend on Chosen decimal part (3 daytime, or 2 daytime and 1 night-time)

Transformation to **Gregorian days** (daytime and night-time length)

Main question: Could these be periods of the Moon (29.53 days) and Algol (2.867 days)?

Own binary research: Case I 60 min

Problem: Why is Algol's current 2.^d867 period longer than Algol's 2.^d850 period in Cairo Calendar?

Answer: Algol paradox

[16] Sarna 1993 (Algol's best evolutionary model)

- Zero-age main sequence:

 $m_B = 2.81 \, m_\odot$ and $m_A = 2.50 \, m_\odot$

- After 450 million years:

Algol B evolves away from main sequence

 \rightarrow Algol B fills its Roche-lobe

- \rightarrow Mass transfer from Algol B to Algol A
- \rightarrow Algol A becomes more massive than Algol B
- \rightarrow Orbital period of Algol A and B system increases

• Equation of mass transfer [13] (Kwee 1958)

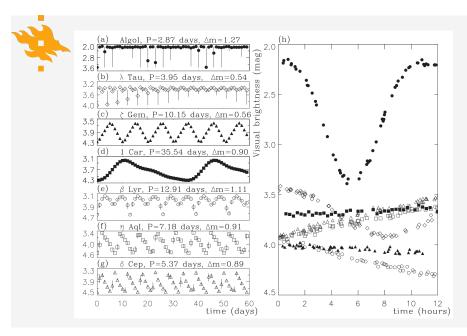
$$rac{\dot{P}_{
m orb}}{P_{
m orb}} = -rac{3\dot{m}_B\left(m_A-m_B
ight)}{m_Am_B}$$

 $\dot{P}_{\rm orb} = {
m period change}$

 \dot{m}_B = mass transfer from Algol B to Algol A

- **Period increase** from 2.850 days to 2.867 during three thousand years gives period change $\dot{P}_{\rm orb}$ \rightarrow mass transfer $\dot{m}_B = -2.2 \times 10^{-7} M_{\odot} {\rm yr}^{-1}$
- Best evolutionary model by [16] Sarna 1993 predicted! $\dot{m}_B = -2.9 \times 10^{-7} M_{\odot} \mathrm{yr}^{-1}$
- Main result: Mass transfer can explain 0.017 days increase of Algol's period during past three millennia.

Problem: Algol is **triple system**. [3] Curtiss (1908) discovered Algol C having $P_{orb} = 1.9$ years.

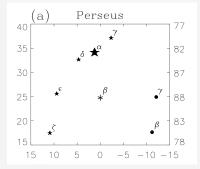

- \rightarrow Algol C **perturbs** Algol A-B orbital plane \rightarrow **No Algol A-B eclipses** three millennia ago?
- This Algol A-B and Algol AB-C interaction relation is quite **complicated** [10] (Jetsu et al. 2013: Eq. 10)
- **Essential meaning** of this relation is **simple**: Algol A-B system orbital plane is **stable**, if **angle** between Algol A-B and Algol AB-C **orbital planes** is $\Psi = 0^{\circ}$ or 90°

[18] Zavala (2010): $\Psi = 86^{\circ} \pm 5^{\circ} \rightarrow \text{Yes/No}$ eclipses? [2] Baron et al. (2012): $\Psi = 90.^{\circ}2 \pm 0.^{\circ}32 \rightarrow \text{Yes}$ eclipses! Note: Our analysis predicted this result!

- **Problem: Why only** periods of the Moon (29.6 days) and Algol (2.850 days) present in Cairo Calendar? **Solution:** What shorter than 90 days periodic variability detectable in the sky with naked eyes?
- The Sun and planets \rightarrow No
- The Moon and variable stars \rightarrow Yes
- **Problem:** This would explain the Moon, but **why only** Algol out of all 40 000 variable stars?
- **Eight elimination criteria** *C*₁ ... *C*₈ applied to all 40 000 known variable stars
- Naked eyes limitations $m = 6^{\mathrm{m}}$ and $\Delta m = 0.^{\mathrm{m}}1$
- Variable star parameters: maximum brightness (m_{\max}) , amplitude (Δm) and period (P)

Own binary research: Case I 65 min

- Elimination from 40 000 variable star candidates
- C_1 Variability fulfills $m_{\rm max} \leq 4$ and ($\Delta m > 0.4$)
 - ightarrow 109 candidates
- $\textit{C}_{2}~\textit{Period}$ known and fulfils $1.^{\rm d}5 \leq \textit{P} \leq 90^{\rm d}$
 - ightarrow 13 candidates
- C_3 Variable was not below, or too close to, horizon \rightarrow 10 candidates
- C₄ Variability can be **predicted**
 - ightarrow 7 candidates
- *C*₅ Variability can be detected during a single night
 - \rightarrow 2 candidates (Next page figure: Algol and λ Tau)


UNIVERSITY OF HELSINKI

Department of Physics

Jetsu

November 6, 2022

C_6 Variability changes
constellation pattern.
 \rightarrow 2 candidates
(Only Algol and λ Tau) C_7 Period of variability
could be detected
by Ancient Egyptians
(Only Algol and λ Tau)

- C_8 Variability and periodicity was determined first, Goodricke (1783: Algol) and Baxendell (1848: λ Tau)
 - Main result: Algol is clearly the best candidate of all 40 000 variable stars. This would explain why only the Moon and Algol are detected in Cairo Calendar.

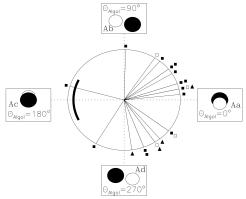
Own binary research: Case I 70 min

- Vocabulary in Cairo Calendar
- 28 Selected Words (SW)
- Periods of the Moon and Algol **known** Phase angles **known**

$$\Theta = (\mathit{t_i} - \mathit{t_0}) imes 360^{
m o}$$

- SWs having high Rayleigh test statistic z identified
- SWs connected to Algol Horus, Re, Wedjat, Followers, Sakhmet, Ennead
- SWs connected to the Moon

Earth, Heaven, Busiris, Rebel, Thoth, Onnophris


- Good prognoses connected to bright phases of Algol and the Moon

Good prognoses phase angles Θ for P=2.850 days

- Time runs counter-clockwise on this circle $\Theta = +6^{\circ}$ "It is the day of receiving the white crown by the Majesty of Horus"
- Horus

closed squares

- Wedjat open squares
- Sakhmet closed triangles
- 10 h eclipse thick curve

UNIVERSITY OF HELSINKI

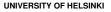
Department of Physics

Jetsu

November 6, 2022

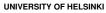
 $\Theta_{Alpol} = 180'$

Bad prognoses phase angles Θ for P=2.850 days


 $\Theta = +278^{\circ}$ "Do not go out of your house to spend time until the setting of the sun to the horizon. This is the day of the

- hidden-named "slaughtererdemons" of Sakhmet..."
- Horus closed squares
- Wedjat

open squares


- Sakhmet

closed triangles

- Daytime and night-time: 12 hours
- Scribes called "hour-watchers" measured night-time with hour-stars
- This required at least three stars in 24 hour-patterns (72 stars)
- Algol 51st brightest star in Ancient Eqypt
- Argument 1. Algol was an hour-star or belonged to an hour-star pattern

1

2

 $\mathbf{5}$ 6

7 8

9

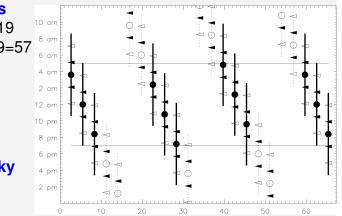
Night-time hours 3

Jetsi

Names

Own binary research: Case I 75 min

- Scribes responsible for both Astronomy (hour-watching) and Priesthood (religious rituals)
- Night-time the Sun passed through underworld
- Each hour, prayers and rituals opened one of twelve underworld gates guarded by terrible gate-keepers.
- Timing of night-time religious rituals was crucial
- Mess up this timing and the Sun may not rise!
- Argument 2. Proper timing of the nightly religious rituals relied on fixed hour-star patterns.
- Algol's eclipse causes a clear constellation change
- Argument 3. A naked eye can easily discover the significant hour-star pattern change caused by Algol's eclipse.


 $\textit{P}=2.^{\rm d}850=57^{\rm d}/20\rightarrow20$ eclipses in $57^{\rm d}$

- Nine night-time eclipses in 57 days (observed)
- Eleven daytime eclipses in 57 days (not observed)
- Every eclipse exactly at same time in 57 days
- Scribes: "This 19 days pattern always repeated"

1st night: morning eclipse 2nd and 3rd night: no eclipses 4th night: mid-night eclipse 10 hours! 5th and 6th night: no eclipses 7th night: evening ecplipse 8th-19th night: no eclipses 20th night: morning eclipse Again!

- Every month: D = 1 good, after 19 days D = 20 bad

- Two rules 3+3+13=19 19+19+19=57
- Eclipses
 begin
 again
 after
 13 days
 → Unlucky
 number
 is 13?

Argument 4. Scribes could have discovered Algol's 2.850=57/20 days period from regular 19 and 57 days eclipse cycles.

UNIVERSITY OF HELSINKI

Jetsu

Argument 5. Three alternatives why Cairo Calendar contains Algol's 2.850=57/20 days period

- Scribes **solved** 2.850=57/20 days value.
- Scribes did not solve 2.850=57/20 days value, but only recorded 19 days cycle.
- Scribes **did not solve** 2.850=57/20 days value, but **only recorded** observed night-time eclipses.
- Why are there no direct references to star Algol?
- Observed actions of divine deities (gods) in the Sky (the Sun, the Moon, planets, stars) → Writing allowed communication with gods → Must avoid raising anger of gods → Indirect reference works Argument 6. To avoid violating cosmic order, scribes would have referred to Algol's changes only indirectly.

Own binary research: Case I 80 min

Argument 7. Cairo calender contains numerous extracts from two legends "Destruction of Mankind" "Contendings of Horus and Seth"

- Read these extracts in temporal order
 - \rightarrow Stories make no sense
- Read these extracts in **order** of the Moon's and Algol's **phases**

 \rightarrow Stories follow these legends and **make sense!** Argument 8. The above two legends were used to decribe indirectly the changes of the Moon and Algol

- Problem: Why was Algol called "Horus"?
- Rejuvenation, the **power to disappear and re-appear**, was associated with "Horus".
- Egyptologists have associated "Horus" to **many** celestial objects, depending on the context.

Argument 9. Algol could have been naturally associated with "Horus" and called as such, because Algol can disappear and re-appear.

Argument 10. Astrophysical considerations support the idea that the 2.850 days period in Cairo Calendar can be the period of Algol.

- If the significant 2.850 days period is not connected to Algol, then this question must be answered:
 - "What was the origin of the phenomenon that occurred every third day, but always 3 hours and 36 minutes earlier than before, and caught the attention of Ancient Egyptians?" In other words, what happened three times in a row at the night-time? Then it occurred during the daytime? After a gap of 13 days, it occurred again during the night-time?"
 - So far, no one has been able to answer this question!
 - Case I completed!

- Computed times of eclipsing binary (EB) eclipses ${\it C} = {\it t}_0 + i {\it P}_{
m orb},$

where t_0 is zero epoch and *i* is an integer

- Third body:

 \rightarrow Eclipses occur **earlier** when EB **approaches**

 \rightarrow Eclipses occur later when EB recedes

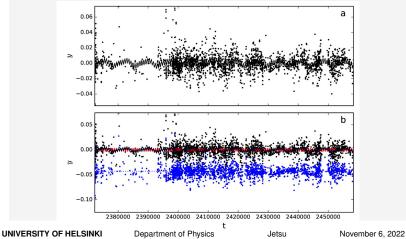
 \rightarrow O = Observed eclipse epochs differ from C = Computed epochs

 \rightarrow O-C data may reveal third, fourth, ... bodies

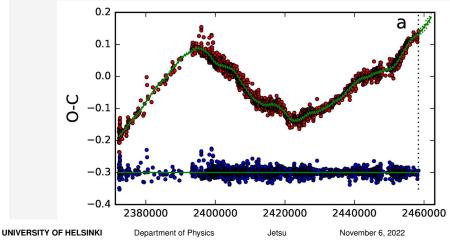
- Figure: CHARA interferometer image of Algol
- Algol C was detected from Algol A-B radial velocity changes, not from Algol A-B complex O-C changes.

UNIVERSITY OF HELSINKI

Own binary research: Case II 85 min


- Algol A and Algol B discovered by Ancient Egyptians
- Period re-detected by [5] Goodricke (1783)
 Data: Photometry
 Period: 2.867 days
- Algol C discovered by [3] Curtiss (1908)
 Data: Radial velocities of Algol A-B system
 Period: 1.9 years
- Algol D, Algol E, Algol F, Algol G and Algol H candidates discovered by [8] Jetsu (2021)
 Data: Observed minus Computed (O-C) eclipse epochs of Algol during past 237 years
 Periods: 19.96, 27.78, 33.7, 66.4 and 219.0 years

O-C data of Algol: Linear trend and three strongest signals. For details, see Jetsu (2021: Figure A7)



UNIVERSITY OF HELSINKI

O-C data of Algol: two weakest signals. The shortest 680 days signal is that of Algol C. For details, see Jetsu (2021: Figure A10)

 All data (red dots), all signals (continuous black line) and residuals (blue dots). For details, see Jetsu (2021: Figure 1)

- "Discrete Chi-square Method (DCM) for Detecting Many Signals"
 [6](Jetsu, 2020) published in Open Journal of Astrophysics on April, 2020
- \rightarrow O-C data of Algol analysed with DCM
 - "Say Hello to Algol's new companion candiates"
 [8](Jetsu, 2021)
 published in

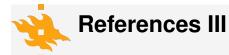
The Astrophysical Journal on October, 2021

- J. R. Barnes, T. A. Lister, R. W. Hilditch, and A. Collier Cameron. High-resolution Doppler images of the spotted contact binary AE Phe. *MNRAS*, 348(4):1321–1331, Mar. 2004.
- [2] F. Baron, J. D. Monnier, E. Pedretti, M. Zhao, G. Schaefer, R. Parks, X. Che, N. Thureau, T. A. ten Brummelaar, H. A. McAlister, S. T. Ridgway, C. Farrington, J. Sturmann, L. Sturmann, and N. Turner. Imaging the Algol Triple System in the H Band with the CHARA Interferometer. *ApJ*, 752(1):20, June 2012.
- R. H. Curtiss. on the Orbital Elements of Algol. *ApJ*, 28:150, Sept. 1908.
- [4] F. C. Fekel, G. W. Henry, and J. R. Sowell. Absolute Properties of the Eclipsing Binary VV Corvi. AJ, 146(6):146, Dec. 2013.

[5] J. Goodricke.

A Series of Observations on, and a Discovery of, the Period of the Variation of the Light of the Bright Star in the Head of Medusa, Called Algol. In a Letter from John Goodricke, Esq. to the Rev. Anthony Shepherd, D. D. F. R. S. and Plumian Professor at Cambridge.

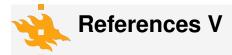
Philosophical Transactions of the Royal Society of London Series I, 73:474–482, Jan. 1783.


[6] L. Jetsu.

Discrete Chi-square Method for Detecting Many Signals. The Open Journal of Astrophysics, 3(1):4. Apr. 2020.

[7] L. Jetsu.

Periodicities in observed minus computed eclipse epochs of XZ Andromedae. *JAAVSO* (*submitted*), 2020.


[8] L. Jetsu. Say Hello to Algol's New Companion Candidates. *ApJ*, 920(2):137, Oct. 2021.

- [9] L. Jetsu and S. Porceddu. Shifting Milestones of Natural Sciences: The Ancient Egyptian Discovery of Algol's Period Confirmed. *PLoS ONE*, 10(12):e0144140, Dec. 2015.
- [10] L. Jetsu, S. Porceddu, J. Lyytinen, P. Kajatkari, J. Lehtinen, T. Markkanen, and J. Toivari-Viitala.
 Did the Ancient Egyptians Record the Period of the Eclipsing Binary Algol - The Raging One?
 ApJ, 773:1, Aug. 2013.
- S. R. G. Joyce, M. A. Barstow, J. B. Holberg, H. E. Bond, S. L. Casewell, and M. R. Burleigh. The gravitational redshift of Sirius B. *MNRAS*, 481(2):2361–2370, Dec. 2018.
- K. Karami and R. Mohebi.
 Velocity curve analysis of the spectroscopic binary stars PV Pup, HD 141929, EE Cet and V921 Her by nonlinear regression.
 Journal of Astrophysics and Astronomy, 28:217–230, Dec. 2007.

- [13] K. K. Kwee. Investigation of variations in the period of sixteen bright short-period eclipsing binary stars. BAN, 14:131, Apr. 1958.
- [14] S. Porceddu, L. Jetsu, T. Markkanen, J. Lyytinen, P. Kajatkari, J. Lehtinen, and J. Toivari-Viitala. Algol as horus in the cairo calendar: The means and the motives of the observations. *Open Astronomy*, 27:232–263, sep 2018.
- [15] S. Porceddu, L. Jetsu, T. Markkanen, and J. Toivari-Viitala. Evidence of periodicity in ancient egyptian calendars of lucky and unlucky days. *Cambridge Archaeological Journal*, 18(03):327, oct 2008.
- [16] M. J. Sarna. The evolutionary status of beta Per. MNRAS, 262:534–542, May 1993.

- [17] G. J. J. Talens, E. R. Deul, R. Stuik, O. Burggraaff, A. L. Lesage, J. F. P. Spronck, S. N. Mellon, J. I. Bailey, E. E. Mamajek, M. A. Kenworthy, and I. A. G. Snellen. Data calibration for the MASCARA and bRing instruments. *A&A*, 619:A154, Nov. 2018.
- [18] R. T. Zavala, C. A. Hummel, D. A. Boboltz, R. Ojha, D. B. Shaffer, C. Tycner, M. T. Richards, and D. J. Hutter. The Algol Triple System Spatially Resolved at Optical Wavelengths. *ApJL*, 715(1):L44–L48, May 2010.