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The material is collected mainly from books [CM], [EG], [GT], [GM], [G], [O] and
from survey articles [MP1] and [MP2].

1 Introduction

We start by recalling some background, history, origin, etc. of the theory of minimal surfaces.
Some notions that appear in the introduction will be defined and studied later in detail.

1.1 Background, history, origin, etc.

The (mathematical) theory of minimal surfaces in R3 has its origin in calculus of variations devel-
oped by Euler and Lagrange in the 18th century.

Lagrange (Joseph-Louis Lagrange, Giuseppe Lodovico (Luigi) Lagrangia, 1736-1813) studied
the variational problem of finding a surface

S = {(x, y, u(x, y))}

of least area bounded by a closed curve and derived the equation

div

(
∇u√

1 + |∇|2

)
= 0,

the so-called Euler-Lagrange equation, for the solution u. We will call this equation the minimal
graph equation. However, he did not succeed in finding any solutions (other than the plane). This
problem of finding the surface of least area is nowadays known as the Plateau problem named after
the (blind) Belgian physicist Joseph Plateau (1801-1883) who made experiments with soap films
and bubbles.

In 1776 Jean Baptiste Meusnier (1754-1793) discovered that helicoid and catenoid satisfy the
minimal graph equation (locally) and that surfaces with zero mean curvature are area-minimizing.
(Catenoid was discovered by Euler in 1744.)

Scherk (Heinrich Scherk, 1798-1885) constructed two complete embedded minimal surfaces (dou-
bly periodic and singly periodic). These were the third non-trivial examples of minimal surfaces
(after helicoid and catenoid). Scherk’s doubly periodic surface is defined over ”the white squares
of the chessboard” with vertical lines at corners. A fundamental ”piece” of Scherk’s surface is the
graph of the function

u(x, y) = log
cos y

cosx

over the square {(x, y) : |x| < π/2, |y| < π/2}.
Schwarz (Hermann Schwarz, 1843-1921) solved the Plateau problem for quadrilaterals and to-

gether with his student E.R. Neovius (Edvard Rudolf Neovius (uncle of Rolf Nevanlinna)) described
periodic minimal surfaces.

Weierstrass (Karl Theodor Wilhem Weierstrass, 1815-1897) and Enneper (Alfred Enneper, 1830-
1885) developed representation formulas which give link to complex analysis. (See Enneper’s sur-
face).

It is also worth mentioning that Lebesgue (Henri Léon Lebesgue, 1875-1941) developed the
theory of measure and integral and studied the Plateau problem in his thesis (1902).

Complete solution to the Plateau problem (in 3-space) was obtained in 1931 and 1930 by Jesse
Douglas (1897-1965, Fields medal in 1936) and Tibor Radó (1895-1965).
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Bernstein-type problems deal with codimension 1 minimal (hyper)surfaces in Rn that are graphs
of entire functions u : Rn−1 → R solving the minimal graph equation. The question here was
whether the function u must be affine (and hence the surface is a codimension 1 hyperplane). This
is the case in dimensions n ≤ 8 but false in dimensions n ≥ 9. The problem is named after Sergei
Natanovich Bernstein (1880-1968) who proved in 1915-1917 that a function u : R2 → R must be
affine if it is a (global) solution to the minimal graph equation. In 1962 Fleming gave another proof
by showing that there are no non-planar area-minimizing cones in R3. De Giorgi proved in 1965 that
if there are no non-planar area-minimizing cones in Rn−1, then the analogue of Bernstein’s theorem
is true in Rn, in particular, Bernstein’s theorem is true in R4. Almgren (1966) extended Bernstein’s
theorem to R5 by showing that there are no non-planar minimizing cones in R4. Simons (1968)
extended Almgren’s result up to dimension 7, thus extending Bernstein’s theorem to Rn, n ≤ 8. He
also gave examples of locally stable cones in R8 and asked if they were globally area-minimizing.
Finally, Bombieri, De Giorgi, and Giusti (1969) showed that Simons’ cones are indeed globally
minimizing, and showed that in Rn, n ≥ 9, there are graphs that are minimal but not hyperplanes.

In 1982 Celso Costa disproved the conjecture that the plane, catenoid, and helicoid are the
only complete, embedded minimal surfaces in R3 of finite topological type (i.e. homeomorphic with
the interior of compact surface with boundary). He constructed a (complete, embedded) minimal
surface which is topologically a thrice punctured torus and has two catenoidal ends, one planar
end, and has total curvature −12π.

1.2 Some examples

Here we recall the examples of minimal surfaces already mentioned in the previous subsection.

(i) The plane, z = u(x, y) ≡ 0.

(ii) The helicoid, z = u(x, y) = arctan(y/x) = tan−1(y/x). In parametric form it is given by

(t, s) 7→ (t cos s, t sin s, s), s, t ∈ R.

It is a complete, embedded, singly-periodic, simply connected ruled surface, with infinite total
curvature. Catalan (1842) showed that it is the only non-flat ruled minimal surface.

(iii) The Catenoid, z = cosh−1
√
x2 + y2. Thus it is obtained by rotating the curve x = cosh z

around the z-axis. The catenoid is the only non-flat minimal surface of revolution. It is
complete, embedded, of finite total curvature, and topologically an annulus (genus zero, two
ends).

(iv) Scherk’s (doubly periodic) surface is the union of the closures of surfaces

Σk,` =

{
(x, y, z) : |x− k| < 1, |y − `| < 1, z = log

cos π2 (y − `)
cos π2 (x− k)

}
,

where k, ` ∈ Z, with k + ` ≡ 0 mod 0.

(v) Enneper’s surface is parameterized by

(s, t) 7→ (s− s3/3 + st2,−t− s2t+ t3/3, s2 − t2), s, t ∈ R.

It is a non-embedded minimal surface with finite total curvature.
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1.3 Weierstrass-Enneper parameterization

The Weierstrass-Enneper parameterization is an effective way to produce (parameterized) minimal
surfaces. It also gives a link between minimal surfaces and complex analysis. Let f and g be
functions defined either on the entire complex plane C or the unit disc D, where g is meromorphic
and f is analytic such that fg2 is analytic (if g has a pole of order m, then f has a zero of order
2m). Then the surface parameterized by

ζ 7→
(
x1(ζ), x2(ζ), x3(ζ)

)
is minimal if

xk(ζ) = <
(∫ ζ

0
ϕk(z)dz

)
+ ck, k = 1, 2, 3,

where <(z) = u denotes the real part of a complex number z = u+ iv, ck ∈ R is constant, and

ϕ1 = f(1− g2)/2,

ϕ2 = if(1 + g2)/2,

ϕ3 = fg

are analytic functions. We will prove this later. Also the converse is true: every simply connected
minimal surface in R3 has a parameterization of this type. For instance, Enneper’s surface is
obtained by choosing f(z) = 1 and g(z) = z.

1.4 Equivalent definitions

Here we present several equivalent definitions for minimal surfaces. The variety of these definitions
shows that minimal surfaces are related to many different fields in mathematics. We will prove
some of these equivalences later.

1. Local area-minimizing definition. A surface M ⊂ R3 is minimal if and only if every point
p ∈M has a neighborhood with least area relative to its boundary.

2. Variational definition. A surface M ⊂ R3 is minimal if and only if it is a critical point of the
area functional for all compactly supported variations.

3. Soap film definition. A surface M ⊂ R3 is minimal if and only if every point p ∈ M has a
neighborhood Up which is equal to the idealized soap film with boundary ∂Up.

4. Mean curvature definition. A surface M ⊂ R3 is minimal if and only if its mean curvature
vanishes identically.

5. PDE definition. A surface M ⊂ R3 is minimal if and only if it can be expressed locally (and
after a rotation) as a graph (x, y, u(x, y)) of a solution u to

(1 + u2
x)uyy − 2uxuyuxy + (1 + u2

y)uxx = 0.

This is just an equivalent way to say that u solves the minimal graph equation.

6. Energy definition. A conformal immersion X : M → R3 is minimal if and only if it is a critical
point of the Dirichlet energy for all compactly supported variations, or equivalently if every
point p ∈M has a neighborhood with least energy relative to its boundary.
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7. Harmonic definition. If X = (x1, x2, x3) : M → R3 is an isometric immersion of a Riemannian
2-manifold (or a Riemann surface) into R3, then X (and M) is said to be minimal if each
coordinate function xi is a harmonic function on M .

8. Gauss map definition. A surface M ⊂ R3 is minimal if and only if its stereographically
projected Gauss map M → C∪{∞} is meromorphic with respect to the underlying Riemann
surface structure of M , and M is not a piece of a sphere.

9. Mean curvature flow definition. Minimal surfaces are the critical points of the mean curvature
flow.

Remarks 1.5. The condition 1 above is a local property: there might be other surfaces with less
area but the same boundary. Definitions 6 and 7 relate minimal surfaces to harmonic functions
and potential theory. Furhermore, definition 7 and the maximum principle for harmonic functions
imply that there are no compact, complete minimal surfaces in R3.

1.6 Minimal graph equation

Suppose that u : Ω → R is a C2-function defined on an open (bounded) subset of the plane R2.
Denote by Γu ⊂ R3 its graph

Γu = {
(
x, y, u(x, y)

)
: (x, y) ∈ Ω}.

It is a 2-dimensional submanifold of R3 and the tangent space (plane) TpΓu at p = (x, y, u(x, y)) ∈
Γu is spanned by vectors (1, 0, ux) and (0, 1, uy), where ux and uy denote the partial derivative of u
with respect to x and y, respectively. The absolute value of the cross product (1, 0, ux)× (0, 1, uy)
is the area of the parallelogram spanned by (1, 0, ux) and (0, 1, uy), and so the area of the graph is

Area(Γu) =

∫
Ω
|(1, 0, ux)× (0, 1, uy)| =

∫
Ω

√
1 + u2

x + u2
y

=

∫
Ω

√
1 + |∇u|2.

Let η ∈ C2
0 (Ω). Then the graphs of u and u + tη, t ∈ R, have the same ”boundary” ∂Γu =

{(x, y, u(x, y) : (x, y) ∈ ∂Ω} and

Area(Γu+tη) =

∫
Ω

√
1 + |∇u+ t∇η|2.

Differentiating with respect to t and using Green’s formula we obtain

d

dt
Area(Γu+tη)|t=0 =

d

dt

∫
Ω

√
1 + |∇u+ t∇η|2|t=0

=

∫
Ω

d

dt

√
1 + |∇u+ t∇η|2|t=0

=

∫
Ω

1

2
(1 + |∇u|2)−1/2 d

dt

〈
∇(u+ tη),∇(u+ tη)

〉
|t=0

=

∫
Ω

〈∇u,∇η〉√
1 + |∇u|2

= −
∫

Ω
η div

(
∇u√

1 + |∇u|2

)
.
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We say that u is a critical point for the area functional if the derivative above at t = 0 is zero. In
that case, since the last integral vanishes for all η ∈ C2

0 (Ω), we conclude that u ∈ C2(Ω) is a critical
point if and only if it satisfies the minimal graph equation

(1.7) div

(
∇u√

1 + |∇u|2

)
= 0.

Next we show that a critical point for the area functional, in fact, minimizes the area among surfaces
in the cylinder Ω× R with the same boundary ∂Γu. For that and later purposes we note that the
unit vector

N =
(1, 0, ux)× (0, 1, uy)

|(1, 0, ux)× (0, 1, uy)|
=

(1, 0, ux)× (0, 1, uy)√
1 + |∇u|2

is orthogonal to both (1, 0, ux) and (0, 1, uy), and therefore it is the (upwards pointing) normal to
Γu. We define a 2-form ω in the cylinder Ω× R by setting

ω(X,Y ) = det(X,Y,N)

for vectors X,Y ∈ R3. Note that ω is the contraction by N of the standard volume form ω̃ =
dx ∧ dy ∧ dz, i.e. ω = Ny ω̃ = iN ω̃. Hence ω is the volume (area) form of Γu. Since ω =
adx ∧ dy + bdx ∧ dz + cdy ∧ dz and

a = ω(
∂

∂x
,
∂

∂y
) = 1/

√
1 + |∇u|2,

b = ω(
∂

∂x
,
∂

∂z
) = uy/

√
1 + |∇u|2,

c = ω(
∂

∂y
,
∂

∂z
) = −ux/

√
1 + |∇u|2,

we see that

ω =
dx ∧ dy − uxdy ∧ dz − uydz ∧ dx√

1 + |∇u|2
.

Furthermore, since u satisfies the minimal graph equation we obtain

dω =

{
∂

∂x

(
−ux√

1 + |∇u|2

)
+

∂

∂y

(
−uy√

1 + |∇u|2

)}
dx ∧ dy ∧ dz = 0.

Thus ω is a closed 2-form in the cylinder Ω × R. Let then Σ be another (smooth) surface (non
necessarily a graph) in Ω×R with the same boundary than Γu (∂Γu = ∂Σ.) Then Σ and Γu bound
an open set U ⊂ R3 where dω = 0. The set U may have several components but applying Stokes’
theorem in each component we obtain ∫

Γu

ω =

∫
Σ
ω.

On the other hand, by definition |ω(X,Y )| = |det(X,Y,N)| is the volume of the polyhedron
spanned by vectors X,Y, and N . In particular, for any unit vectors X and Y ,

|ω(X,Y )| ≤ 1,
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with the equality if and only if X,Y, and N are orthonormal. Hence

(1.8) Area(Γu) =

∫
Γu

ω =

∫
Σ
ω ≤ Area(Σ).

This shows that Γu minimizes the area among such surfaces (inside Ω × R). If Ω is convex, then
Γu is area-minimizing among all surfaces Σ ⊂ R3 with ∂Σ = ∂Γu. To see this, let Σ be such a
surface and let P : R3 → Ω × R be the nearest point projection. The convexity of Ω implies that
P is 1-Lipschitz map that is equal to the identity on Ω × R. In particular, Area(PΣ) ≤ Area(Σ).
Applying (1.8) to PΣ we obtain

Area(Γu) ≤ Area(PΣ) ≤ Area(Σ).

Suppose that Br is an open ball in R3 whose projection to the plane is contained in Ω. Then
∂Br ∩Γu (if non-empty) divides the sphere ∂Br into two components at least one of which has the
area at most Area(S2)r2/2, where S2 is the unit 2-sphere. By (1.8), we obtain an estimate

(1.9) Area(Br ∩ Γu) ≤ Area(S2)r2/2.

The fact that there are at most two components follows also from the minimality.

1.10 Bernstein’s example

We prove that the area functional need not have a minimizer. Consider the annulus

Ω = {x ∈ R2 : ρ < |x| < R}

and fix the boundary values g,

g(x) =

{
m, if |x| = ρ,

0, if |x| = R.

Suppose that u is a minimizer for ∫
Ω

√
1 + |∇u|2

with boundary values g. Then u is a solution to (1.7) and later we will prove that a solution (if
exists) is unique. It follows that u is radial, i.e. u(x) = u(|x|) (Exercise). Thus the area of the
graph is

Area(Γu) = 2π

∫ R

ρ
r
√

1 + u2
rdr.

The corresponding Euler-Lagrange equation is

urr = −1

r
(ur + u3

r)

and u solves this equation. Hence

u(r) = c log
R+
√
R2 − c2

r +
√
r2 − c2

,

where c ∈ [0, ρ] is a constant such that u(ρ) = m. On the other hand,

m = u(ρ) = c log
R+
√
R2 − c2

ρ+
√
ρ2 − c2

≤ ρ log
R+

√
R2 − ρ2

ρ+
√
ρ

=: m(R, ρ).

Hence the problem can have a solution, and thus a minimizer can exist, only if m ≤ m(R, ρ).



10 Minimal Surfaces

2 Geometry of submanifolds of Rn+k

2.1 The standard connection of Rm

We denote by

∂i =
∂

∂xi
, i = 1, . . . ,m,

the standard basis of Rm. Thus these vectors are orthonormal with respect to the usual inner
product which we denote by 〈·, ·〉. A vector field defined on an open set Ω ⊂ Rm is a mapping
V : Ω→ Rm which we write as

Vp = V (p) =

m∑
i=1

vi(p)∂i,

where vi : Ω→ R, i = 1, . . . ,m, are (component) functions. Vector fields act on smooth functions
f as

V f =

m∑
i=1

vi(p)∂if, ∂if =
∂f

∂xi
.

Definition 2.2. Let X and V be vector fields such that V is smooth (i.e. the component functions
vi are smooth). Then the covariant derivative of V in the direction Xp is the vector(

∇̄XV
)
p

= (Xpv
1, Xpv

2, . . . , Xpv
m) ∈ Rm

and ∇̄XV is the vector field p 7→
(
∇̄XV

)
p
.

We denote by T (Ω) the set of all smooth vector fields on Ω ⊂ Rm.

Definition 2.3. The mapping

∇̄ : T (Ω)× T (Ω)→ T (Ω), ∇̄(X,Y ) = ∇̄XY,

is called the Levi-Civita connection on Ω. We also call it the standard connection on Ω ⊂ Rm.

The standard connection has the following properties:

1. ∇̄XY is C∞-linear in X: for every functions f, g ∈ C∞(Ω) and vector fields X,Y, V ∈ T (Ω)

∇̄fX+gY V = f∇̄XV + g∇̄Y V ;

2. ∇̄XY is R-linear in Y : for every a, b ∈ R, X, Y, V ∈ T (Ω)

∇̄X(aY + bV ) = a∇̄XY + b∇̄XV ;

3. ∇̄ satisfies the Leibniz rule: for every f ∈ C∞(Ω), X, Y ∈ T (Ω)

∇̄X(fY ) = f∇̄XY + (Xf)Y ;

4. ∇̄ is torsion-free: for every X,Y ∈ T (Ω)

∇̄XY − ∇̄YX = [X,Y ],

where [X,Y ] ∈ T (Ω) is the Lie bracket

[X,Y ]f = X(Y f)− Y (Xf);
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5. ∇̄ is compatible with the standard inner product 〈·, ·〉 of Rm: for every X,Y, Z ∈ T (Ω)

X〈Y,Z〉 = 〈∇̄XY, Z〉+ 〈Y, ∇̄XZ〉.

The standard connection ∇̄ is the unique mapping T (Ω)× T (Ω)→ T (Ω) satisfying the properties
above.

2.4 The Riemannian structure on a submanifold of Rm

Let Ω ⊂ Rn be an open set and ϕ : Ω→ Rm a smooth mapping. Recall that ϕ is an immersion if the
differential dϕ(x) : Rn → Rm is injective for all x ∈ Ω. If ϕ is one-to-one, the image M = ϕΩ ⊂ Rm
is called an immersed submanifold of Rm. If, in addition, ϕ is a homeomorphism onto ϕΩ ⊂ Rm,
then ϕ is an embedding and M = ϕΩ is an n-dimensional submanifold of Rm. Note that here M
has the relative topology. In general, a smooth manifold M ⊂ Rm is a submanifold of Rm if the
inclusion π : M ↪→ Rm, π(x) = x, is an embedding. [We use the notation π = (π1, π2, . . . , πm) for
the inclusion because then πi : M → R will be the projection to the xi-axis.]

If ϕ is an immersion, every point x ∈ Ω has a neighborhood U ⊂ Ω such that ϕ|U is an
embedding.

Let M ⊂ Rm be a smooth n-dimensional submanifold of Rm. Thus locally M can be
parametrized by a smooth homeomorphism ϕ : Ω → U , where Ω ⊂ Rn and U ⊂ M are open,
and the differential dϕ(x) at x is of rank n for every x ∈ Ω. We identify the tangent space
TpM,p ∈ U , with the image dϕ

(
ϕ−1(p)

)
Rn. Thus TpM is an n-dimensional vector subspace of Rm.

Each TpM inherits an inner product 〈·, ·〉 from Rm: for every vectors v, w ∈ TpM ,

〈v, w〉 = v · w,

where v · w is just the standard inner product in Rm. This induced inner product 〈·, ·〉 defines the
Riemannian metric (and thus the Riemannian submanifold structure) on M . For every p ∈M , the
inner product of Rm splits Rm orthogonally into

TpM ⊕ TpM⊥.

We write NpM = TpM
⊥ and call it the normal space of M at p. Furthermore, we denote by

TM =
⊔
p∈M

TpM and NM =
⊔
p∈M

NpM

the tangent and normal bundles, respectively.
Next we want to define a (in fact, the) Levi-Civita connection ∇ on M that satisfies conditions

1.-5. above, in particular, that is compatible with the induced Riemannian metric. Let X̃, Ỹ ∈ T (Ω)
be smooth vector fields in an open set Ω ⊂ Rm. Then at every p ∈ Ω(

∇̄X̃ Ỹ
)
p

=
(
∇̄X̃ Ỹ

)>
p

+
(
∇̄X̃ Ỹ

)⊥
p
,

where (
∇̄X̃ Ỹ

)>
p
∈ TpM and

(
∇̄X̃ Ỹ

)⊥
p
∈ NpM.

Definition 2.5. The Levi-Civita connection ∇ of M is simply the orthogonal projection on TM
of the standard connection of Rm. More precisely, let X,Y ∈ T (M) be smooth vector fields, i.e. at
each point p ∈M

Xp =

m∑
i=1

ai(p)∂i, Yp =

m∑
i=1

bi(p)∂i,
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where ai, bi : M → R are smooth functions. For each p ∈ M , let X̃ and Ỹ be (any) smooth
extensions of X and Y to a neighborhood (in Rm) of p. Then we define

(∇XY )p =
(
∇̄X̃ Ỹ

)>
p
∈ TpM,

where (
∇̄X̃ Ỹ

)>
p

is the orthogonal projection of
(
∇̄X̃ Ỹ

)
p

to TpM .

The properties 1.-3. are clearly true for ∇ and we leave it as an exercise to verify that ∇ is
torsion-free and compatible with the induced inner product (Riemannian metric). Note that ∇XY
is well-defined, i.e. does not depend on the extensions X̃ and Ỹ . This holds since(

∇̄X̃ Ỹ
)
p

depends only on Xp = X̃p and values of Ỹ along any path γ : ] − ε, ε[→ Rm, with γ0 = p and
γ̇0 = Xp. In particular, γ can be taken as a path γ : ]− ε, ε[→M along M .

2.6 The gradient, divergence, and the Laplacian on M

Let f : M → R be a C1-function and X ∈ TpM . Then

Xf = (f ◦ γ)′(0),

where γ : ]− ε, ε[→M is any C1-path, with γ(0) = p and γ̇0 = X. The gradient of f is defined as

∇Mf(p) =

n∑
i=1

(Xif)Xi,

where {Xi}ni=1 is an orthonormal basis of TpM . In particular, if f is a C1-function in a neighborhood
(in Rm) of p, then

∇Mf(p) =
(
∇f(p)

)>
,

where

∇f(p) =
m∑
i=1

∂if(p)∂i

is the standard gradient (in Rm) of f . Given a chart ϕ : U → Rn, U ⊂ M, and the corresponding
local parametrization F = ϕ−1 : ϕU → U we can write ∇Mf in U as

∇Mf =

n∑
i,j=1

gij
∂f

∂xi
∂F

∂xj
,

where gij : U → R, ∂f
∂xi

: U → R, and ∂F
∂xj

: U → TM are defined as

∂f

∂xi
(p) =

∂(f ◦ ϕ−1)

∂xi
(
ϕ(p)

)
,

∂F

∂xj
(p) =

(
∂F1

∂xj
(
ϕ(p)

)
, . . . ,

∂Fm
∂xj

(
ϕ(p)

))
∈ TpM,

gij(p) =
∂F

∂xi
(p) · ∂F

∂xj
(p),
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and (gij) is the inverse of the matrix (gij).

The divergence (on M) of a C1-smooth vector field V (not necessarily tangential) at p ∈ M is
defined as follows. Let {X1, X2, . . . , Xn, Yn+1, . . . , Ym} be an orthonormal basis of Rm such that
{X1, X2, . . . , Xn} forms a basis of TpM . We write

V =

n∑
i=1

viXi +

m∑
i=n+1

viYi.

Then

divM V (p) =
n∑
i=1

〈∇̄XiV,Xi〉 =
n∑
i=1

〈(
∇̄XiV

)>
, Xi

〉
.

Thus for a smooth vector field V ∈ T (M), divM V (p) is the trace of the linear map TpM →
TpM, v 7→ ∇vV . In local coordinates,

divM V =
1
√
g

n∑
i=1

∂

∂xi
(√
gvi
)
,

where g = det(gij). The Laplacian of a C2-function f ∈ C2(M) is defined as

∆Mf = divM ∇Mf =
1
√
g

n∑
i,j=1

∂

∂xi
(√
ggij

∂f

∂xj
)
.

2.7 The second fundamental form of M

We denote by N (M) the set of all smooth mappings V : M → Rm such that Vp ∈ NpM for all
p ∈M .

Definition 2.8. The second fundamental form of M is the map II : T (M)× T (M)→ N (M),

II(X,Y ) =
(
∇̄X̃ Ỹ

)⊥
,

where X̃ and Ỹ are smooth extensions of X and Y , respectively. [II reads as ”two”.]

Thus we have the Gauss formula on M :

∇̄XY = ∇XY + II(X,Y )

for vector fields X,Y ∈ T (M). Note again that the left hand side makes sense since
(
∇̄XY

)
p

depends only on Xp ∈ TpM and values of Y along any path γ : ] − ε, ε[→ M , with γ(0) = p and
γ̇0 = Xp.

Lemma 2.9. The second fundamental form is

(a) independent of extensions of X and Y ;

(b) symmetric in X and Y ;

(c) C∞-bilinear.
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Proof. Let X̃ and Ỹ be some extensions of X and Y . Since ∇̄ is torsion-free, we have

II(X,Y )− II(Y,X) =
(
∇̄X̃ Ỹ

)⊥
−
(
∇̄Ỹ X̃

)⊥
=
(
∇̄X̃ Ỹ − ∇̄Ỹ X̃

)⊥
= [X̃, Ỹ ]⊥.

Since X,Y ∈ T (M), that is X̃p = Xp ∈ TpM and Ỹp = Yp ∈ TpM at every point, also [X̃, Ỹ ]p ∈
TpM . It follows that [X̃, Ỹ ]⊥ = 0, and therefore II is symmetric. Since

(
∇̄XY

)
p

depends only on

Xp (and values of Y along any path γ : ]− ε, ε[→ M , with γ(0) = p and γ̇0 = Xp), it is clear that
II(X,Y ) is independent of the extension chosen for X and that II(X,Y ) is C∞(M)-linear in X. By
symmetry, the same holds for Y .

Lemma 2.10. [The Weingarten equation] Suppose X,Y ∈ T (M) and N ∈ N (M). Then on M
we have

〈∇̄XN,Y 〉 = −〈N, II(X,Y )〉,
where X,Y , and N are extended to Rm (and still denoted by X,Y,N).

Proof. Since Y ∈ T (M) and N ∈ N (M), we have 〈N,Y 〉 ≡ 0 on M . Furthermore, since X ∈ T (M),
we have on M

0 = X〈N,Y 〉 = 〈∇̄XN,Y 〉+ 〈N, ∇̄XY 〉
= 〈∇̄XN,Y 〉+ 〈N,∇XY + II(X,Y )〉
= 〈∇̄XN,Y 〉+ 〈N, II(X,Y )〉.

As a geometric interpretation we note that the second fundamental form IIp(V, V ) is the Euc-
lidean acceleration γ′′Eucl(0) of the geodesic on M with the initial velocity vector Vp = γ̇0 at p ∈M .
An explanation for this is the Gauss formula along a smooth path γ : I → Rm. More precisely, let
V : I → Rm be a smooth vector field along γ, i.e. Vt ∈ Tγ(t)Rm for all t ∈ I. Then

D̄tV = DtV + II(γ̇, V ),

where D̄tV = V ′t ∈ Rm. Now, if V = γ̇, then

D̄tγ̇ = Dtγ̇ + II(γ̇, γ̇),

and if γ is a geodesic on M (i.e. Dtγ̇ = 0), we further have

D̄tγ̇ = II(γ̇, γ̇).

Definition 2.11. The mean curvature vector H on M is (”the trace of the second fundamental
form”)

H =

n∑
i=1

II(Xi, Xi),

where X1, . . . , Xn is an orthonormal basis of TpM .

Note that Hp ∈ NpM . Exercise: If v1, v2, . . . , vn is an arbitrary basis of TpM and gij = 〈vi, vj〉,
then

Hp =

n∑
i,j=1

gij IIp(vi, vj),

where (gij) is the inverse of the matrix (gij).
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2.12 Hypersurfaces of Rm, the scalar second fundamental form, the Weingarten
map, and the shape operator

Let M be an (m− 1)-dimensional submanifold of Rm, i.e. a hypersurface.

Definition 2.13. The scalar second fundamental form of M is the symmetric 2-tensor defined by

h(X,Y ) = 〈II(X,Y ), N〉,

where N ∈ N (M) is a smooth unit normal vector field.

Since M is of co-dimension 1, the unit normal vector Np spans NpM at every point p ∈ M .
Hence

II(X,Y ) = h(X,Y )N.

Note that the sign of h depends on the choice of N (versus −N). We have the Gauss formula for
hypersurfaces of Rm:

∇̄XY = ∇XY + h(X,Y )N.

Definition 2.14. The Weingarten map L : TM → TM is defined as

LX = −∇̄XN.

Remarks 2.15. 1. Usually the Weingarten map is defined as LX = ∇̄XN . However, this is
just a matter of convention since changing the sign of N changes the sign of L as well. The
Weingarten map is also called the shape operator .

2. The target space is indeed TM . In fact, for each p ∈M , the Weingarten map is a self-adjoint
endomorphism of TpM ; see Lemma 2.16

Lemma 2.16. For each p ∈M , the Weingarten map is a self-adjoint endomorphism of TpM .

Proof. First we prove that, for each p ∈ M , the target space of L is TpM . Let Xp ∈ TpM be
arbitrary. Since 〈N,N〉 ≡ 1, we have

0 = Xp〈N,N〉 = 2〈(∇̄XN)p, Np〉.

Hence LXp = −(∇̄XN)p ∈ TpM. Clearly L is linear. To prove that it is self-adjoint, let p ∈M and
v, w ∈ TpM . By using the Weingarten equation and the symmetry of IIp, we obtain

〈Lv,w〉 − 〈v, Lw〉 = −〈∇̄vN,w〉+ 〈v, ∇̄wN〉
= 〈N, IIp(v, w)〉 − 〈N, II(w, v)〉
= 0.

Hence L is self-adjoint.

Remarks 2.17. On the terminology and notation:
The first fundamental form is just the restriction to TM of the standard inner product of Rm:

I(v, w) = 〈v, w〉.

The scalar second fundamental form is

h(v, w) = 〈II(v, w), N〉 = −〈∇̄vN,w〉
= 〈Lv,w〉.
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In literature, it is sometimes called the second fundamental form and denoted by II.
The third fundamental form is

III(v, w) = 〈L2v, w〉 = 〈Lv,Lw〉.

Since for every p ∈ M , L : TpM → TpM is self-adjoint, it follows from linear algebra that it
has real eigenvalues κ1, κ2, . . . , κm−1 and that there exists an orthonormal basis E1, E2, . . . , Em−1

of TpM consisting of eigenvectors: LEi = κiEi, i = 1, . . . ,m − 1. The eigenvalues of L are called
the principal curvatures and the corresponding eigenvectors are called principal directions.

If vectors X and Y are given in the orthonormal basis as

X =
m−1∑
i=1

xiEi and Y =
m−1∑
j=1

yjEj ,

then the scalar second fundamental form has a simple expression

h(X,Y ) =

〈
L
m−1∑
i=1

xiEi,
m−1∑
j=1

yjEj

〉

=
m−1∑
i=1

κix
iyi

Let us return to the general case of an n-dimensional submanifold M ⊂ Rm, with co-dimension
k = m − n ≥ 1. For each p ∈ M and a (unit) vector ν ∈ NpM , we define a symmetric bi-linear
form hν : TpM × TpM → R by

hν(v, w) = 〈IIp(v, w), ν〉

and a self-adjoint linear map Sν : TpM → TpM such that

〈Sν(v), w〉 = hν(v, w)

for all w ∈ TpM . The mapping hν could be called the scalar second fundamental form along ν and
Sν could be called the shape operator along ν.

Lemma 2.18. Let p ∈M, v ∈ TpM, and ν ∈ NpM . Furthermore, let N be a local smooth extension
of ν to a neighborhood U ⊂M of p such that N ∈ N (U), i.e. Nq ∈ NqM ∀q ∈ U . Then

Sν(v) = −
(
∇̄vN

)>
= −∇vN.

Proof. Let w ∈ TpM and let V,W ∈ T (U) be smooth extensions of v and w, respectively. Then
〈N,W 〉 ≡ 0, and therefore

〈∇̄VN,W 〉+ 〈N, ∇̄VW 〉 = V 〈N,W 〉 = 0.

It follows that

〈Sν(v), w〉 = 〈IIp(v, w), ν〉 = 〈II(V,W ), N〉p
= 〈∇̄VW −∇VW,N〉p = 〈∇̄VW,N〉p − 〈∇VW,N〉p︸ ︷︷ ︸

=0

= 〈∇̄VW,N〉p
= −〈∇̄VN,W 〉p.
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Hence

〈Sν(v), w〉 = −〈∇̄vN,w〉 ∀w ∈ TpM,

and so

Sν(v) = −
(
∇̄vN

)>
Let p ∈ M and ν ∈ NpM, |ν| = 1. Since Sν : TpM → TpM is self-adjoint, there exists an

orthonormal basis E1, E2, . . . , En of TpM consisting of eigenvectors associated with real eigenvalues
κ1, . . . , κ2 of Sν (SνEi = κiEi). I do not know whether these eigenvalues are called principal
curvatures in co-dimensions k > 1.

2.19 Curvatures on M

Let M ⊂ Rm be a smooth hypersurface and let p ∈ M . Since the determinant and trace of the
Weingarten map L : TpM → TpM are basis-independent, there are two combinations of eigenvalues
of L that are well-defined and geometrically significant.

The Gaussian curvature of M at p is the determinant

K = detL = κ1κ2 · · ·κm−1

and the mean curvature of M at p is the mean of the trace

H =
1

m− 1
trL =

1

m− 1

(
κ1 + κ2 + · · ·+ κm−1

)
.

Clearly the mean curvature changes its sign if the normal vector field is changed (from N to
−N). Similarly, if m− 1 is odd, the sign of the Gaussian curvature changes, whereas the Gaussian
curvature is independent of the choice of (the direction of) N if m− 1 is even, in particular, if M
is a hypersurface of R3.

Recall the definition of the Riemannian curvature tensor R : T (M)× T (M)× T (M)→ T (M),

RM (X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Note that the Riemannian curvature tensor R̄ of Rm vanishes identically.

The sectional curvature of a 2-dimensional subspace P ⊂ TpM spanned by vectors v, w ∈ TpM
is defined by

KM (P ) =
〈RM (v, w)w, v〉
|v ∧ w|2

,

where

|v ∧ w| =
√
|v|2|w|2 − 〈v, w〉2

is the area of the parallelogram spanned by v and w. Note that KM (P ) is independent of the
choice of linearly independent vectors v, w ∈ P . In general, sectional curvatures on a submanifold
of a Riemannian manifold are given in terms of sectional curvatures of the ambient space and the
second fundamental form. In our setting of a submanifold M of Rm this so-called Gauss equation
reads as follows:

KM (P )|v ∧ w|2 − K̄(P )|v ∧ w|2︸ ︷︷ ︸
=0

= 〈IIp(v, v), IIp(w,w)〉 − | IIp(v, w)|2.
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Here K̄(P ) denotes the sectional curvature of P with respect to the ambient space which in our
setting is Rm and therefore K̄ ≡ 0. In particular, for orthonormal vectors v, w ∈ P we have

K(P ) = 〈IIp(v, v), IIp(w,w)〉 − | IIp(v, w)|2

since K(P ) does not depend on v, w ∈ P provided P = span(v, w).

Let then M ⊂ Rm be a smooth hypersurface. Let E1, E2, . . . , Em−1 be an orthonormal basis of
TpM, p ∈M, consisting of the eigenvectors of L with eigenvalues κ1, . . . , κm−1. Then

IIp(Ei, Ej) = h(Ei, Ej)N,

where N ∈ NpM is a unit vector and

h(Ei, Ej) = 〈II(Ei, Ej), N〉 = −〈∇̄EiN,Ej〉
= 〈LEi, Ej〉 = κi〈Ei, Ej〉
= κiδij .

Hence IIp(Ei, Ej) = κiδijN and therefore

K(P ) = 〈IIp(Ei, Ei), IIp(Ej , Ej)〉 − | IIp(Ei, Ej)|2︸ ︷︷ ︸
=0

= κiκj

for a 2-dimensional subspace P = span(Ei, Ej) ⊂ TpM .

3 First variation formula and some of its consequences

3.1 Mean curvature and the Laplacian

We start with recalling the following Jacobi formula for the derivative of a determinant whose proof
is left as an exercise.

Lemma 3.2. Let aij : Rd → R be smooth functions, with i, j = 1, . . . , n, and let A = (aij). Then
in the open set {x ∈ Rm : detA 6= 0} we have

∂

∂x`
log detA = tr

(
∂A

∂x`
A−1

)
for ` = 1, . . . , d.

Writing A−1 = (aij), the right hand side reads as

n∑
i,j=1

∂aij
∂x`

aji,

and so

(3.3)
∂ detA

∂x`
= detA

n∑
i,j=1

∂aij
∂x`

aji.
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Suppose that M ⊂ Rm is a smooth n-dimensional submanifold and let ϕ : U → Ω ⊂ Rn be a chart
defined in an open set U ⊂M . Furthermore, let F = ϕ−1 : Ω→ U be local parametrization. As in
2.6 F induces a frame

{
∂F
∂xj

}
,(

∂F

∂xj

)
p

=

(
∂F1

∂xj
(
ϕ(p)

)
, . . . ,

∂Fm
∂xj

(
ϕ(p)

))
∈ TpM,

on U . Now

∇̄ ∂F
∂xi

∂F
∂xj

= ∂2F
∂xi∂xj

,(
∇̄ ∂F
∂xi

∂F
∂xj

)
p

=

(
∂2F1

∂xi∂xj
, . . . ,

∂2Fm
∂xi∂xj

)(
ϕ(p)

)
∈ Rm.

Hence the mean curvature vector Hp at p ∈ U is given by

Hp =
n∑

i,j=1

gij(p) IIp
(
∂F
∂xi
, ∂F
∂xj

)
=

n∑
i,j=1

gij(p)

(
∇̄ ∂F
∂xi

∂F
∂xj

)⊥
p

=

 n∑
i,j=1

gij(p)
∂2F

∂xi∂xj
(
ϕ(p)

)⊥ .
Next we express the mean curvature vector as the Laplacian (on M) of the inclusion π : M ↪→ Rm.

Theorem 3.4. Suppose that M ⊂ Rm is a smooth n-dimensional submanifold and let π : M ↪→
Rm, π = (π1, . . . , πm), be the inclusion. Then

Hp = ∆Mπ(p) =
(
∆Mπ1, . . . ,∆

Mπm
)
(p)

for p ∈M .

Proof. Fix p ∈M and let ϕ : U → Ω ⊂ Rn be a chart at p and

∂

∂xi
, i = 1, . . . , n,

the coordinate frame associated to the chart (U,ϕ). Furthermore, let F = ϕ−1 : Ω → U be the
corresponding (local) parametrization. Then, in fact,(

∂

∂xj

)
p

πi =
∂

∂xj
(
πi ◦ ϕ−1︸ ︷︷ ︸
=πi◦F=Fi

)(
ϕ(p)

)
=
∂Fi
∂xj

(
ϕ(p)

)
.

First we claim that ∆Mπ(p) ∈ NpM , that is

∆Mπ(p) · ∂F
∂xk

= ∆Mπ(p) · ∂π
∂xk

= 0
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for all k = 1, . . . , n. We compute by using (3.3) and the symmetry of (gij)

∆Mπ(p) · ∂π
∂xk

=
( 1
√
g

n∑
i,j=1

∂

∂xi
(√
ggij ∂π

∂xj

))
· ∂π
∂xk

=
1
√
g

n∑
i,j=1

∂

∂xi

(√
ggij

∂π

∂xj
· ∂π
∂xk︸ ︷︷ ︸

=gjk

)
−

n∑
i,j=1

gij
∂π

∂xj
· ∂2π

∂xi∂xk

=
1
√
g

n∑
i,j=1

∂

∂xi

(√
g gijgjk︸ ︷︷ ︸

δik

)
−

n∑
i,j=1

gij
∂π

∂xj
· ∂2π

∂xi∂xk

=
1
√
g

∂
√
g

∂xk
−

n∑
i,j=1

gij
∂π

∂xj
· ∂2π

∂xi∂xk

=
1
√
g

1

2
√
g

∂g

∂xk
−

n∑
i,j=1

gij
∂π

∂xj
· ∂2π

∂xi∂xk

=
1

2

n∑
i,j=1

gij
∂

∂xk

〈 ∂π
∂xi

,
∂π

∂xj

〉
−

n∑
i,j=1

gij
∂π

∂xj
· ∂2π

∂xi∂xk

=
1

2

n∑
i,j=1

gij
(

∂2π

∂xi∂xk
· ∂π
∂xj

+
∂2π

∂xj∂xk
· ∂π
∂xi

)
−

n∑
i,j=1

gij
∂π

∂xj
· ∂2π

∂xi∂xk

= 0.

Thus ∆Mπ(p) ∈ NpM since
(
∂π
∂xk

)
p
, k = 1, . . . , n, forms a basis of TpM . Furthermore,

∆Mπ(p) =
1
√
g

n∑
i,j=1

∂

∂xi

(√
ggij

∂π

∂xj

)
=

1
√
g

n∑
i,j=1

∂

∂xi

(√
ggij

) ∂π
∂xj︸ ︷︷ ︸

∈TpM

+

n∑
i,j=1

gij
∂2π

∂xi∂xj
.

On the other hand, since ∆Mπ(p) ∈ NpM , we have

∆Mπ(p) =
(
∆Mπ(p)

)⊥
=
( 1
√
g

n∑
i,j=1

∂

∂xi

(√
ggij

) ∂π
∂xj

)⊥
︸ ︷︷ ︸

=0

+
( n∑
i,j=1

gij
∂2π

∂xi∂xj

)⊥

=
( n∑
i,j=1

gij
∂2π

∂xi∂xj

)⊥
= Hp

as claimed.

3.5 First variation formula

Let Ω ⊂ Rn be an open set and f : Ω→ Rm an immersion. Denote M = fΩ. Since every x ∈ Ω has
a neighborhood U ⊂ Ω such that f |Ω is an embedding, we can define the ”tangent space” Tf(x)M
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and the normal space Nf(x)M as Tf(x)M = Tf(x)U = df(x)Rn and Nf(x)M = Nf(x)U although f
need not be injective. Furthermore, let ϕ ∈ C∞0 (Ω) be a smooth real-valued function with compact
support in Ω and let N : Ω → Sm−1 be a smooth mapping such that Nx = N(x) ∈ Nf(x)M for
every x ∈ Ω. We define a variation of M (more precisely, a variation of the immersion f : Ω→ Rm)
with compact support as a mapping

F : Ω×]− ε, ε[→ Rm, F (x, t) = f(x) + tϕ(x)Nx.

Here ε > 0 is so small that F : Ω̃×] − ε, ε[→ Rm is an immersion, where Ω̃ = {x ∈ Ω: ϕ(x) 6= 0}.
To prove that such ε exists, we have to show that dF (x, t) is injective if x ∈ Ω̃ and |t| < ε. To
that end, we write the matrix of dF (x, t) in the standard bases of Rn+1 = Rn × R and Rm as the
m× (n+ 1)-matrix (

df(x) 0
)

+
(
td
(
ϕ(x)Nx

)
ϕ(x)Nx

)
.

Above df(x) and td
(
ϕ(x)Nx

)
are m×n-matrices and 0 and ϕ(x)Nx are m× 1-matrices (columns).

Since ϕ ∈ C∞0 (Ω) and f is an immersion, we have

m1 = inf
x∈Ω̃
{min |df(x)v| : |v| = 1} > 0 and

m2 = sup
x∈Ω̃

{max |d
(
ϕ(x)Nx

)
v| : |v| = 1} <∞.

Thus we may choose 0 < ε < m1/m2. Suppose that the vector w = (wx, wt) ∈ Rn × R belongs to
the kernel of dF (x, t), with (x, t) ∈ Ω̃×]− ε, ε[. Then

0 = df(x)wx + td
(
ϕ(x)Nx

)
wx + ϕ(x)wtNx

=
(
df(x) + td

(
ϕ(x)Nx

))
wx + ϕ(x)wtNx.

Now, if |t| < ε and wx 6= 0, we would have(
df(x)wx + td

(
ϕ(x)Nx

)
wx︸ ︷︷ ︸

∈Tf(x)M

)>
6= 0

which is impossible since ϕ(x)wtNx ∈ Nf(x)M . It follows that wx = 0. Since ϕ(x) 6= 0 in Ω̃, we
also have wt = 0. Hence dF (x, t) is injective. Denote by {∂x1 , ∂x2 , . . . , ∂xn , ∂t} the standard basis
of Rn+1 and define vector fields Fxi and Ft along F by setting

Fxi(x, t) = dF (x, t)∂xi and Ft(x, t) = dF (x, t)∂t.

Then Fxi and Ft commute because

[Fxi , Ft] = dF [∂xi , ∂t]︸ ︷︷ ︸
=0

= 0.

Note that Ft(x, 0) = dF (x, 0)∂t = ϕ(x)Nx ∈ Nf(x)M. We define

gij(x, t) = 〈Fxi(x, t), Fxj (x, t)〉

and g(x, t) = det gij(x, t). The volume of Mt = F (Ω, t) is given by

VolMt =

∫
Ω

√
g(x, t)dx.



22 Minimal Surfaces

Hence

d

dt
VolMt|t=0 =

∫
Ω

∂

∂t

√
g(x, t)

|t=0
dx

=
1

2

∫
Ω

1√
g(x, 0)

∂

∂t
g(x, t)|t=0dx

=
1

2

∫
Ω

√
g(x, 0)

n∑
i,j=1

gij(x, 0)
∂gij(x, t)

∂t |t=0
dx

=
1

2

∫
Ω

√
g(x, 0)

n∑
i,j=1

gij(x, 0)
∂

∂t
〈Fxi , Fxj 〉(x, t)|t=0

dx

=
1

2

∫
Ω

√
g(x, 0)

n∑
i,j=1

gij(x, 0)
(〈
∇̄FtFxi , Fxj

〉
+
〈
∇̄FtFxj , Fxi

〉)
(x, 0)dx

=

∫
Ω

√
g(x, 0)

n∑
i,j=1

gij(x, 0)
〈
∇̄FtFxi , Fxj

〉
(x, 0)dx

=

∫
Ω

√
g(x, 0)

n∑
i,j=1

gij(x, 0)
〈
∇̄FxiFt, Fxj

〉
(x, 0)dx

=

∫
Ω

√
g(x, 0)

n∑
i,j=1

gij(x, 0)
〈
∇̄Fxi

(
ϕ(x)Nx), Fxj

〉
(x, 0)dx

= −
∫

Ω

√
g(x, 0)

n∑
i,j=1

gij(x, 0)
〈
II
(
Fxi , Fxj

)
, ϕ(x)Nx

〉
(x, 0)dx

= −
∫

Ω

√
g(x, 0)

〈
Hf(x), ϕ(x)Nx

〉
(x, 0)dx

= −
∫
M
〈H,V 〉.

Above Hf(x) denotes the mean curvature vector at f(x) of fU , where U is a sufficiently small
neighborhood of x so that f |U is an embedding. Moreover, the last expression

−
∫
M
〈H,V 〉

should be interpreted as a shorthand notation in case the immersion f : Ω→ Rm is non- injective,
whereas Vp = ϕ(f−1(p))Nf−1(p) for an injective immersion f .

Above we considered a ”normal” variation with compact support, i.e. Nx ∈ Sm−1 is assumed
to be normal to M at f(x); Nx ∈ Nf(x)M . For a general case, we decompose an arbitrary smooth
mapping X : Ω→ Sm−1 as

X = X> +X⊥,

where X>x ∈ Tf(x)M and X⊥ ∈ Nf(x)M . Then a variation in direction X is F : Ω×]− ε, ε[→ Rm,

F (x, t) = f(x) + tϕ(x)Xx = f(x) + tϕ(x)X>x + tϕ(x)X⊥x .

The tangential variation f(x) + tϕ(x)X>x preserves the volume of M , and therefore the general
case reduces to a normal variation. We get the following characterization from the first variation
formula.
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Theorem 3.6. An immersed submanifold M ⊂ Rm is a critical point of the volume functional
for all compactly supported variations if and only if the mean curvature vector vanishes identically;
H ≡ 0.

Proof. If H ≡ 0, then M is clearly a critical point for all compactly supported variations. Con-
versely, supposing the M is a critical point, the above shows that∫

M
〈H,V 〉 = 0

for all smooth V : M → Rm with compact support. In particular, this holds for V = ϕH for every
non-negative ϕ ∈ C∞0 (M). Hence H ≡ 0.

Definition 3.7. An immersed submanifold M ⊂ Rm is minimal if H ≡ 0 on M .

Remark 3.8. Let X : M → Rm be smooth and compactly supported. It follows from the proof of
the first variation formula that

d

dt
Vol(Mt)|t=0 =

∫
Ω

√
g(x, 0)

n∑
i,j=1

gij(x, 0)
〈
∇̄FxiX,Fxj

〉
(x, 0)dx =

∫
M

divM X

for a variation in direction X.

Lemma 3.9. An immersed submanifold M is minimal if and only if∫
M

divM X = 0

for all smooth (not necessary tangential) X : M → Rm with compact support.

Theorem 3.10. Let Mn ⊂ Rm be a smooth manifold and let π = (π1, . . . , πm) : M ↪→ Rm be the
inclusion. Then M is minimal if and only if each coordinate function πi : M → R is harmonic.

Proof. This follows directly from Theorem 3.4 which states that ∆Mπ = H.

The result above could be proved also by applying a weak formulation of harmonicity. For that
purpose, let η ∈ C∞0 (M) be a real-valued smooth function with compact support and let Ei be the
(constant) i-th coordinate vector field on Rm,

Ei = (0, 0, . . . , 0,
i
1, 0, . . . , 0).

Then ∇̄XEi ≡ 0 for every vector field X. Furthermore, ηEi is a smooth (not necessary tangential)
vector field on M with compact support and

divM (ηEi) = η divM Ei + 〈∇Mη,Ei〉.

By the definition of the divergence divM we obtain

divM Ej =
n∑
j=1

〈
∇̄XjEi, Xj

〉
= 0,

where {X1, . . . , Xn} forms a basis of TpM . Hence∫
M

divM (ηEi) =

∫
M
〈∇Mη,Ei〉 =

∫
M
〈∇Mη,∇Mπi〉.
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Since M is minimal, we have ∫
M

divM (ηEi) = 0,

and so

(3.11)

∫
M
〈∇Mη,∇Mπ〉 = 0

for all i = 1, . . . ,m and η ∈ C∞0 (M). That is, each πi is harmonic (in the weak sense). Conversely,
if each πi is harmonic, then (3.11) holds for all i = 1, . . . ,m and η ∈ C∞0 (M). Let

X =
m∑
i=1

ηiEi

be an arbitrary smooth vector field with compact support. Then∫
M

divM X =
m∑
i=1

∫
M

divM (ηiEi) =
m∑
i=1

∫
M
〈∇Mηi,∇Mπi〉 = 0.

3.12 Some consequences

Recall that the convex hull of a compact set K ⊂ Rm is the smallest convex set, denoted by
Conv(K), containing K. It is the intersection of all closed half-spaces containing K.

Corollary 3.13. Let Mn ⊂ Rm be a minimal surface such that M̄ = M ∪ ∂M is compact. Then
M̄ ⊂ Conv(∂M).

Proof. This follows from the harmonicity of πi and the maximum principle for harmonic functions.
Every closed half-space H ⊂ Rm can be written in a form

H = {x ∈ Rm : x · e ≤ a}

for some e ∈ Sm−1 and a ∈ R. Denote it by H = H(e, a). For each e ∈ Sm−1 and a ∈ R, the
function

u(x) = 〈x, e〉 =
m∑
i=1

eixi

is harmonic on M since

∆mu =

m∑
i=1

ei∆
Mπi = 0.

By the maximum principle for harmonic functions

u|M ≤ maxu|∂M =: me.

It follows that
Conv(∂M) =

⋂
e∈Sm−1

H(e,me)

and
u(x) = 〈x, e〉 ≤ me ∀x ∈M,

so
M̄ ⊂ H(e,me) ∀e ∈ Sm−1.
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Hence

M ⊂ Conv(∂M).

Corollary 3.14. Suppose that M2 ⊂ Rm is a minimal surface which is topologically a disk and that
M̄ = M ∪ ∂M is compact. Suppose that K ⊂ Rm is a compact convex set such that K ∩ ∂M = ∅.
Then each component of K ∩M is simply connected.

Proof. Suppose that there exists a component of K ∩M that is not simply connected. Then there
exits a Jordan curve γ that does not bound a topogical disk in K ∩M . On the other hand, since
M is simply connected, γ bounds a topological disk D ⊂M . Now ∂D = γ ⊂ K but D 6⊂ K. This
is a contradiction since Conv(∂D) ⊂ K and, as a minimal surface, D ⊂ Conv(∂D).

4 Bernstein’s theorem

4.1 The Gauss map

Let M ⊂ Rm be an oriented smooth hypersurface, i.e. an (m − 1)-dimensional submanifold. The
Gauss map is a continuous (choice of a) unit normal vector field N : M → Sm−1, Nx ∈ NxM . The
differential of N at x ∈M ,

dN(x) : TxM → TNxSm−1,

can be identified with − the Weingarten map at x,

−L : TxM → TxM,

as follows. Let E1, . . . , Em−1 be a local orthonormal frame on M . Since Ei ⊥ N ∀i and Nx itself
is normal to Sm−1 at Nx ∈ Sm−1, vector fields E1, . . . , Em−1 form an orthonormal frame on the
image N(M) as well. Then the matrix of dN with respect to {Ei}m−1

i=1 is given by

(dN)ij =
(
〈∇̄EjN,Ei〉

)
= −

(
〈N, ∇̄EjEi〉

)
= −

(
〈N, II(Ej , Ei)〉

)
= −

(
h(Ej , Ei)

)
,

where h is the scalar second fundamental form. On the other hand, LX = −∇̄XN , and so

(dN)ij = −
(
〈LEj , Ei〉

)
= −(L)ij .

Let us consider next the case m = 3 and suppose that M2 ⊂ R3 is minimal. Since the mean
curvature vanishes identically, the eigenvalues of dN = −L are κ ≥ 0 and −κ. Hence the matrix of
dN in the orthonormal basis formed by the eigenvectors is the diagonal matrix(

κ 0
0 −κ

)
.

The determinant is det dN = −κ2 = K (the Gauss curvature) and the (operator) norm of dN is
|dN | = κ. Thus the Gauss map is (anti)conformal (|dN |2 = −det dN). Combining the Gauss map
N : M → S2 with the stereographic projection P : S2 → C ∪ {∞} we obtain that P ◦ N : M →
C ∪ {∞} is (anti)meromorphic.
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4.2 Mean curvature and Gauss curvature of a graph

For notational simplicity let us consider the case m = 3. Suppose that M ⊂ R3 is the graph of a
smooth function u : Ω→ R, with Ω ⊂ R2 open. Then M is parametrized by F : Ω→M, F (x, y) =(
x, y, u(x, y)

)
. The vector fields

X1 = ∂xF = (1, 0, ux) and X2 = ∂yF = (0, 1, uy)

form a frame on M . The components of the metric are given by

g11 = X1 ·X1 = 1 + u2
x, g22 = X2 ·X2 = 1 + u2

y, and g12 = g21 = uxuy.

Hence

(gij) =

(
1 + u2

x uxuy
uxuy 1 + u2

y

)
,

its determinant is g = det(gij) = 1 + |∇u|2, and the inverse

(gij) =
1

1 + |∇u|2

(
1 + u2

y −uxuy
−uxuy 1 + u2

x

)
.

Furthermore, the upwards pointing unit normal (field) is

N =
X1 ×X2

|X1 ×X2|
=

(−ux,−uy, 1)√
1 + |∇u|2

.

Now we can compute

∇̄X1X1 = (0, 0, X1ux) = (0, 0,∇ux ·X1) = (0, 0, uxx),

II(X1, X1) =
(
∇̄X1X1

)⊥
=

(0, 0, uxx) · (−ux,−uy, 1)√
1 + |∇u|2

N =
uxx√

1 + |∇u|2
N ;

∇̄X1X2 = ∇̄X2X1 = (0, 0, uxy),

II(X1, X2) = II(X2, X1) =
(
∇̄X1X2

)⊥
=

uxy√
1 + |∇u|2

N ;

∇̄X2X2 = (0, 0, uyy),

II(X2, X2) =
(
∇̄X2X2

)⊥
=

uyy√
1 + |∇u|2

N ;

Hence the mean curvature vector is

H = g11 II(X1, X1) + 2g12 II(X1, X2) + g22 II(X2, X2)

=
1

(
√

1 + |∇u|2)3/2

(
(1 + u2

y)uxx + (1 + u2
x)uyy − 2uxuyuxy

)
N

= div

(
∇u√

1 + |∇u|2

)
N.

This is the reason why

div
∇u√

1 + |∇u|2
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is also called the mean curvature operator .
The Gauss curvature of M is, by the Gauss equation,

K =
〈II(X1, X1), II(X2, X2)〉 − | II(X1, X2)|2

|X1 ∧X2|2
=
〈uxxN, uyyN〉 − u2

xy

(1 + |∇u|2)2
=
uxxuyy − u2

xy

(1 + |∇u|2)2
.

4.3 Bernstein’s theorem

We start with introducing the squared norm of the second fundamental form. Let Mn ⊂ Rm be
a smooth submanifold, E1, . . . , En a local orthonormal frame, and X1, . . . , Xn an arbitrary frame,
with gij = 〈Xi, Xj〉. The mean curvature vector is given by

H =

n∑
i=1

II(Ei, Ei) =

n∑
i,j=1

gij II(Xi, Xj).

The squared norm of the second fundamental form is

| II |2 =

n∑
i,j=1

| II(Ei, Ej)|2 =
n∑

i,j,k,`=1

gijgk`〈II(Xi, Xk), II(Xj , X`)〉.

It is often denoted by |A|2. As an example, consider a hypersurface M ⊂ Rm and let κ1, . . . , κm−1 be
the eigenvalues of the Weingarten map with eigenvectors E1, . . . , Em−1 forming a local orthonormal
frame. Then

| II |2 =
m−1∑
i,j=1

| II(Ei, Ej)|2 =
m−1∑
i=1

κ2
i .

By the Cauchy-Schwarz inequality, we get an estimate

H2 =
(

1
m−1 trL

)2
≤ 1

m− 1
| II |2

for the mean curvature H of M .
For the rest of the section we assume that M ⊂ R3 is a smooth surface.

Definition 4.4. A smooth surface M ⊂ R3 is said to have finite total curvature if∫
M
| II |2 <∞.

If M is a minimal surface, the Gauss curvature is K = −κ2, where κ ≥ 0 and −κ are the
principal curvatures (eigenvalues of the Weingarten map) and

| II |2 = κ2 + (−κ)2 = 2κ2 = −2K.

Moreover, det dN = −κ2 = K. Hence a minimal surface M ⊂ R3 has finite total curvature if∫
M

(−K) = −
∫
M
K <∞.

In terms of the Gauss map ∫
M
K =

∫
M

det dN

which is the (negative) area of the image N(M) with multiplicity counted.
The following lemma provides a tool to estimate the total curvature of a minimal graph. It will

be used in the proof of Bernstein’s theorem.
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Lemma 4.5. Let Ω ⊂ R2 be an open set, u : Ω→ R a smooth solution to

div
∇u√

1 + |∇u|2
= 0,

and M = {(x, u(x)) ∈ R2 × R : x ∈ Ω} the corresponding minimal graph. Furthermore, let η : Ω ×
R → [0,∞) be a Lipschitz function such that η|M has a compact support. Then there exists an
absolute constant C such that

(4.6)

∫
M
| II |2η2 ≤ C

∫
M
|∇Mη|2.

Proof. Let ω be the area 2-form of S2. Since ω is closed and the punctured sphere U = S2\{0, 0,−1)
is contractible, there exists a 1-form α on U such that ω|U = dα. Let D be the upper hemisphere.
Then

(4.7) sup{|α(X)| : X ∈ TD, |X| = 1} =: Cα <∞.

Let ωM be the area 2-form of M and let N : M → S2 be the (upwards pointing) Gauss map, that
is,

Np =
(−ux(x, y),−uy(x, y), 1)√

1 + |∇u(x, y)|2

at p = (x, y, u(x, y)) ∈M . Since M is minimal and the pull-back and exterior derivative commute,
we have

| II |2ωM = −2KωM = −2 det(dN)ωM︸ ︷︷ ︸
=N∗ω

= −2N∗ω = −2N∗(dα) = −2d(N∗α).

On the other hand, by (4.7), we have

|N∗α| = sup
|X|=1

|N∗α(X)| = sup
|X|=1

|α(dN(X))| ≤ Cα
√
−K =

Cα| II |√
2

since Np ∈ D for all p ∈M and |dN(X)| ≤ |dN | = κ =
√
−K for unit vectors X. Applying Stokes’

theorem and the Cauchy-Schwarz inequality we obtain∫
M
| II |2η2 =

∫
M
| II |2η2ωM = −2

∫
M
η2dN∗α

= 4

∫
M
ηdη ∧N∗α− 2

∫
M
d(η2N∗α)︸ ︷︷ ︸

=0

≤ 4

∫
M
η|dη||N∗α|

≤ 2
√

2Cα

∫
M
η|∇Mη|| II |

≤ 2
√

2Cα

(∫
M
| II |2η2

)1/2(∫
M
|∇Mη|2

)1/2

.

Hence ∫
M
| II |2η2 ≤ 8C2

α

∫
M
|∇Mη|2.
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The idea of the proof of Bernstein’s theorem is to show that M is of (conformally) parabolic
type. Then it is possible to choose, for every compact set K ⊂M , a Lipschitz function η such that
η = 1 in K and the right hand side of (4.6) is as small as we wish. The parabolicity follows from
the area estimate (1.9). More precisely, we have the following:

Lemma 4.8. Let Ω, u, and M be as in Lemma 4.5. Suppose that Ω contains a disk B2(y, 2kR), k ∈
N and denote M(r) = M ∩B3((y, u(y)), r), r ≤ 2kR. Then∫

M(R)
| II |2 ≤ C/k.

Proof. Without loss of generality, we may assume that (y, u(y)) = 0 ∈ R3. We define η : R3 → [0, 1]
by setting

η(x) =


1, if |x| ≤ R,
log 2kR

|x|
k log 2 , if R ≤ |x| ≤ 2kR,

0, if |x| ≥ 2kR.

Then ∇Mη(z, u(z)) = ∇η(z, u(z)) = 0 if
√
z2 + u2(z) < R or

√
z2 + u2(z) > 2kR and

(4.9) |∇Mη(z, u(z))| ≤ |∇η(z, u(z))| ≤ 1√
z2 + u2(z)k log 2

for R ≤
√
z2 + u2(z) ≤ 2kR. Combining (4.9) and the area estimate (1.9) we obtain∫

M(R)
| II |2 ≤

∫
M(2kR)

| II |2η2 ≤ c
∫
M(2kR)

|∇Mη|2

= c
k∑
`=1

∫
M(2`R)\M(2`−1R)

|∇Mη|2

≤ c
k∑
`=1

(2`R)2

(2`−1Rk)2

≤ C

k
.

Theorem 4.10 (Bernstein’s theorem). Let u : R2 → R be a solution to

(4.11) div
∇u√

1 + |∇u|2
= 0.

Then u is affine, that is, u(x, y) = ax + by + c for some constants a, b, c ∈ R. In particular, its
graph M is an affine hyperplane.

Proof. Since u is a solution to (4.11) in the whole R2, we may apply the previous lemma with an
arbitrary large R and let k → ∞. Hence | II |2 ≡ 0 on M , and therefore all the eigenvalues of the
Weingarten map vanish identically on M . Consequently, the Gauss map is a constant and hence
M is an affine hyperplane.
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5 Parametric surfaces

5.1 Isothermal coordinates

We want local coordinates for a surface such that the metric is conformal to the Euclidean metric.
In dimension 2, it is always possible to find such local (isothermal) coordinates.

Suppose that Ω ⊂ R2 is an open set and F : Ω→ Rm, F = (F1, . . . , Fm), is an immersion. We
denote M = FΩ and (as usual)

Xi =
∂F

∂xi
=

(
∂F1

∂xi
, . . . ,

∂Fm
∂xi

)
, i = 1, 2.

Since F is an immersion, every point z = (x1, x2) ∈ Ω has a neighborhood U such that F |U
is an embedding. Then X1(z), X2(z) form a basis of TF (z)U . We say that F is an isothermal
parametrization of M if

g11 = 〈X1, X1〉 = λ2 = g22 = 〈X2, X2〉, g12 = g21 = 〈X1, X2〉 ≡ 0,

where λ = λ(x1, x2) > 0. Then det(gij) = λ4 and gij = λ−2δij . The mean curvature vector (of U)
at p = F (z), z ∈ U , is given by

Hp =

 2∑
i,j=1

gij
∂2F

∂xi∂xj
(z)

⊥

=
1

λ2

(
∂2F

∂x2
1

(z) +
∂2F

∂x2
2

(z)

)⊥
=

1

λ2
(∆F (z))⊥ ,

where ∆F = (∆F1, . . . ,∆Fm). We prove next that ∆F is, in fact, normal to M . Since

∂F

∂x1
· ∂F
∂x1
≡ ∂F

∂x2
· ∂F
∂x2

and
∂F

∂x2
· ∂F
∂x1
≡ 0

we get by differentiating the first identify with respect to x1 and the second with respect to x2 that

∆F · ∂F∂x1 = 0.

Similarly, changing the roles of x1 and x2 we get

∆F · ∂F∂x2 = 0.

Hence ∆F is normal to M , and so

(5.2) ∆F (z) = λ2HF (z),

where HF (z) is the mean curvature vector of FU at F (z), with U a sufficiently small neighborhood
of z so that F |U is an embedding. We immediately get the following:



Fall 2014 31

Theorem 5.3. Let F : Ω → Rm be an immersion with isothermal parameters (conformal immer-
sion). Then M = FΩ is minimal if and only if each coordinate function Fi : Ω → R is harmonic,
i.e. ∆Fi = 0. Since the target space is Rm, this is equivalent to F being a harmonic mapping.

Let F : Ω → Rm, Ω ⊂ R2, be an immersion (not necessarily conformal). We define complex-
valued functions φk : Ω→ C, k = 1, . . . ,m by setting

(5.4) φk(z) =
∂Fk
∂x1

(z)− i∂Fk
∂x2

(z), z = x1 + ix2.

Then we obtain the identities:

(5.5)
m∑
k=1

φ2
k =

m∑
k=1

(
∂Fk
∂x1

)2

−
m∑
k=1

(
∂Fk
∂x2

)2

− 2i
m∑
k=1

∂Fk
∂x1
· ∂Fk
∂x2

= g11 − g22 − 2ig12

and

(5.6)

m∑
k=1

|φk|2 =

m∑
k=1

(
∂Fk
∂x1

)2

+

m∑
k=1

(
∂Fk
∂x2

)2

= g11 + g22.

Hence we have:

Lemma 5.7. (a) The map z 7→ φk(z) is analytic if and only if Fk is harmonic.

(b) Coordinates x1 and x2 are isothermal if and only if

(5.8)

m∑
k=1

φ2
k ≡ 0.

(c) If x1 and x2 are isothermal, then M is regular if and only if

(5.9)

m∑
k=1

|φk|2 > 0.

Remark 5.10. Condition (c) requires an explanation: There we have just assumed that F : Ω→
Rm is differentiable. Furthermore, isothermal coordinates should be interpreted in a broader sense,
i.e. we allow λ2 = g11 = g22 = 0, and finally M being regular at F (z) means that the vectors

∂F

∂x1
(z) and

∂F

∂x1
(z)

are linearly independent.

Proof. Suppose that Fk is harmonic and write

φk =
∂Fk
∂x1︸︷︷︸
=u

−i ∂Fk
∂x2︸︷︷︸
=v

= u+ iv.

Then we have
∂u

∂x1
− ∂v

∂x2
=
∂2F

∂x2
1

+
∂2F

∂x2
2

= 0.
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On the other hand,

∂u

∂x2
=

∂2F

∂x2∂x1
=

∂2F

∂x1∂x2
= − ∂v

∂x1
.

Hence the Cauchy-Riemann equations hold for u and v, and consequently φk is analytic. Suppose,
conversely, that φk is analytic. Then

0 =
∂

∂z̄
φk =

1

2

(
∂

∂x1
φk + i

∂

∂x2
φk

)
=

1

2

(
∂

∂x1

(
∂Fk
∂x1
− i∂Fk

∂x2

)
+ i

∂

∂x2

(
∂Fk
∂x1
− i∂Fk

∂x2

))
=

1

2

(
∂2Fk
∂x2

1

− i ∂2Fk
∂x1∂x2

+ i
∂2Fk
∂x2∂x1

+
∂2Fk
∂x2

2

)
,

and therefore Fk is harmonic. The condition (b) follows immediately from (5.5) and (c) follows
from (5.6).

Theorem 5.11. Suppose that F : Ω → Rm defines a regular minimal surface M with isothermal
parameters. Then the functions φk in (5.4) are analytic satisfying (5.8) and (5.9). Conversely, let
φ1, φ2, . . . , φm be analytic functions of z = x1 + ix2 in a simply connected domain Ω ⊂ C satisfying
(5.8) and (5.9). Then there exists a (regular) minimal surface M parametrized by an immersion
F : Ω→ Rm, F = (F1, . . . , Fm) such that

φk =
∂Fk
∂x1
− i∂Fk

∂x2
.

Proof. Suppose that F : Ω→ Rm defines a regular minimal surface M with isothermal parameters.
By Theorem 5.3, each Fk is harmonic, and hence φk is analytic satisfying (5.8) and (5.9) by
Lemma 5.7. To prove the converse direction, define

(5.12) Fk(x1, x2︸ ︷︷ ︸
=z

) = <
∫ z

z0

φk(ζ)dζ,

with a fixed z0 ∈ Ω. Since φk is analytic and Ω is simply connected, the map

z 7→
∫ z

z0

φk(ζ)dζ

is a well-defined analytic map in Ω (independent of the choice of a path joining z0 to z in Ω). Hence
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Fk is harmonic. On the other hand,

φk(z) =
∂

∂z

∫ z

z0

φk(ζ)dζ

=
∂

∂z

(
<
∫ z

z0

φk(ζ)dζ︸ ︷︷ ︸
=Fk

+i=
∫ z

z0

φk(ζ)dζ︸ ︷︷ ︸
=:Gk

)

=
1

2

(
∂

∂x1
− i ∂

∂x2

)
(Fk + iGk)

=
1

2

(
∂Fk
∂x1

+ i
∂Gk
∂x1

− i∂Fk
∂x2

+
∂Gk
∂x2

)
=

1

2

(
∂Fk
∂x1
− i∂Fk

∂x2
− i∂Fk

∂x2
+
∂Fk
∂x1

)
=
∂Fk
∂x1
− i∂Fk

∂x2
,

where we used the Cauchy-Riemann equations

∂Fk
∂x1

=
∂Gk
∂x2

,
∂Fk
∂x2

= −∂Gk
∂x1

for the real and imaginary part of the analytic function φk. By Lemma 5.7, parameters x1 and x2

are isothermal, and hence M is minimal by Theorem 5.3.

5.13 Weierstrass-Enneper representation

Consider next the case m = 3. As before, let φk : Ω→ C, k = 1, 2, 3, be analytic. We can describe
explicitly all solutions to

(5.14) φ2
1 + φ2

2 + φ2
3 = 0.

Lemma 5.15. Let D ⊂ C be a domain, g an arbitrary meromorphic function in D, and f an
analytic function in D such that at each point where g has a pole of order m, f has a zero of order
at least 2m, i.e. fg2 is analytic. Then the functions

(5.16) φ1 = 1
2f(1− g2), φ2 = i

2f(1 + g2), φ3 = fg

are analytic and satisfy (5.14). Conversely, every triple (φ1, φ2, φ3) of analytic functions in D
satisfying (5.14) can be represented in a form (5.16) except if φ1 = iφ2 and φ3 = 0.

Proof. Functions in (5.16) satisfy

φ2
1 + φ2

2 + φ2
3 = 1

4f
2 − 1

2f
2g2 + 1

4f
2g4 − 1

4f
2 − 1

2f
2g2 − 1

4f
2g4 + f2g2 = 0.

Conversely, let φ1, φ2, and φ3 be analytic such that (5.14) holds. Suppose φ1 6≡ iφ2 and φ3 6≡ 0.
Define

f = φ1 − iφ2 and g =
φ3

φ1 − iφ2
.

Then f is analytic and g is meromorphic. We can write (5.14) as

(φ1 − iφ2)(φ1 + iφ2)︸ ︷︷ ︸
=φ21+φ22

= −φ2
3.
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Now, since φ1 6≡ iφ2, we have

φ1 + iφ2 =
−φ2

3

φ1 − iφ2
=

−φ2
3

(φ1 − iφ2)2
(φ1 − iφ2)

= −g2f,

and therefore g2f is analytic. Moreover,

1
2f(1− g2) = 1

2(φ1 − iφ2)

(
1− φ2

3

(φ1 − iφ2)2

)
= 1

2

(
φ1 − iφ2 −

φ2
3

φ1 − iφ2

)
= 1

2(φ1 − iφ2 + φ1 + iφ2)

= φ1,

i
2f(1 + g2) = i

2(φ1 − iφ2)

(
1 +

φ2
3

(φ1 − iφ2)2

)
= i

2

(
φ1 − iφ2 +

φ2
3

φ1 − iφ2

)
= i

2(φ1 − iφ2 − φ1 − iφ2)

= φ2,

and

fg = φ3.

Since −g2f = φ1 + iφ2 is analytic, the condition on the poles of g and the zeros of f holds.

Now we are able to prove the following Weierstrass-Enneper representation.

Theorem 5.17. Let D ⊂ C be a simply connected domain, g : D → C ∪ {∞} a meromorphic
function, and f : D → C an analytic function that vanishes only at points ζ where g has a pole
and the order of the zero of f at such a point ζ is exactly twice the order of pole of g at ζ. Define
F = (F1, F2, F3) : D → R3 by

Fk(z) = <
∫ z

z0

φk(ζ)dζ + ck, k = 1, 2, 2,

where φ1, φ2, and φ3 are as in (5.16). Then F : D → R3 is a minimal immersion.

Proof. By the previous lemma 5.15, functions φk are analytic and satisfy (5.14). Moreover,

|φ1|2 + |φ2|2 + |φ3|2 = |12f(1− g2)|2 + | i2f(1 + g2)|2 + |fg|2

= 1
4 |f |

2|1− g2|2 + 1
4 |f |

2|1 + g2|2 + |f |2|g|2

= |f |2
(

1
4(1− g2)(1− ḡ2) + 1

4(1 + g2)(1 + ḡ2) + |g|2
)

= |f |2
(

1
4(1− ḡ2 − g2 + |g|4) + 1

4(1 + ḡ2 + g2 + |g|4) + |g|2
)

= |f |2(1
2 + |g|2 + 1

2 |g|
4)

= 1
2 |f |

2(1 + |g|2)2 > 0

by the assumption on zeros of f and poles on g. Hence by the proof of Theorem 5.11, F : D → R3

is a minimal immersion.
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We just state the following converse result; see e.g. [O].

Theorem 5.18. Every simply connected minimal surface in R3 can be represented by F =
(F1, F2, F3) : D → R3,

Fk(z) = <
∫ z

z0

φk(ζ)dζ + ck, k = 1, 2, 3,

where the analytic functions φk are defined by (5.16) with the functions f and g having the same
properties as in Theorem 5.17 and the domain D being either the unit disk or the entire complex
plane.

Given a Weierstrass-Enneper data {f, g} for a (simply connected) minimal surface M it is
possible to express the geometric quantities of M in terms of f and g only. Indeed, let F : D → R3

be as in the previous theorems and let

X1 =
∂F

∂x1
, X2 =

∂F

∂x2
.

Then gij = δijλ
2, where

λ2 =

(
|f |(1 + |g|2)

2

)2

.

The Gauss map N : D → S2 can be written in the form

N =
X1 ×X2

|X1 ×X2|
=

1

|g|2 + 1

(
2<(g), 2=(g), |g|2 − 1

)
.

Comparing the Gauss map above with the inverse of the stereographic projection from (0, 0, 1),
that is, the map C→ S2,

z = x+ iy 7→
(

2x

|z|2 + 1
,

2y

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
,

we obtain the following.

Theorem 5.19. If F : D → R3 is an isothermal parametrization of a minimal surface, then the
corresponding Gauss map N : D → S2 defines a complex analytic function of D into the (unit)
Riemann sphere.

Indeed, the Gauss map followed by the stereographic projection gives a meromorphic mapping
D → S2 → C that is, in fact, the meromorphic function g in the Weierstrass-Enneper representation.

6 The minimal graph equation

6.1 Minimal graphs of codimension 1

Let Ω ⊂ Rn, n ≥ 2, be a bounded open set. Let u : Ω→ R be a Lipschitz function and consider its
graph

Γu = {(x, u(x)) : x ∈ Ω}.

We want to justify that also in this higher dimensional (n ≥ 2) case the (area) volume of Γu is

Vol(Γu) =

∫
Ω

√
1 + |∇u|2dx.
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Let F : Ω→ Rn+1,
F (x) =

(
x1, x2, . . . , xn, u(x)

)
.

Since u is Lipschitz, partial derivatives uxi exist a.e., in fact, u and F are differentiable a.e. by
Rademacher’s theorem. The matrices of the differential dF : Rn → Rn+1 (at a point x ∈ Ω) and of
its adjoint dF ∗ in standard coordinates {ei} are

dF =


1 0 · · · 0 0

0 1 0 · · ·
...

... 0 0
0 0 · · · 0 1
ux1 ux2 · · · · · · uxn

 =

(
In
∇u

)

and

dF ∗ =


1 0 · · · 0 ux1
0 1 0 · · · ux2
...

...
0 0 · · · 1 uxn

 =
(
In ∇u

)
.

Hence
(dF ∗dF )ij = (δij + uxiuxj ).

Furthermore,
∂F

∂xi
= ei + uxien+1

and

gij =
∂F

∂xi
· ∂F
∂xj

= δij + uxiuxj .

Thus
(dF ∗dF )ij = gij

and
det(dF ∗dF )ij = det gij = 1 + |∇u|2.

The volume form of Γu is then √
1 + |∇u|2dx1 ∧ · · · ∧ dxn,

and therefore the volume of Γu is

Vol(Γu) =

∫
Ω

√
1 + |∇u|2dx.

As in the case n = 2 a function u ∈ C2(Ω) is a critical point of the volume functional

F(u) :=

∫
Ω

√
1 + |∇u|2dx,

that is
d

dt
F(u+ tϕ)|t=0 = 0, ϕ ∈ C∞0 (Ω),

if

(6.2) div
∇u√

1 + |∇u|2
= 0.
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Also now, a critical point u of F minimizes the volume of graphs Γv among all functions v : Ω→ R,
with v = u on ∂Ω. Here, of course, we assume that functions u and v are continuous in Ω̄. We
want to prove (partially) the following theorem.

Theorem 6.3 (Jenkins-Serrin). Let Ω ⊂ Rn be a smooth, bounded domain whose boundary has
nonnegative scalar mean curvature (with respect to inwards pointing normal). Then for each ψ ∈
C2,α(Ω̄) there exists a unique u ∈ C∞(Ω) ∩ C2,α(Ω̄) that solves the minimal graph equation (6.2)
in Ω with boundary values u|∂Ω = ψ|∂Ω.

Recall that Ck(Ω̄) denotes the class of all functions whose all derivatives of order ≤ k have
continuous extensions to Ω̄ and Ck,α(Ω̄) is the subset of those functions in Ck(Ω̄) whose kth-order
partial derivatives are globally Hölder-continuous with exponent α.

Our strategy will be the following:

1. First we will prove the existence of minimizers of the volume functional within subclasses of
Lipschitz functions with uniformly bounded Lipschitz constants. Here we employ so-called
direct methods in calculus of variations. In fact, we will consider a quite general class of
variational integrals.

2. As a second step we consider so-called a priori gradient estimates.

3. In the third step we reduce (interior) gradient estimates to boundary gradient estimates.
Here we will focus on the volume functional and will obtain boundary gradient estimates
by constructing suitable ”barriers”. It is in this step where the assumption ∂Ω having non-
negative mean curvature (w.r.t. inwards pointing normal) is needed.

6.4 Direct methods

We consider variational integrals

F(u) :=

∫
Ω
F (∇u)dx,

where functions u belong to some subspace A of Lipschitz functions in a bounded domain Ω ⊂ Rn.
The class A is equipped with a topology that makes F lower semicontinuous (see (6.5) below) and
minimizing sequences (sequentially) compact in A. More precisely, if (ui) is a minimizing sequence,
i.e. ui ∈ A and

lim
i→∞
F(ui) = inf

u∈A
F(u),

then there exists a converging subsequence uij → ū ∈ A and

(6.5) F(ū) ≤ lim inf
j→∞

F(uij ).

It then follows that ū is a minimizer of F among functions in A.
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Here are some examples of variational integrals:

F(u) =

∫
Ω
|∇u|2dx,

F(u) =

∫
Ω
|∇u|pdx, 1 < p <∞,

F(u) =

∫
Ω

√
1 + |∇u|2dx,

F(u) =

∫
Ω

(
1 + |∇u|k

)1/k
dx, k > 0,

F(u) =

∫
Ω

exp |∇u|2,

F(u) =

∫
Ω
|∇u|2 log(1 +∇|u|2),

F(u) =

∫
Ω

(
n−1∑
i=1

|uxi |2 + |uxn |k
)
, k > 0.

All of these variational integrals are defined among Lipschitz functions, although some other (larger)
function spaces, like Sobolev spaces, would be more natural to work with. Furthermore, in all of
these cases the variational kernel F : Rn → [0,∞) is convex. The convexity of F is very useful in
obtaining the lower semicontinuity (6.5) of F .

Suppose that F : Rn → [0,∞) is convex and C1. Then

(6.6) F (x)− F (y) ≥ ∇F (y) · (x− y)

for all x, y ∈ Rn. Let us study the (possible) lower semicontinuity of F among Lipschitz functions

Lip(Ω) = {u : Ω→ R | u Lipschitz}.

We define a semi-norm

|u|Ω := sup

{
|u(x)− u(y)|
|x− y|

: x, y ∈ Ω, x 6= y

}
.

Let (uj) be a sequence in Lip(Ω). By (6.6), we have

(6.7) F(u) =

∫
Ω
F (∇u) ≤

∫
Ω
F (∇uj)−

∫
Ω
∇F (∇u) · (∇uj −∇u)

for all u ∈ Lip(Ω). Furthermore, since ∇F is continuous, we have |∇F (∇u)| ∈ L∞(Ω). Suppose
that ∇uj → ∇u weakly in L1(Ω). Then∫

Ω
∇F (∇u) · ∇uj →

∫
Ω
∇F (∇u) · ∇u,

and therefore ∫
Ω
∇F (∇u) · (∇uj −∇u)→ 0

and finally
F(u) ≤ lim inf

j→∞
F(uj)
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by (6.7).
Let

Lipk(Ω) = {u ∈ Lip(Ω): |u|Ω ≤ k}.

Lemma 6.8. Suppose that F : Rn → R is convex and C1-smooth. Then the variational integral
F : Lip(Ω)→ R,

F(u) =

∫
Ω
F (∇u)dx,

is lower semicontinuous with respect to the uniform convergence of sequences with equibounded
Lipschitz seminorm and with fixed boundary values on ∂Ω. More precisely, if uj ∈ Lipk(Ω̄), uj |∂Ω =
ϕ, and uj → u uniformly in Ω, then

F(u) ≤ lim inf
j→∞

F(uj).

Proof. First we observe that u ∈ Lipk(Ω). Approximate the mapping x 7→ ∇F (∇u) in L1(Ω) by
smooth mappings

Fε = (F1,ε, F2,ε, . . . , Fn,ε) : Ω→ Rn.

Now ∫
Ω
∇F (∇u) · (∇uj −∇u) =

∫
Ω

(∇F (∇u)− Fε) · (∇uj −∇u) +

∫
Ω
Fε · (∇uj −∇u).

Since Fε → ∇F (∇u) in L1(Ω) as ε→ 0 and u, uj ∈ Lipk(Ω), we have for all δ > 0 that∣∣∣∫
Ω

(∇F (∇u)− Fε) · (∇uj −∇u)
∣∣∣ ≤ ∫

Ω
|∇F (∇u)− Fε||∇uj −∇u| ≤ 2k

∫
Ω
|∇F (∇u)− Fε| ≤ δ

for all ε > 0 small enough. On the other hand, by integration by parts∫
Ω
Fε · (∇uj −∇u) =

∫
Ω

div ((uj − u)Fε)︸ ︷︷ ︸
=0

−
∫

Ω
(divFε)(uj − u) = −

∫
Ω

(divFε)(uj − u)→ 0

since uj → u uniformly. Note that the Lipschitz vector field (uj − u)Fε vanishes on ∂Ω. By the
convexity of F and the reasoning above, we have for all δ > 0 that

F(u) =

∫
Ω
F (∇u) ≤

∫
Ω
F (∇uj)−

∫
Ω
∇F (∇u) · (∇uj −∇u)

= F(uj)−
∫

Ω
(∇F (∇u)− Fε) · (∇uj −∇u)−

∫
Ω
Fε · (∇uj −∇u)

= F(uj)−
∫

Ω
(∇F (∇u)− Fε) · (∇uj −∇u)︸ ︷︷ ︸

≤δ

+

∫
Ω

(divFε)(uj − u)

≤ F(uj) +

∫
Ω

(divFε)(uj − u) + δ

as soon as ε > 0 is small enough. It follows that F(u) ≤ lim infj→∞F(uj) + δ for all δ > 0, and
therefore

F(u) ≤ lim inf
j→∞

F(uj).
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Theorem 6.9. Suppose that F : Rn → R is convex and C1-smooth and let ϕ ∈ Lipk(∂Ω). Then
the variational integral

F(u) =

∫
Ω
F (∇u)dx

has a minimizer in the class Ak = {u ∈ Lipk(Ω̄) : u = ϕ on ∂Ω}.

Proof. By the McShane-Whitney extension theorem, ϕ can be extended to a function ϕ ∈ Lipk(Ω̄).
In particular, Ak is non-empty. Let (uj) be a minimizing sequence in Ak. Then it is equibounded
and equicontinuous, hence by the Ascoli-Arzelá theorem, there is a subsequence (still denoted by
(uj) and ū ∈ Ak such that uj → ū uniformly. By Lemma 6.8,

F(ū) ≤ lim inf
j→∞

F(uj) = inf{F(u) : u ∈ Ak}.

Since ū ∈ Ak, it is a minimizer in Ak.

Remark 6.10. The function ū found above need not be a minimizer of F(u) among all Lipschitz
functions u in Ω̄ with u = ϕ on ∂Ω.

However, we have the following simple but useful result.

Lemma 6.11. Suppose that a minimizer ū of F(u) in Ak satisfies |ū|Ω < k. Then ū is a minimizer
of F(u) in A = {u ∈ Lip(Ω̄) : u = ϕ on ∂Ω}.

Proof. Let w ∈ Lip(Ω̄), with w = ϕ on ∂Ω. Since |ū|Ω < k, there exists t ∈ (0, 1) such that

|tw + (1− t)ū|Ω ≤ t |w|Ω︸︷︷︸
<∞

+(1− t) |ū|Ω︸︷︷︸
<k

≤ k,

and therefore tw + (1 − t)ū ∈ Lipk(Ω̄). Since ū is a minimizer of F(u) in Ak and F is convex, we
have

F(ū) ≤ F(tw + (1− t)ū) ≤ tF(w) + (1− t)F(ū),

and so
F(ū) ≤ F(w).

6.12 Gradient estimates

In this subsection we assume that all Lipschitz functions in Ω are continuously extended to Ω̄.

Definition 6.13. Given a variational integral

F(u) =

∫
Ω
F (∇u)dx,

we say that a function u is a superminimizer in Lip(Ω) (resp. in Lipk(Ω)) if

F(u+ ϕ) ≥ F(u)

for all ϕ ∈ Lip(Ω̄) (resp. Lipk(Ω̄)), ϕ ≥ 0, and ϕ = 0 on ∂Ω. Furthermore, a function v is a
subminimizer in Lip(Ω) (resp. in Lipk(Ω̄)) if

F(v − ϕ) ≥ F(v)

for all ϕ ∈ Lip(Ω̄) (resp. Lipk(Ω̄)), ϕ ≥ 0, and ϕ = 0 on ∂Ω.
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It is easily seen that a function is a minimizer if and only if it is both super- and subminimizer.

Theorem 6.14 (Comparison principle). Suppose that F is strictly convex and that u is a super-
minimizer in Lip(Ω̄) (resp. Lipk(Ω̄)) and v is a subminimizer in Lip(Ω̄) (resp. Lipk(Ω̄)) such that
u ≥ v on ∂Ω. Then u ≥ v in Ω.

Proof. Suppose on the contrary that the open set

K = {x ∈ Ω: v(x) > u(x)}

is non-empty. Define functions ũ and ṽ by

ũ(x) =

{
u(x), if x ∈ Ω̄ \K;

v(x), if x ∈ K,
ṽ(x) =

{
v(x), if x ∈ Ω̄ \K;

u(x), if x ∈ K.

Then u ≤ ũ, v ≥ ṽ in Ω and u = ũ, v = ṽ on ∂Ω. Hence F(u) ≤ F(ũ) and F(v) ≤ F(ṽ), and
therefore

F(u) =

∫
Ω\K

F (∇u) +

∫
K
F (∇u) =

∫
Ω\K

F (∇ũ) +

∫
K
F (∇u)

≤ F(ũ) =

∫
Ω\K

F (∇ũ) +

∫
K
F (∇ũ)

=

∫
Ω\K

F (∇ũ) +

∫
K
F (∇v).

Hence ∫
K
F (∇u) ≤

∫
K
F (∇v).

Similarly, ∫
K
F (∇v) ≤

∫
K
F (∇u),

and so ∫
K
F (∇u) =

∫
K
F (∇v).

Since m(K) > 0, the strict convexity of F implies that∫
K
F
(∇u+∇v

2

)
<

1

2

∫
K
F (∇u) +

1

2

∫
K
F (∇v) =

∫
K
F (∇v).

This leads to a contradiction with the assumption v being a subminimizer in Lip(Ω) (resp. in
Lipk(Ω)) since the function w,

w(x) =

{
v(x), if x ∈ Ω̄ \K;
v(x)+u(x)

2 , if x ∈ K,

belongs to Lip(Ω̄) (resp. Lipk(Ω̄)), w ≤ v, and w = v on ∂Ω, but

F(w) =

∫
Ω\K

F (∇v) +

∫
K
F
(∇u+∇v

2

)
<

∫
Ω\K

F (∇v) +

∫
K
F (∇v) = F(v).
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From now on we assume that F : Rn → [0,∞) is strictly convex and C1.

Theorem 6.15 (Maximum principle). Suppose that u is a superminimizer in Lip(Ω̄) (resp. in
Lipk(Ω̄)) and v is a subminimizer in Lip(Ω̄) (resp. in Lipk(Ω̄)). Then

sup
Ω

(v − u) = sup
∂Ω

(v − u).

In particular, if u and v are minimizers (in Lip(Ω) or Lipk(Ω)), then

sup
Ω
|v − u| = sup

∂Ω
|v − u|.

Proof. Since
u+ sup

∂Ω
(v − u)

is a superminimizer in Lip(Ω) (resp. in Lipk(Ω)) and

u+ sup
∂Ω

(v − u) ≥ v

on ∂Ω, it follows from the comparison principle that

v ≤ u+ sup
∂Ω

(v − u)

in Ω. Hence
sup

Ω
(v − u) ≤ sup

∂Ω
(v − u).

The equality follows from the continuity (in Ω̄) of u and v.

Lemma 6.16 (Haar-Radò). Let u be a minimizer (in Lip(Ω) or in Lipk(Ω)). Then

sup

{
|u(x)− u(y)|
|x− y|

: x, y ∈ Ω, x 6= y

}
= sup

{
|u(x)− u(y)|
|x− y|

: x ∈ Ω, y ∈ ∂Ω

}
.

Proof. Let x1, x2 ∈ Ω, x1 6= x2, and let τ = x2 − x1. Define a set Ωτ and a function uτ : Ωτ → R
by

Ωτ = {x− τ : x ∈ Ω} and uτ (x) = u(x+ τ).

Then Ωτ ∩ Ω contains x1 and thus it is a non-empty open set. Both u and uτ are minimizers in
Lip(Ωτ ∩ Ω) (or in Lipk(Ωτ ∩ Ω)). By the Maximum principle,

|u(x1)− u(x2)| = |u(x1)− uτ (x1)| ≤ sup
Ωτ∩Ω

|u− uτ | ≤ sup
∂(Ωτ∩Ω)

|u− uτ |

= max
∂(Ωτ∩Ω)

|u− uτ | = |u(z)− uτ (z)| = |u(z)− u(z + τ)|

for some z ∈ ∂(Ωτ ∩ Ω). Next we observe that ∂(Ωτ ∩ Ω) ⊂ ∂Ωτ ∪ ∂Ω which implies that at least
one of the points z or z + τ belongs to ∂Ω. Furthermore, both z and z + τ belong to Ω̄ since
z ∈ ∂(Ωτ ∩ Ω). Hence

|u(x1)− u(x2)|
|x1 − x2|

=
|u(x1)− u(x2)|

|τ |
≤ |u(z)− u(z + τ)|

|τ |
≤ sup

{
|u(x)− u(y)|
|x− y|

: x ∈ Ω, y ∈ ∂Ω

}
,

and so

sup

{
|u(x)− u(y)|
|x− y|

: x, y ∈ Ω, x 6= y

}
≤ sup

{
|u(x)− u(y)|
|x− y|

: x ∈ Ω, y ∈ ∂Ω

}
.

The equality follows from the continuity of u in Ω̄.
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6.17 Barriers

For x ∈ Ω̄ and t > 0, we denote

d(x) = dist(x, ∂Ω) = min{|x− y| : y ∈ ∂Ω},
Σt = {y ∈ Ω: d(y) < t},

and

Γt = {y ∈ Ω: d(y) = t}.

Definition 6.18. Let ϕ ∈ Lip(∂Ω). An upper barrier relative to ϕ is a function v+ ∈ Lip(Σ̄t0), for
some t0 > 0, satisfying

(i) v+ = ϕ on ∂Ω and v+ ≥ sup∂Ω ϕ on Γt0 , and

(ii) v+ is a superminimizer in Lip(Σt0).

Similarly, a lower barrier relative to ϕ is a function v− ∈ Lip(Σ̄t0) such that

(i) v− = ϕ on ∂Ω and v− ≤ inf∂Ω ϕ on Γt0 , and

(ii) v− is a subminimizer in Lip(Σt0).

Theorem 6.19. Let ϕ ∈ Lip(∂Ω) and suppose that there exist an upper barrier v+ and a lower
barrier v− relative to ϕ. Then the variational integral

F(u) =

∫
Ω
F (∇u)dx

has a minimizer in A = {u ∈ Lip(Ω̄) : u = ϕ on ∂Ω}.

Proof. Let Q = max{|v+|Σt0 , |v
−|Σt0} and fix k > Q. By Theorem 6.9, there exists a minimizer

u in the class Ak = {v ∈ Lipk(Ω̄) : v = ϕ on ∂Ω}. Then u|Σt0 is a minimizer of the variational
integral ∫

Σt0

F (∇u)dx

among functions in Ãk = {v ∈ Lipk(Σ̄t0) : v = u on ∂Σt0}. By the Maximum principle (with u and
0),

sup
Ω
|u| = sup

∂Ω
|u| = sup

∂Ω
|ϕ|,

sup
Ω
| − u| = sup

∂Ω
| − u| = sup

∂Ω
| − ϕ|,

and therefore

inf
∂Ω
ϕ ≤ u(x) ≤ sup

∂Ω
∀x ∈ Ω.

In particular,

v−(x) ≤ inf
∂Ω
ϕ ≤ u(x) ≤ sup

∂Ω
≤ v+(x) ∀x ∈ Γt0 ,

and hence by the Comparison principle

v−(x) ≤ u(x) ≤ v+(x) ∀x ∈ Σt0 .
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Note that v− = v+ = u = ϕ on ∂Ω. We obtain

|u(x)− u(y)| ≤ Q|x− y|

for every x ∈ Σt0 and y ∈ ∂Ω. Indeed, if u(x) ≥ u(y), we have

|u(x)− u(y)| = u(x)− u(y) = u(x)− v+(y) ≤ v+(x)− v+(y) ≤ Q|x− y|,

and if u(x) ≤ u(y) we have

|u(x)− u(y)| = u(y)− u(x) = v−(y)− u(x) ≤ v−(y)− v−(x) ≤ Q|x− y|.

Suppose then that x ∈ Ω, with d(x) ≥ t0, and that y ∈ ∂Ω. Since

inf
∂Ω
ϕ ≤ u ≤ sup

∂Ω

in Ω, we have

|u(x)− u(y)| ≤ max{sup
∂Ω

ϕ− u(y), u(y)− inf
∂Ω
ϕ}.

Let z ∈ Γt0 be a point such that

|x− y| = |x− z|+ |z − y|.

Then

sup
∂Ω

ϕ− u(y) ≤ v+(z)− u(y) = v+(z)− v+(y) ≤ Q|z − y| ≤ Q|x− y|

and

u(y)− inf
∂Ω
ϕ ≤ u(y)− v−(z) = v−(y)− v−(z) ≤ Q|z − y| ≤ Q|x− y|.

Hence

|u(x)− u(y)| ≤ Q|x− y|

for all x ∈ Ω and y ∈ ∂Ω. By Haar-Radò lemma 6.16,

|u|Ω ≤ Q < k,

and therefore u is a minimizer in A = {v ∈ Lip(Ω̄) : v = ϕ on ∂Ω}.

6.20 Construction of barriers for the minimal graph equation

In this subsection we consider the volume functional

V(u) =

∫
Ω

√
1 + |∇u|2,

where Ω ⊂ Rn is a bounded open set.

Suppose that u ∈ Lip(Ω) is a superminimizer of V and let ϕ ∈ Lip(Ω̄), with ϕ ≥ 0 and ϕ = 0
on ∂Ω. Since

V(u) ≤ V(u+ tϕ) ∀t ≥ 0,
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we have

d

dt
V(u+ tϕ)|t=0+ = lim

t→0+

V(u+ tϕ)− V(u)

t

= lim
t→0+

1

t

∫
Ω

(√
1 + |∇u+ t∇ϕ|2 −

√
1 + |∇u|2

)
=

∫
Ω

lim
t→0+

√
1 + |∇u+ t∇ϕ|2 −

√
1 + |∇u|2

t

=

∫
Ω

∇u · ∇ϕ√
1 + |∇u|2

≥ 0.

Furthermore, supposing that u ∈ C2(Ω) and using integration by parts, we see that the above is
equivalent to

−
∫

Ω
ϕdiv

(
∇u√

1 + |∇u|2

)
≥ 0

for all ϕ ∈ Lip(Ω̄), with ϕ ≥ 0 and ϕ = 0 on ∂Ω. Hence, if u ∈ C2(Ω) is a superminimizer, then

(6.21) div

(
∇u√

1 + |∇u|2

)
≤ 0.

Similarly, if v ∈ Lip(Ω) is a subminimizer of V, then∫
Ω

∇v · ∇ϕ√
1 + |∇v|2

≤ 0

for all ϕ ∈ Lip(Ω̄), with ϕ ≥ 0 and ϕ = 0 on ∂Ω. If, in addition, v ∈ C2(Ω), we obtain

(6.22) div

(
∇v√

1 + |∇v|2

)
≥ 0.

These inequalities are equivalent to

(6.23) E(u) := (1 + |∇u|2)∆u−
n∑

i,j=1

uxiuxjuxixj ≤ 0

and

(6.24) E(v) = (1 + |∇v|2)∆v −
n∑

i,j=1

vxivxjvxixj ≥ 0.

Suppose that Ω ⊂ Rn is a bounded open set, with a C2-smooth boundary ∂Ω. In the next
subsection we will prove that:

(i) the distance function d : Ω̄→ [0,∞), d(x) = dist(x, ∂Ω), is C2 in some Σ̄t0 ;

(ii) furthermore, if x ∈ Γt0 , then −∆d(x) is the sum of the principal curvatures of Γt0 with respect
to the inwards pointing unit normal; and that

(iii) ∆d(x) decreases when x ∈ Σ̄t0 moves towards the interior of Ω along a normal to ∂Ω.
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Hence assuming that ∂Ω has non-negative mean curvature with respect to inwards pointing normal,
we obtain

(6.25) ∆d(x) ≤ 0

in Σ̄t0 .

Suppose that ∂Ω has non-negative mean curvature with respect to inwards pointing normal and
that the boundary value function ϕ belongs to C2(Ω̄). Under these assumptions we will construct
an upper barrier v relative to ϕ|∂Ω of the form

v(x) = ϕ(x) + ψ
(
d(x)

)
,

where ψ : [0, R]→ [0,∞) is a C2-function such that

ψ(0) = 0, ψ′(t) ≥ 1, ψ′′(t) < 0,

and

ψ(R) ≥ L := 2 sup
Ω
|ϕ|

for some R < t0 determined later. Note that the assumption ψ(R) ≥ 2 supΩ |ϕ| implies that

v(x) ≥ sup
∂Ω

ϕ ∀x ∈ ΓR.

Since v = ϕ on ∂Ω by the assumption ψ(0) = 0, the condition (i) in Definition 6.18 holds. There-
fore, to show that v is an upper barrier relative to ϕ, we need to choose ψ so that v will be a
superminimizer in ΣR, i.e.

E(v) = (1 + |∇v|2)∆v −
n∑

i,j=1

vxivxjvxixj ≤ 0.

To simplify the notation we abbreviate

vi = vxi , vij = vxixj , ψ
′ = (ψ′) ◦ d etc.

We have

vi = ϕi + ψ′di,

vij = ϕij + ψdij + ψ′′didj ,

∇v = ∇ϕ+ ψ′∇d,
∆v = ∆ϕ+ ψ′∆d+ ψ′′,

and

1 + |∇v|2 = 1 + |∇ϕ|2 + (ψ′)2 + 2ψ′
∑
i

ϕidi,

where we used the fact that |∇d| ≡ 1. We also have

0 ≡ 1
2

(
|∇d|2

)
j

=

n∑
i=1

didij ∀j.
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We compute

E(v) = (1 + |∇v|2)∆v −
∑
ij

vivjvij

=
(
1 + |∇ϕ|2 + (ψ′)2 + 2ψ′

∑
i

ϕidi
)(

∆ϕ+ ψ′∆d+ ψ′′
)

−
∑
ij

(
ϕi + ψ′di

)(
ϕj + ψ′dj

)(
ϕij + ψ′dij + ψ′′didj

)
= (1 + |∇ϕ|2)∆ϕ−

∑
ij

ϕiϕjϕij

+ ψ′
[
2
∑
i

ϕidi∆ϕ+ (1 + |∇ϕ|2)∆d− 2
∑
ij

diϕjϕij −
∑
ij

ϕiϕjdij
]

+ (ψ′)2
[
∆ϕ+ 2

∑
i

ϕidi∆d−
∑
ij

ϕijdidj
]

+ (ψ′)3∆d

+ ψ′′
[
1 + |∇ϕ|2 −

(∑
i

ϕidi
)2]

,

where we have used identities∑
i

didij = 0 ∀j,

ψ′′(ψ′)2 −
∑
ij

ψ′′(ψ′)2d2
i d

2
j = 0,

2ψ′′ψ′
∑
i

ϕidi − ψ′′ψ′
∑
ij

didj(ϕidi + ϕjdj) = 0,

∑
ij

ϕiϕjdidj =
(∑

i

ϕidi
)2
.

Since ϕ and d are C2-smooth in Σ̄R and ψ′ ≥ 1, we have an estimate

(1 + |∇ϕ|2)∆ϕ−
∑
ij

ϕiϕjϕij

+ ψ′
[
2
∑
i

ϕidi∆ϕ+ (1 + |∇ϕ|2)∆d− 2
∑
ij

diϕjϕij −
∑
ij

ϕiϕjdij
]

+ (ψ′)2
[
∆ϕ+ 2

∑
i

ϕidi∆d−
∑
ij

ϕijdidj
]

≤ c0(ψ′)2

for some constant c0. On the other hand,

1 + |∇ϕ|2 −
(∑

i

ϕidi
)2 ≥ 1,

ψ′′ ≤ 0, and ∆d ≤ 0, and therefore

(6.26) E(v) ≤ c0(ψ′)2 + (ψ′)3∆d+ ψ′′ ≤ c0(ψ′)2 + ψ′′
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in ΣR. Choosing

ψ(t) =
1

c0
log(1 + βt)

for some constant β > 0, we get

ψ′(t) =
β

c0
(1 + βt)−1, ψ′′(t) = −β

2

c0
(1 + βt)−2,

and

(6.27) c0(ψ′)2 + ψ′′ = c0
β2

c2
0

(1 + βt)−2 − β2

c0
(1 + βt)−2 = 0.

Thus we need to find β and R so that ψ′(t) ≥ 1 and ψ(R) ≥ L. Choosing R = β−1/2, with β large
enough, we obtain

ψ′(t) ≥ β

c0

1

1 + βR
=

β

c0(1 +
√
β)
≥ 1 and ψ(R) =

1

c0
log(1 +

√
β) ≥ L.

By (6.26) and (6.27), v is a superminimizer in ΣR, and therefore an upper barrier relative to ϕ|∂Ω.
Now it is easy to obtain a lower barrier relative to ϕ|∂Ω. Indeed, by the above, there exists an

upper barrier ũ relative to −ϕ|∂Ω. Then v− = −ũ is a lower barrier relative to ϕ|∂Ω.
We have proved:

Theorem 6.28. Suppose that Ω ⊂ Rn is a C2-smooth bounded open set whose boundary ∂Ω has
non-negative mean curvature with respect to inwards pointing normal. Then for each ϕ ∈ C2(Ω̄)
there exists a unique minimizer u ∈ Lip(Ω̄) of the volume functional in A = {v ∈ Lip(Ω̄) : v =
ϕ on ∂Ω}.

Proof. We have showed above that there are upper and lower barriers (for V) relative to ϕ|∂Ω. By
Theorem 6.19, the volume functional has a minimizer u in A = {v ∈ Lip(Ω̄) : v = ϕ on ∂Ω}. The
uniqueness follows from the Maximum principle

6.29 Boundary mean curvature and the distance function

Let Ω ⊂ Rn and suppose that ∂Ω is C2. For y ∈ ∂Ω let Ny be the unit inner normal and Ty = Ty∂Ω
the tangent space to ∂Ω at y. Fix y0 ∈ ∂Ω. By rotating and translating we may assume that (a
fixed) y0 = 0 ∈ Rn−1, Ty0 = Rn−1, and Ny0 = en. Then in a neighborhood (in Rn) U of 0, ∂Ω is
given as a graph of a C2-function

ϕ : T0 ∩ U︸ ︷︷ ︸
=U∩Rn−1

→ R,

∂Ω ∩ U =
{(
x1, . . . , xn−1︸ ︷︷ ︸

=:x̃

, ϕ(x̃)
)

: x̃ ∈ T0 ∩ U
}

Since Rn−1 is assumed to be tangent to ∂Ω at 0, we have ∇ϕ(0) = 0. For y =
(
ỹ, ϕ(ỹ)

)
∈ ∂Ω ∩ U ,

the inner unit normal is Ny = (Ny1, Ny2, . . . , Nyn), where

Nyi =
−ϕi(ỹ)√

1 + |∇ϕ(ỹ)|2
, i = 1, . . . , n− 1,

Nyn =
1√

1 + |∇ϕ(ỹ)|2
,
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where ϕi = ϕxi . By rotating Rn−1 around the xn-axis, we may assume that the Hessian matrix of
ϕ at 0 is the diagonal matrix

ϕij(0) =


κ1 0 · · · 0 0

0 κ2 0
...

...
... 0

. . .
... 0

0 · · · · · · κn−2 0
0 · · · · · · 0 κn−1

 .

Indeed, the Hessian matrix is symmetric and therefore it has real eigenvalues κ1, . . . , κn−1, with
orthonormal eigenvectors. So, in these, so-called principal coordinates,

ϕij(0) = δijκi.

In Section 4.2 we computed (in dimension 3) the mean curvature vector of a graph as

H = div

(
∇ϕ√

1 + |∇ϕ|2

)
N,

where N is the upwards pointing (inner) unit normal. So,

H =

(
∆ϕ√

1 + |∇ϕ|2
+∇

(
1 + |∇ϕ|2

)−1/2 · ∇ϕ

)
N,

and therefore at y0 = 0 ∈ ∂Ω (where ∇ϕ(0) = 0) we have

H = ∆ϕ(0)N0.

The scalar mean curvature is therefore

∆ϕ(0) = tr
(
ϕij(0)

)
= κ1 + κ2 + · · ·+ κn−1.

Lemma 6.30. Let Ω ⊂ Rn be bounded and Ck, k ≥ 2. Then there exists t0 > 0 such that

d ∈ Ck
(
Σ̄t0

)
.

Proof. Since ∂Ω is compact and Ck, k ≥ 2, ∂Ω satisfies a uniform interior sphere condition: for
every y0 ∈ ∂Ω there exists an open ball Br of radius r such that B̄r∩(Rn\Ω) = {y0} and r ≥ R0 > 0,
with R0 independent of y0 ∈ ∂Ω. Indeed, again we may assume that y0 = 0 ∈ Rn−1 and ∂Ω is
given as a graph of a Ck-function near y0. The eigenvalues of the Hessian ϕij(0) are bounded from
above by a constant that is independent of y0 ∈ ∂Ω. The inverse of this bound bounds R0 from
below. Let t0 < R0. For each x ∈ Σ̄t0 , there exits a unique y(x) ∈ ∂Ω such that |x− y(x)| = d(x).
To see this, take a closed ball B̄(x, d(x)). Then B̄(x, d(x)) ∩ ∂Ω = {y(x)}. The points x ∈ Σ̄t0 and
y(x) are related by

(6.31) x = y(x) + d(x)Ny(x),

where Ny(x) is the inner unit normal to ∂Ω at y(x). We claim first that this relation determines

y = y(x) and d = d(x) as Ck−1-functions of x. For a fixed x0 ∈ Σ̄t0 , write y0 = y(x0) and assume
(after rotation and translation) that y0 = 0 ∈ Rn−1, T0 = Ty0∂Ω = Rn−1, and that ∂Ω is given as
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a graph of a Ck-function ϕ : V → R, V ⊂ Rn−1 a neighborhood of 0. Near 0 we may write y ∈ ∂Ω
as y = (ỹ, ϕ(ỹ)). Define a mapping g : V × R→ Rn,

g(ỹ, t) = y + tNy, y = (ỹ, ϕ(ỹ)).

Since Ny = (Ny1, Ny2, . . . , Nyn) is given by

Nyi =
−ϕi(ỹ)√

1 + |∇ϕ(ỹ)|2
, i = 1, . . . , n− 1,

Nyn =
1√

1 + |∇ϕ(ỹ)|2
,

we see that g is Ck−1. We want to apply the inverse mapping theorem to g in a neighborhood of
(ỹ, t) = (y0, t) = (0, t), t ≤ t0. In the principal coordinates the Jacobian n×n-matrix of g at (y0, t)
is the diagonal matrix 

1− tκ1 0 · · · 0 0

0 1− tκ2 0
...

...
... 0

. . .
... 0

0 · · · · · · 1− tκn−1 0
0 · · · · · · 0 1

 .

Hence the Jacobian determinant of g at (y0, d(x0)), with d(x0) ≤ t0 < R0, is(
1− κ1d(x0)

)(
1− κ2d(x0)

)
· · ·
(
1− κn−1d(x0)

)
> 0

since every term 1 − κid(x0) is positive because d(x0) < R0 and therefore κid(x0) < 1. By the
inverse mapping theorem ỹ0 and also y0 = (ỹ0, ϕ(ỹ0)), and d(x0) depend Ck−1-smoothly on x0.

On the other hand, since

∇d(x) = Ny(x), x ∈ Σ̄t0

and the mappings x 7→ ỹ(x) and ỹ 7→ Ny are Ck−1-smooth, we conclude that ∇d(x) depends
Ck−1-smoothly on x, and therefore d ∈ Ck(Σ̄t0).

Lemma 6.32. Suppose that Ω ⊂ Rn is an open, bounded, and C2-smooth set, whose boundary
∂Ω has non-negative mean curvature with respect to inner normal. Let d and Σt0 be given by
Lemma 6.30. Then in Σ̄t0

(a) ∆d(x) decreases when x moves inwards along a normal to ∂Ω;

(b) ∆d(x) ≤ 0.

Proof. Fix x0 ∈ Σ̄t0 . After a translation and rotations, we may assume that y0 = y(x0) = 0 and
that ∂Ω is given as a graph of a C2-function ϕ near y0. In what follows we use principal coordinates
at ỹ0 = 0. Since

∇d(x0) = Nỹ0 = (0, 0, . . . , 0, 1),

we have

din =
∂

∂xn
di = 0, ∀i = 1, . . . , n− 1.
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Recall that

Nyi =
−ϕi(ỹ)√

1 + |∇ϕ(ỹ)|2
, i = 1, . . . , n− 1,

Nyn =
1√

1 + |∇ϕ(ỹ)|2
,

so that

DjNyi =
∂

∂xj
Nyi = −κiδij , i = 1, . . . , n− 1.

By the chain rule,

dij(x0) =
(
Dj(Did︸︷︷︸

=Ni

)
)
(x0) = DjNi ◦ y(x0)

=
∑
k

DkNi(y0)Djyk(x0)

=
∑
k

(−κiδik)
(

δjk
1− κjd(x0)

)
=

−κiδij
1− κid(x0)

.

Hence the trace of (dij) is

∆d =
n−1∑
i=1

−κi
1− κid

.

Finally, when x moves inwards along a normal to ∂Ω, d(x) increases. We have two cases:

(i) if κi ≥ 0, then 1− κd decreases and therefore

−κi
1− κid

decreases;

(ii) if κi ≤ 0, then 1− κd increases and therefore

−κi
1− κid

decreases.

Alltogether ∆d(x) decreases when x moves inwards along a normal to ∂Ω. This proves (a). On the
other hand, d(x) = 0 on ∂Ω, and so

∆d(x) = −
n−1∑
i

κi(x)

= − the scalar mean curvature of ∂Ω at x ∈ ∂Ω

≤ 0,

where κi(x) are the principal curvatures of ∂Ω at x. Combining this with (a), proves the claim
(b).



52 Minimal Surfaces

6.33 Regularity of the minimizer in Theorem 6.28

In this section we discuss briefly about the regularity of the minimizer u ∈ Lip(Ω̄) of the the volume
functional obtained in Theorem 6.28. The function u is a weak solution of the equation

(6.34) −div
∇u√

1 + |∇u|2
= 0

in Ω, that is, ∫
Ω

∇u · ∇η√
1 + |∇u|2

= 0

for all η ∈ Lip(Ω̄), with η|∂Ω = 0. We write (6.34) as

−div T (∇u) =
n∑
i=1

∂Ti(∇u)

∂xi
= 0,

where T = (T1, T2, . . . , Tn) : Rn → Rn,

Ti(z) =
zi√

1 + |z|2
= zi

(
1 +

n∑
k=1

z2
k

)−1/2

.

Now

Tij(z) :=
∂Ti
∂zj

(z) =
1√

1 + |z|2

(
δij −

zizj
1 + |z|2

)
.

Hence we can write (6.34) as

−
n∑

i,j=1

1√
1 + |∇u|2

(
δij −

∂u
∂xi

∂u
∂xj

1 + |∇u|2

)
∂2u

∂xi∂xj
= 0,

or equivalently,

(6.35) −
n∑

i,j=1

Tij(∇u)
∂2u

∂xi∂xj
= 0,

that is, ∫
Ω

∑
ij

Tij(∇u)
∂u

∂xi

∂η

∂xj
= 0.

Now

(6.36) λ(|z|)|ξ|2 ≤
∑
ij

Tij(z)ξiξj ≤ Λ(|z|)|ξ|2, ξ ∈ Rn,

with 0 < λ(|z|) ≤ Λ(|z|) <∞ for every z ∈ Rn. Such an equation is a quasilinear elliptic equation,
but it is not uniformly elliptic since the left-side of (6.36) tends to zero as |z| → ∞. Moreover, the
functions Tij , z 7→ Tij(z) are C∞. Since the solution u is (globally) Lipschitz in Ω̄, its gradient is
bounded from above

(6.37) |∇u| ≤ L <∞ a.e.
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”Freezing” the coefficients as
Aij(x) := Tij

(
∇u(x)

)
and taking into account (6.37) we may interpret u as a solution of a linear uniformly elliptic second
order PDE

n∑
i,j=1

Aij
∂2u

∂xi∂xj
= 0,

0 < λ|ξ|2 ≤
∑
ij

Aij(z)ξiξj ≤ Λ|ξ|2, ∀z, ξ ∈ Rn.

It follows then from the general theory that u ∈ C∞(Ω); see [G] for an overview.

6.38 Interior gradient estimate

Let us consider an n-dimensional C2-smooth hypersurface Σ ⊂ Rn+1. Assume that Σ is given as a
level surface of a C2-function Φ: U → R, with U ⊂ Rn+1 open, such that

Σ = {x ∈ Rn+1 : Φ(x) = 0} and ∇Φ(x) 6= 0 ∀x ∈ Σ.

The unit normal field to Σ is (up to the choice of direction)

N =
∇Φ

|∇Φ|
.

With this choice, N points to the direction where Φ grows. For example, if Σ is the graph of a
C2-function u : Ω→ R, Ω ⊂ Rn open, then we can take

Φ(x) = xn+1 − u(x̃), x = (x̃, xn+1) ∈ U := Ω× R

since then
∇Φ(x) = (−∇u(x̃)︸ ︷︷ ︸

∈Rn

, 1), |∇Φ| =
√

1 + |∇u|2.

Let g ∈ C1(U). Then the tangential gradient δg of g on Σ is defined as the tangential component
of ∇g, that is,

δg = ∇g − (∇g ·N)N.

It is the orthogonal projection of ∇g(x) to TxΣ. In our earlier notation δg = ∇Σg. Its components
are

δig =
∂g

∂xi
−Ni

n+1∑
j=1

Nj
∂g

∂xj
, i = 1, . . . , n+ 1.

We also write
δi = Di −Ni

∑
j

NjDj .

We have

N · δg ≡ 0,

|δg|2 = |∇g|2 − (N · ∇g)2, so

|δg| ≤ |∇g|.
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Let κ1, . . . , κn be the principal curvatures of Σ at y0 ∈ Σ (with respect to N). Then (in principal
coordinates)

∂

∂xj

(
∂
∂xi

Φ

|∇Φ|

)
︸ ︷︷ ︸

=Ni

= −κiδij , i, j = 1, . . . , n;

∂

∂xj

(
∂

∂xn+1
Φ

|∇Φ|

)
︸ ︷︷ ︸

=Nn+1

= 0, j = 1, . . . , n+ 1.

Hence

n+1∑
i=1

δiNi =

n∑
i=1

∂

∂xi
Ni +

∂

∂xn+1
Nn+1︸ ︷︷ ︸

=0

−
n+1∑
i=1

Ni

n+1∑
j=1

Nj
∂

∂xj
Ni

= −
n∑
i=1

κi −
n+1∑
i,j=1

NiNj
∂

∂xj
Ni

= −nH −
∑
j=1

1
2Nj

∂

∂xj
|N |2︸ ︷︷ ︸

=0

= −nH.

We define (recall) the Laplace-Beltrami operator on Σ as

∆Σ =
n+1∑
i=1

δiδi. (Check this!)

We aim at proving the following:

Theorem 6.39. Suppose that u ∈ C2(Ω) is a solution of the minimal graph equation

div
∇u√

1 + |∇u|2
= 0

in an open set Ω ⊂ Rn. Then there exist positive constants C1 and C2 depending only on n such
that for every x0 ∈ Ω

(6.40) |∇u(x0)| ≤ C1 exp

(
C2

supΩ u− u(x0)

dist(x0, ∂Ω)

)
.

We need the following lemma. Since the graph Σ = Γu is minimal, we have

n+1∑
i=1

δiNi = 0.

We define ω : Ω× R→ R by
ω(x, t) = log

√
1 + |∇u(x)|2.
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Note that ω = − logNn+1. We have (Exerc.)

∆Σω =

n+1∑
i=1

δiδiω ≥ |δω|2 ≥ 0,

and therefore ω is subharmonic on Σ. The following says that ω satisfies a meanvalue inequality.

Lemma 6.41. Let ω be as above. Then there exists a constant cn depending only on n such that,
for all x0 ∈ Ω, 0 < R < dist(x0, ∂Ω), and p =

(
x0, u(x0)

)
, we have

(6.42) ω(x0) ≤ cn
Rn

∫
ΣR(p)

ω,

where ΣR(p) = {q ∈ Σ: |p− q| < R}.

Proof. We prove the lemma in case n ≥ 3. The 2-dimensional case is left as an extra exercise. We
may assume that p = 0 (∈ Rn+1). For each 0 < ε < R and x ∈ Rn+1 define

ϕε(z) =



1
2(n−2)

(
ε2−n −R2−n)+ 1

2n

(
R−n − ε−n

)
|z|2, if 0 ≤ |z| < ε;

|z|2−n
n(n−2) + 1

2n |z|
2R−n − 1

2(n−2)R
2−n, if ε ≤ |z| ≤ R;

0 if |z| > R.

Since ϕε ≥ 0 and both ϕε and ∇ϕε vanish on ∂Ω× R, we get by integration by parts that∫
Σ
ω∆Σϕε =

∫
Σ
ϕε∆

Σω ≥
∫

Σ
ϕε|δω|2 ≥ 0.

We obtain by a direct computation that

∆Σ|z|α = α(α− 2)|z|α−2
(

1− z·N
|z|2

)
+ αn|z|α−2,

and therefore

∆Σϕε =



R−n − ε−n, if 0 < |z| < ε;

R−n − |z|−2−n(z ·N)2, if ε < |z| < R;

0 if |z| > R.

Hence

0 ≤
∫

Σε(0)
(R−n − ε−n)ω +

∫
ΣR(0)\Σε(0)

(
R−n − |z|−2−n(z ·N)2

)
ω

≤
∫

Σε(0)
R−nω −

∫
Σε(0)

ε−nω +

∫
ΣR(0)\Σε(0)

R−nω −
∫

ΣR(0)\Σε(0)
|z|−2−n(z ·N)2ω

≤ 1

Rn

∫
ΣR(0)

ω − 1

εn

∫
Σε(0)

ω.

Letting ε→ 0 and applying the Lebesgue differentiation theorem, we obtain

ω(0) ≤ cn
Rn

∫
ΣR(0)

w.
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Proof of Theorem 6.39. We may assume that x0 = 0 ∈ Ω and u(0) = 0. Denote B(r) = Bn(0, r)
and C(r) = Br ×R. Throughout the proof c denotes a constant depending only on n and its value
may change even within a line. By Lemma 6.41, we have
(6.43)

ω(0) ≤ cn
Rn

∫
{x∈Rn : |x|2+|u(x)|2≤R2}

ω
√

1 + |∇u|2dx ≤ cn
Rn

∫
{x∈Rn : |x|≤R,|u(x)|≤R}

ω
√

1 + |∇u|2dx.

Let 0 < R < 1
3 dist(0, ∂Ω) and define

uR =


2R, if u ≥ R;

u+R, if |u| ≤ R;

0 if u ≤ −R.

Choose η ∈ C1
0

(
B(2R)

)
such that 0 ≤ η ≤ 1, η|B(R) ≡ 1, and |∇η| ≤ 2/R. Use ϕ = ωuRη as a

test function in the minimal graph equation

0 =

∫
Ω

∇u · ∇ϕ√
1 + |∇u|2

=

∫
Ω

ωuR∇u · ∇η√
1 + |∇u|2

+

∫
Ω

ωη∇u · ∇uR√
1 + |∇u|2

+

∫
Ω

uRη∇u · ∇ω√
1 + |∇u|2

to get

(6.44)

∫
{x∈Rn : |x|≤R,|u(x)|≤R}

ω|∇u|2√
1 + |∇u|2

≤ 2R

∫
{x∈Rn : |x|≤2R,u>−R}

(
ω|∇η|+ η|∇ω|

)
.

On the other hand, since ∆Σω ≥ 0, we get, for all φ ∈ C1
0

(
C(2R)

)
, by integration by parts that∫

Σ∩C(2R)
φ2|δω|2 ≤

∫
Σ∩C(2R)

φ2∆Σω = −2

∫
Σ∩C(2R)

φδω · δφ

≤ 2

∫
Σ∩C(2R)

φ|δω||δφ| ≤ 1
2

∫
Σ∩C(2R)

φ2|δω|2 + 2

∫
Σ∩C(2R)

|δφ|2.

Hence ∫
Σ∩C(2R)

φ2|δω|2 ≤ 4

∫
Σ∩C(2R)

|δφ|2.

By Hölder’s inequality we further obtain

(6.45)

∫
Σ∩suppφ

φ|δω| ≤ cmax |δφ|Vol(Σ ∩ suppφ).

Next choose φ of the form

φ(x, y) = η(x)τ(t),

where η is as before and τ ∈ C1
0

(
(−2R,R+ supB(2R) u)

)
, with 0 ≤ τ ≤ 1, τ ≡ 1 in [−R, supB2R

u],

and |dτdt | ≤ c/R. Since ∂ω
∂xn+1

≡ 0, we have

|∇ω|Nn+1 ≤ |δω|. (Exerc.)
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Hence ∫
{|x|≤2R,u>−R}

η|∇ω|dx =

∫
{|x|≤2R,u>−R}

η|∇ω|Nn+1

√
1 + |∇u|2dx

=

∫
{(x,u(x)) : |x|≤2R,u>−R}

η |∇ω|Nn+1︸ ︷︷ ︸
≤|δω|

≤
∫

{(x,u(x)) : |x|≤2R,u>−R}

η|δω| ≤
∫

Σ∩C(2R)
φ|δω|(6.46)

≤ cmax |δφ|Vol(Σ ∩ suppφ) ≤ c
R Vol(Σ ∩ suppφ)

≤ c
R

∫
{|x|≤2R,u≥−2R}

√
1 + |∇u|2.

On the other hand, ω = log
√

1 + |∇u|2 ≤
√

1 + |∇u|2, so

(6.47)

∫
{|x|≤2R,u≥−R}

ω|∇η| ≤
∫

{|x|≤2R,u≥−R}

|∇η|
√

1 + |∇u|2 ≤ 2
R

∫
{|x|≤2R,u≥−R}

√
1 + |∇u|2.

Combining (6.46) and (6.47) with (6.44) we get

(6.48)

∫
{|x|≤R,|u|≤R}

ω|∇u|2√
1 + |∇u|2

≤ c
∫

{|x|≤2R,u≥−2R}

√
1 + |∇u|2.

Therefore, the right-side of (6.42) can be estimated as

∫
{|x|≤R,|u|≤R}

ω
√

1 + |∇u|2 =

∫
{|x|≤R,|u|≤R}

≤1︷ ︸︸ ︷
ω√

1 + |∇u|2
+

∫
{|x|≤R,|u|≤R}

ω|∇u|2√
1 + |∇u|2

≤
∫

{|x|≤R,|u|≤R}

1 +

∫
{|x|≤R,|u|≤R}

ω|∇u|2√
1 + |∇u|2

(6.49)

≤ cRn + c

∫
{|x|≤2R,u≥−2R}

√
1 + |∇u|2.

Next we use ϕ = ηmax(u + 2R, 0), where η ∈ C1
0

(
B(3R)

)
, 0 ≤ η ≤ 1, η|B(2R) ≡ 1, and

|∇η| ≤ 2/R, in the (weak form of the) minimal graph equation. In the set, where u ≥ −2R,
ϕ = η(u+ 2R) and ∇ϕ = (u+ 2R)∇η + η∇u, otherwise ∇ϕ = 0. We get

0 =

∫
{|x|≤3R,u≥−2R}

η|∇u|2√
1 + |∇u|2

+

∫
{|x|≤3R,u≥−2R}

(u+ 2R)∇u · ∇η√
1 + |∇u|2

.
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Then ∫
{|x|≤2R,u≥−2R}

√
1 + |∇u|2 =

∫
{|x|≤2R,u≥−2R}

1 + |∇u|2√
1 + |∇u|2

=

∫
{|x|≤2R,u≥−2R}

1

1 + |∇u|2
+

∫
{|x|≤2R,u≥−2R}

|∇u|2

1 + |∇u|2

≤ cRn +

∫
{|x|≤3R,u≥−2R}

η|∇u|2

1 + |∇u|2

≤ cRn +

∫
{|x|≤3R,u≥−2R}

(u+ 2R)|∇u||∇η|
1 + |∇u|2

(6.50)

≤ cRn +

∫
{|x|≤3R,u≥−2R}

(u+ 2R) cR

≤ cRn + cRn
(
c+ c

R sup
B(3R)

u
)

≤ Rn
(
c+ c

R sup
B(3R)

u
)
.

From (6.43), (6.49), and (6.50) we get

ω(0) ≤ c+ c
R sup
B(3R)

u,

and therefore

|∇u(0)| ≤
√

1 + |∇u(0)|2 = expω(0)

≤ exp

(
c+ c

R sup
B(3R)

u

)
= C1 exp

(c supB(3R) u

R

)
.

This holds for every 0 < R < 1
3 dist(0, ∂Ω). Since we assumed u(0) = 0, we finally have

|∇u(0)| ≤ C1 exp

(
C2 supΩ(u− u(0)

dist(0, ∂Ω)

)
.

6.51 Dirichlet problem with continuous boundary data

In this section we apply the interior gradient estimate and the theory of uniformly elliptic equations
to the Dirichlet problem with continuous boundary values.

Theorem 6.52. Let Ω ⊂ Rn be a bounded open set with C2-smooth boundary of nonnegative mean
curvature with respect to inwards pointing normal. Let ϕ ∈ C(∂Ω). Then there exists a unique
u ∈ C∞(Ω) ∩ C(Ω̄) such that u|∂Ω = ϕ and

(6.53) div
∇u√

1 + |∇u|2
= 0

in Ω.
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Proof. Let ϕj ∈ C2(Rn) be a sequence such that ϕj |∂Ω → ϕ uniformly. For each j there exists
uj ∈ C∞(Ω)∩C(Ω̄) that solves the equation (6.53) in Ω with boundary values ϕj . By the Maximum
Principle 6.15,

sup
Ω
|uj − ui| = sup

∂Ω
|uj − ui| = sup

∂Ω
|ϕj − ϕi|.

Hence there exists a continuous function u ∈ C(Ω̄) such that uj → u uniformly in Ω̄. Fix a compact
set K ⊂ Ω. By the interior gradient estimate (6.40),

sup
K
|∇uj | ≤ L,

where the constant L = L(K) < ∞ is independent of j. The theory of uniformly elliptic PDEs
implies that

sup
K
|Dsuj | ≤ L(K, s)

for any partial derivatives Ds of order s. It follows, in particular, that uj → u in C2
loc(Ω)∩C(Ω̄), and

therefore also u solves (6.53) in Ω. The uniqueness follows again from the Maximum Principle.

7 Functions of bounded variation

In this section we describe another approach to the existence of a minimizer of the volume functional.
We define functions of bounded variations, give some basic properties of them mostly without proofs,
and refer to textbooks, like [EG] and [G], for details.

7.1 Definitions and basic properties

Definition 7.2. Let Ω ⊂ Rn be open and u ∈ L1
loc(Ω). Define∫

Ω
|Du| := sup

{∫
Ω
u div g : g = (g1, . . . , gn) ∈ C1

0 (Ω;Rn), |g| ≤ 1

}
.

Above
∫

Ω |Du| should be understood just as a notation (not an integral). Furthermore,

div g =
n∑
i=1

∂gi
∂xi

is the usual divergence.

Examples 7.3. (a) If u ∈ C1(Ω), then integration by parts implies that∫
Ω
udiv g = −

∫
Ω
∇u · g ∀g ∈ C1

0 (Ω;Rn),

and so ∫
Ω
|Du| =

∫
Ω
|∇u|.

(b) More generally, if u belongs to the Sobolev space W 1,1
loc (Ω), then again∫

Ω
|Du| =

∫
Ω
|∇u|,

where ∇u is the distributional gradient of u.
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Definition 7.4. A function u ∈ L1(Ω) is said to have bounded variation in Ω if∫
Ω
|Du| <∞.

We denote by BV(Ω) the vector space of all functions u ∈ L1(Ω) with bounded variation in Ω.

Definition 7.5. Similarly, a function u ∈ L1
loc(Ω) has locally bounded variation and belongs to

BVloc(Ω) if ∫
V
|Du| <∞

for every relatively compact open set V b Ω.

Theorem 7.6. For every u ∈ BVloc(Ω) there exists a Radon measure µ on Ω and a µ-measurable
mapping σ : Ω→ Rn such that

(i) |σ(x)| = 1 for µ-a.e. x ∈ Ω;

(ii) ∫
Ω
udiv g dx = −

∫
Ω
g · σ dµ

for every g ∈ C1
0 (Ω;Rn).

Proof. Let L : C1
0 (Ω;Rn)→ R be the linear functional

L(g) = −
∫

Ω
udiv g dm.

Since u ∈ BVloc(Ω), we have

sup{L(g) : g ∈ C1
0 (V ;Rn), |g| ≤ 1} =: C(V ) <∞

for every relatively compact V b Ω. Hence

(7.7) |L(g)| ≤ C(V )‖g‖∞ ∀g ∈ C1
0 (V,Rn).

For each g ∈ C0(Ω;Rn) choose an open set V such that supp g ⊂ V b Ω. Furthermore, let
gk ∈ C1

0 (V ;Rn), k ∈ N, be a sequence such that gk → g uniformly in V . Define

L̄(g) = lim
k→∞

L(gk).

By (7.7), the limit exists and is independent of the chosen sequence gk (and of V ⊃ supp g). Thus
L uniquely extends to a linear functional

L̄ : C1
0 (Ω;Rn)→ R

and

sup{L̄(g) : g ∈ C0(Ω;Rn), supp g ⊂ K, |g| ≤ 1} <∞

for every compact K ⊂ Ω. The claim then follows from the Riesz representation theorem.
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By Examples 7.3 (b), W 1,1(Ω) ⊂ BV(Ω). The converse inclusion does not hold. Indeed, suppose
that E ⊂ Rn is a bounded open set, with C2-smooth boundary. Let Ω ⊂ Rn be an open set such
that Ω ∩ E 6= ∅ 6= Ω ∩ (Rn \ E). Furthermore, let χE be the characteristic function of E. Then
χE ∈ L1(Ω) and for all g ∈ C1

0 (Ω;Rn), |g| ≤ 1,

(7.8)

∫
Ω
χE div g =

∫
E

div g =

∫
∂E
g · νdHn−1 ≤ Hn−1(∂E ∩ Ω) <∞.

Here Hn−1 is the (normalized) (n − 1)-dimensional Hausdorff measure. Hence χE ∈ BV(Ω). On
the other hand, χE 6∈W 1,1(Ω) (Exerc.).

Definition 7.9. Let E ⊂ Rn be (Lebesgue) measurable and let Ω ⊂ Rn be open. Then the
perimeter of E in Ω is

P (E,Ω) =

∫
Ω
|DχE |.

Furthermore, E ⊂ Rn has finite perimeter in Ω if P (E,Ω) <∞, i.e. χE ∈ BV(Ω). If a Borel set E
has finite perimeter in every bounded open set Ω ⊂ Rn, then E is called a Caccioppoli set .

Remarks 7.10. 1. If u ∈ BVloc(Ω), we denote by ‖Du‖ the Radon measure µ given by Theo-
rem 7.6 and by

[Du] = ‖Du‖xσ
the vector valued measure d[Du] = σ d‖Du‖. Hence∫

Ω
udiv g = −

∫
Ω
g · σ d‖Du‖ = −

∫
Ω
g · d[Du]

for g ∈ C1
0 (Ω;Rn).

2. If u ∈ BV(Ω) and V b Ω is an open subset, then

‖Du‖(V ) = sup

{∫
V
udiv g dx : g ∈ C1

0 (Ω;Rn), |g| ≤ 1

}
.

Hence, using our earlier notation, ∫
V
|Du| = ‖Du‖(V ).

3. If E ⊂ Rn is a Lebesgue measurable set of locally finite perimeter in Ω and u = χE , we also
write

‖∂E‖ = µ and νE = −σ
for the measure µ and the mapping σ given by Theorem 7.6. Thus∫

E
div g =

∫
Ω
χE div g =

∫
Ω
g · νE d‖∂E‖

for all g ∈ C1
0 (Ω;Rn) and

‖∂E‖(V ) = sup


∫
E

div g︸ ︷︷ ︸∫
V χE div g

: g ∈ C1
0 (V ;Rn), |g| ≤ 1


for V b Ω.
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4. Furthermore, for u ∈ BVloc(Ω), we write

µi = ‖Du‖xσi

for the signed Radon measure dµi = σi d‖Du‖, and

µi = µia + µis,

where µia � mn and µis ⊥ mn are the absolutely continuous and the singular part of µi (with
respect to the Lebesgue measure mn). Hence by the Radon-Nikodym theorem

µia = mnxui

for some ui ∈ L1
loc(Ω). [In other words, dµia = ui dmn, and ui = dµia/dmn is the Radon-

Nikodym derivative of µia with respect to mn.] We write

∂u

∂xi
:= ui, i = 1, . . . , n;

Du := ( ∂u∂x1 , . . . ,
∂u
∂xn

);

[Du]a := (µ1
a, . . . , µ

n
a) = mnxDu;

[Du]s := (µ1
s, . . . , µ

n
s ).

So,

[Du] = [Du]a + [Du]s = mnxDu+ [Du]s,

that is, Du ∈ L1
loc(Ω);Rn) is the density of the absolutely continuous part of [Du].

Examples 7.11. 1. If u ∈W 1,1
loc (Ω), then u ∈ BVloc(Ω) and ‖Du‖ = mnx|∇u|. Furthermore,

σ(x) =

{ ∇u(x)
|∇u(x)| , if ∇u(x) 6= 0;

0, if ∇u(x) = 0

for mn-a.e. x ∈ Ω.

2. Suppose that E is a smooth open subset of Rn, with Hn−1(∂E ∩K) <∞ for every compact
K ⊂ Ω. Then for every relatively compact open set V b Ω and g ∈ C1

0 ( Rn),∫
E

div g dx =

∫
∂E∩V

g · ν dHn−1,

where ν is the outward pointing unit normal field to ∂E. If, furthermore, |g| ≤ 1, we have∫
E

div g dx =

∫
V
χE div g dx =

∫
∂E∩V

g · ν dHn−1 ≤ Hn−1(∂E ∩ V ) <∞.

So, ‖∂E‖(Ω) = Hn−1(∂E ∩ Ω) and νE = ν Hn−1-a.e. in ∂E ∩ Ω.

Remark 7.12. We noticed earlier that W 1,1
loc (Ω) ( BVloc(Ω). In fact, a function u ∈ BVloc(Ω)

belongs to W 1,p
loc (Ω), p ≥ 1, if and only if

u ∈ Lploc(Ω), [Du]s = 0, and Du ∈ Lploc(Ω;Rn).
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Theorem 7.13 (Lower semicontinuity). Let Ω ⊂ Rn be open and uj ∈ BV(Ω), j ∈ N such that
uj → u in L1

loc(Ω). Then

(7.14)

∫
Ω
|Du| ≤ lim inf

j→∞

∫
Ω
|Duj |.

Proof. Let g ∈ C1
0 (Ω;Rn), |g| ≤ 1. Then∣∣∣∣∫

Ω
udiv g −

∫
Ω
uj div g

∣∣∣∣ =

∣∣∣∣∫
Ω

(u− uj) div g

∣∣∣∣
≤
∫

Ω
|u− uj | |div g|︸ ︷︷ ︸

≤C

≤ C
∫

supp g
|u− uj | → 0

as j →∞. Thus for all g ∈ C1
0 (Ω;Rn), |g| ≤ 1, we have∫

Ω
udiv g = lim

j→∞

∫
Ω
uj div g ≤ lim inf

j→∞

∫
Ω
|Duj |

and (7.14) follows by taking the supremum of the left-side over all such g.

Theorem 7.15. Equipped with the BV-norm

‖u‖BV := ‖u‖L1(Ω) +

∫
Ω
|Du|

BV(Ω) is a Banach space.

Proof. Exercise.

Functions in Sobolev spaces W 1,p(Ω), 1 ≤ p <∞, can be approximated by C∞(Ω) functions in
the Sobolev norm

‖u‖1,p := ‖u‖p + ‖|∇u|‖p.
In fact, W 1,p(Ω) is the completion of C∞(Ω) in the Sobolev norm and since BV(Ω) 6= W 1,1(Ω),
functions in BV(Ω) can not be approximated in the BV-norm. However,

Theorem 7.16 (Approximation). Let u ∈ BV(Ω). Then there exists a sequence uj ∈ C∞(Ω), j ∈
N, such that

lim
j→∞

∫
Ω
|uj − u| = 0,

lim
j→∞

∫
Ω
|Duj | =

∫
Ω
|Du|.

Suppose that u ∈ BV(Ω) and uj ∈ C∞(Ω) are as above. For each j ∈ N let µj be the vector-
valued Radon-measure defined by

µj(B) =

∫
B∩Ω
∇uj dx

for Borel sets B ⊂ Rn. Furthermore, let µ be the vector-valued Radon measure

µ(B) =

∫
B∩Ω

d[Du] =

∫
B∩Ω

σ d‖Du‖.

Then µj ⇀ µ.
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Theorem 7.17 (Compactness). Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary ∂Ω.
Suppose that uj ∈ BV(Ω), j ∈ N, is a sequence such that

sup
j
‖uj‖BV <∞.

Then there exist a subsequence (ujk) and u ∈ BV(Ω) such that ujk → u in L1(Ω).

Proof. For j = 1, 2, . . . , choose gj ∈ C∞(Ω) such that∫
Ω
|uj − gj | < 1/j and sup

j

∫
Ω
|∇gj | <∞.

Since ∂Ω is assumed to be Lipschitz, there exist u ∈ L1(Ω) and a subsequence (gjk) such that
gjk → u in L1(Ω); see Theorem 1 and Remark in Section 4.6 in [EG]. Then also ujk → u in L1(Ω),
and by lower semicontinuity (Theorem 7.13) u ∈ BV(Ω).

Theorem 7.18 (”Existence of minimal surfaces”). Let Ω ⊂ Rn be a bounded open set and let
L ⊂ Rn be a Caccioppoli set. Then there exists a measurable set E ⊂ Rn such that

E \ Ω = L \ Ω

and ∫
Rn
|DχE | ≤

∫
Rn
|DχF |

for every measurable F ⊂ Rn, with
F \ Ω = L \ Ω.

Proof. Let R > 0 be so large that Ω̄ ⊂ B = Bn(0, R) = {x ∈ Rn : |x| < R}. Let F ⊂ Rn be a
measurable set such that F \ Ω = L \ Ω. Then∫

Rn
|DχF | = ‖∂F‖(Rn) = ‖∂F‖(B) + ‖∂F‖(Rn \B) =

∫
B
|DχF |+

∫
Rn\B

|DχL|.

Thus we need to find a measurable set E ⊂ B such that E = L in B \ Ω and

(7.19)

∫
B
|DχE | ≤

∫
B
|DχF |

for all measurable sets F , with F = L in B \ Ω. Let {Ej} be a minimizing sequence of admissible
measurable sets, i.e. Ej = L in B \ Ω and∫

B
|DχEj | → inf

{∫
B
|DχF | : F = L in B \ Ω

}
.

Since the Caccioppoli set L itself is admissible, we may assume that

sup
j

∫
B
|DχEj | <∞.

Hence (χEj ) is a bounded sequence in BV(Ω), and therefore there exists a subsequence, still denoted
by (χEj ) and f ∈ L1(B) such that χEj → f in L1(B). Hence (for a new subsequence) χEj (x)→ f(x)
for a.e. x ∈ B. Since χEj (x) is either 0 or 1, we may assume that f is the characteristic function of
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a measurable set E such that E = L in B \ Ω. Thus E is admissible and by lower semicontinuity
(Theorem 7.13)∫

B
|DχE | =

∫
B
|Df | ≤ lim inf

j→∞

∫
B
|DχEj | = inf

{∫
B
|DχF | : F = L in B \ Ω

}
.

Thus the perimeter of E, P (E,Ω), minimizes the perimeters of all sets with the same ”boundary
values” L. By recalling (7.8), we may say that, roughly speaking, ∂E minimizes the measure of all
”surfaces” with boundary values ∂L ∩ ∂Ω. In order to apply this idea to the minimizing problem
of the volume functional, we need to discuss about boundary values of BV-functions, i.e. traces
of BV-functions. The idea is that if ∂Ω is sufficiently nice and u ∈ BV(Ω), it is possible to define
boundary values of u.

Suppose that Ω is the upper-half space

Ω = Rn−1 × R+ = {(x, t) : x ∈ Rn−1, t > 0}.

For y ∈ Rn−1 and r > 0 denote C+
r (y) = Bn−1(y, r) × (0, r) ⊂ Ω̄. Let u ∈ BV(C+

R (0)) for some
R > 0. Then there exists u+ ∈ L1(Bn−1(0, R);Hn−1) such that

lim
r→0+

r−n
∫
C+
r (y)
|u(x)− u+(y)|dmn(x) = 0

for Hn−1-a.e. y ∈ Bn−1(0, R). Note that this conclusion is much stronger than the one in the
Lebesgue differentiation theorem. The function u+ is called the trace of u and it is denoted by
Tru. Obviously,

u+(y) = lim
r→0+

1

mn

(
C+
r (y)

) ∫
C+
r (y)

u(x)dmn(x) for Hn−1-a.e. y ∈ Bn−1(0, R).

Note that it is not possible to well-define a trace of a general L1-function. It is exactly the existence
of ”derivative” that makes BV-functions more regular than mere L1-functions and, consequently,
enables the definition of the trace.

More generally, suppose that Ω ⊂ Rn is a bounded open set with Lipschitz boundary ∂Ω. Then
there exists a bounded linear mapping Tr: BV(Ω)→ L1(∂Ω;Hn−1) such that

(7.20)

∫
Ω
udiv g dx = −

∫
Ω
g · d[Du] +

∫
∂Ω

(g · ν) Tru dHn−1

for all u ∈ BV(Ω) and g ∈ C1(Rn;Rn), where ν is the outward pointing unit normal to ∂Ω (defined
Hn−1-a.e. on ∂Ω since ∂Ω is Lipschitz). Note that g need not vanish near ∂Ω. Moreover, for
Hn−1-a.e. x ∈ ∂Ω

lim
r→0+

1

m
(
Bn(x, r) ∩ Ω

) ∫
Bn(x,r)∩Ω

|u(y)− Tru(x)| dm(y) = 0,

and so

Tru(x) = lim
r→0+

1

m
(
Bn(x, r) ∩ Ω

) ∫
Bn(x,r)∩Ω

u(y) dm(y).

We formulate (see e.g. [EG]):
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Theorem 7.21. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary. Then there exists a
unique continuous linear operator Tr: BV(Ω)→ L1(∂Ω;Hn−1) such that for every u ∈ C∞(Ω̄) we
have Tru = u|∂Ω. Moreover, the map Tr is surjective.

We also have (see [G, p. 41]):

Theorem 7.22. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary. Given ϕ ∈
L1(∂Ω;Hn−1) and ε > 0, there exist f ∈ W 1,1(Ω) and a constant A = A(∂Ω) such that Tr f = ϕ
and ∫

Ω
|f | ≤ ε‖ϕ‖L1(∂Ω) and∫

Ω
|Df | ≤ A‖ϕ‖L1(∂Ω).

If, moreover, ∂Ω is C1, the constant A can be taken as A = 1 + ε.

Next we discuss about extensions of BV -functions.

Theorem 7.23. Suppose that Ω ⊂ Rn is a bounded open set with Lipschitz boundary ∂Ω. Let
f1 ∈ BV(Ω) and f2 ∈ BV(Rn \ Ω̄). Define f : Rn \ ∂Ω→ R,

f(x) =

{
f1(x), if x ∈ Ω;

f2(x), if x ∈ Rn \ Ω̄.

Then f ∈ BV(Rn) and

(7.24) ‖Df‖(Rn) = ‖Df1‖(Ω) + ‖Df2‖(Rn \ Ω̄) +

∫
∂Ω
|Tr f1 − Tr f2| dHn−1.

Proof. Let g ∈ C1
0 (Rn;Rn) with |g| ≤ 1. By (7.20), we have∫

Rn
f div g =

∫
Ω
f1 div g +

∫
Rn\Ω̄

f2 div g

= −
∫

Ω
g · d[Df1]−

∫
Rn\Ω̄

g · d[Df2] +

∫
∂Ω

(Tr f1 − Tr f2)g · ν dHn−1

≤ ‖Df1‖(Ω) + ‖Df2‖(Rn \ Ω̄) +

∫
∂Ω
|Tr f1 − Tr f2| dHn−1.

It follows that f ∈ BV(Rn) and ‖Df‖(Rn) is at most the right-side of (7.24). Conversely,∫
Rn
f div g = −

∫
Rn
g · d[Df ]

= −
∫

Ω
g · d[Df1]−

∫
Rn\Ω̄

g · d[Df2] +

∫
∂Ω

(Tr f1 − Tr f2)g · ν dHn−1

for all g ∈ C1
0 (Rn,Rn). Hence

[Df ] =

{
[Df1], in Ω;

[Df2], in Rn \ Ω̄,
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and ∫
Ω
g · d[Df1] +

∫
Rn\Ω̄

g · d[Df2]−
∫
∂Ω

(Tr f1 − Tr f2)g · ν dHn−1

=

∫
Rn
g · d[Df ]

=

∫
Ω
g · d[Df ] +

∫
Rn\Ω̄

g · d[Df ] +

∫
∂Ω
g · d[Df ]

=

∫
Ω
g · d[Df1] +

∫
Rn\Ω̄

g · d[Df2] +

∫
∂Ω
g · d[Df ].

It follows that ∫
∂Ω
g · d[Df ] = −

∫
∂Ω

(Tr f1 − Tr f2)g · ν dHn−1

for all g ∈ C1
0 (Rn,Rn). Hence

‖Df‖(∂Ω) =

∫
∂Ω
|Tr f1 − Tr f2| dHn−1,

and therefore

‖Df‖(Rn) ≤ ‖Df1‖(Ω) + ‖Df2‖(Rn \ Ω̄) +

∫
∂Ω
|Tr f1 − Tr f2| dHn−1

= ‖Df‖(Ω) + ‖Df‖(Rn \ Ω̄) + ‖Df‖(∂Ω)

= ‖Df‖(Rn).

7.25 Volume functional among BV-functions

Let us return back to the volume functional and minimal graphs. Suppose that Ω ⊂ Rn is a
bounded open set and let u : Ω → R be a continuous function. We define the relaxed area (or
relaxed volume) of its graph Γu as

(7.26) Vol(Γu) = inf

{
lim inf
k→∞

V(uk) : uk → u uniformly in Ω, uk ∈ C1(Ω̄)

}
,

where the infimum is taken over all such sequences (uk).

Remarks 7.27. 1. The relaxed area functional is lower semicontinuous with respect to uniform
convergence.

2. The relaxed area of the graph of a Lipschitz function coincides with its usual area.

Next we extend the definition even more:

Definition 7.28. Let u ∈ L1(Ω). We define

(7.29) V(u) = inf

{
lim inf
k→∞

V(uk) : uk → u in L1(Ω), uk ∈ C1(Ω̄)

}
.
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It turns out that

(7.30) V(u) = sup

{∫
Ω

(
u

n∑
i=1

∂gi
∂xi

+ gn+1

)
: g ∈ C1

0 (Ω;Rn+1), |g| ≤ 1

}
.

We also write

(7.31)

∫
Ω

√
1 + |Du|2 := V(u)

for functions u ∈ L1(Ω). Thus for bounded open sets and functions u ∈ L1(Ω)

(7.32)

∫
Ω

√
1 + |Du|2 = sup

{∫
Ω

(
u

n∑
i=1

∂gi
∂xi

+ gn+1

)
: g ∈ C1

0 (Ω;Rn+1), |g| ≤ 1

}
.

Since

(7.33)

∫
Ω
|Du| ≤

∫
Ω

√
1 + |Du|2 ≤

∫
Ω
|Du|+mn(Ω),

we see that BV(Ω)-functions in a bounded open set Ω are exactly those functions whose graphs
have finite relaxed area.

We notice that ∫
Ω

√
1 + |Du|2 =

∫
Ω

√
1 + |∇u|2

if u ∈ C1(Ω), or more generally, if u ∈W 1,1(Ω). The lower semicontinuity∫
Ω

√
1 + |Du|2 ≤ lim inf

j→∞

∫
Ω

√
1 + |Duj |2

holds whenever uj → u in L1(Ω).

Next we formulate a minimizing problem: Suppose that Ω ⊂ Rn is a bounded open set with
Lipschitz boundary ∂Ω. For ϕ ∈ L1(∂Ω;Hn−1), denote

A = {u ∈ BV(Ω): Tru = ϕ}.

Problem: Find a minimizer for the relaxed area functional V among functions in A.

Since the trace operator Tr: BV(Ω) → L1(∂Ω) is surjective, the set A of admissible functions
is non-empty, and therefore, for all v ∈ A

I := inf{V(u) : u ∈ A} ≤
∫

Ω
|Dv|+mn(Ω) <∞.

Thus we may find a minimizing sequence uj ∈ A, j ∈ N, with

lim
j→∞

V(uj) = I.

By compactness, there exists a subsequence uji and u ∈ L1(Ω) such that uji → u in L1(Ω).
Furthermore, the lower semicontinuity implies that

V(u) ≤ lim inf V(uji) = I.



Fall 2014 69

It follows that u ∈ BV(Ω). However, the trace of u need not be ϕ, and consequently u need not
belong to A. The problem here is the boundary behavior of functions in a minimizing sequence.

We must ”relax” further an modify the area functional by adding the area of the piece of cylinder
∂Ω× R that lies between graphs of Tru and ϕ. Thus we define for u ∈ BV(Ω)

(7.34) J (u) :=

∫
Ω

√
1 + |Du|2 +

∫
∂Ω
|Tru− ϕ|dHn−1.

Theorem 7.35. Let Ω ⊂ Rn be a bounded open set with C1-smooth boundary ∂Ω and let ϕ ∈
L1(∂Ω;Hn−1). Then

(7.36) inf {V(u) : u ∈ BV(Ω),Tru = ϕ} = inf {J (u) : u ∈ BV(Ω)} .

Proof. Let us denote by L the left-side of (7.36) and by R the right-side of (7.36). Suppose that
u ∈ BV(Ω) and Tru = ϕ. Then V(u) = J (u), and therefore L ≥ R. So it remains to prove R ≥ L.
Let u ∈ BV(Ω) and ε > 0. By Theorem 7.22, there exists w ∈W 1,1(Ω), with Trw = ϕ− Tru and∫

Ω
|Dw| ≤ (1 + ε)

∫
∂Ω
|Trw − ϕ| dHn−1.

Then v = u+ w ∈ BV(Ω) and Tr v = ϕ. Moreover,

V(v) =

∫
Ω

√
1 + |Dv|2

≤
∫

Ω

√
1 + |Du|2 +

∫
Ω
|Dw|

≤
∫

Ω

√
1 + |Du|2 + (1 + ε)

∫
∂Ω
|Trw − ϕ| dHn−1.

So, L ≤ R.

Problem: Given ϕ ∈ L1(∂Ω;Hn−1) find u ∈ BV(Ω) that minimizes

J (v,Ω) =

∫
Ω

√
1 + |Dv|2 +

∫
∂Ω
|Tr v − ϕ| dHn−1

among v ∈ BV(Ω). Suppose that Ω̄ ⊂ B = Bn(0, R). Extend ϕ to ϕ ∈ W 1,1(B \ Ω̄) and, for each
v ∈ BV(Ω), define

vϕ =

{
v, in Ω;

ϕ, in B \ Ω̄.

Then vϕ ∈ BV(B) and∫
B

√
1 + |Dvϕ|2 =

∫
Ω

√
1 + |Dv|2 +

∫
B\Ω̄

√
1 + |Dϕ|2 +

∫
∂Ω
|Tr v − ϕ| dHn−1

= J (v,Ω) +

∫
B\Ω̄

√
1 + |Dϕ|2.

Thus we get another formulation of the problem above: Given ϕ ∈ W 1,1(B \ Ω̄) find v ∈ BV(B)
that minimizes

V(v,B) =

∫
B

√
1 + |Dv|2

among v ∈ BV(B) with v = ϕ in the open set B \ Ω̄.
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Theorem 7.37. Suppose that Ω ⊂ Rn is a bounded open set with Lipschitz boundary ∂Ω. Let
ϕ ∈ L1(∂Ω;Hn−1). Then the functional

J (u,Ω) =

∫
Ω

√
1 + |Du|2 +

∫
∂Ω
|Tru− ϕ| dHn−1

attains its minimum in BV(Ω).

Proof. Take an open ball B such that Ω̄ ⊂ B. Extend ϕ to ϕ ∈W 1,1(B \ Ω̄). Let

I := inf

{
J (u,Ω) +

∫
B\Ω̄

√
1 + |Dϕ|2 : u ∈ BV(Ω)

}
= inf

{
V(v,B) : v ∈ BV(B), v = ϕ in B \ Ω̄

}
.

Since for all v ∈ BV(Ω) the function vϕ ∈ BV(B) and

V(vϕ, B) =

∫
B

√
1 + |Dvϕ|2 ≤

∫
B
|Dvϕ|2 +m(B) <∞,

we have I < ∞. Take a minimizing sequence vj ∈ BV(B), j ∈ N, such that vj = ϕ in B \ Ω̄
and V(vj , B) → I as j → ∞. Then vj is a bounded sequence in BV(B), hence there exists a
subsequence, still denoted by vj , and v ∈ BV(B) such that vj → v in L1(B). Clearly, v = ϕ
(almost everywhere) in B \ Ω̄. Hence v is ”admissible” and by the lower semicontinuity,

V(v,B) ≤ lim inf
j→∞

V(vj , B) = I.

Thus v|Ω minimizes J in BV(Ω).

Remark 7.38. It turns out that the minimizer of J given by Theorem 7.37 is, in fact, smooth in
Ω; see [G, Theorem 14.13].

8 The Plateau problem

In this section we study the classical Plateau problem: Given a closed curve Γ ⊂ R3, find a minimal
surface with boundary Γ. We consider the problem for parameterized disks (solved independently
by Douglas and Radó in the 30’s).

Let Γ ⊂ R3 be a piecewise C1-smooth Jordan curve. We write D = {z = (x, y) ∈ R2 : |z| < 1}
and S = ∂D for the unit disk and for the unit circle, respectively. A map f : S → Γ is called
monotone if the preimage f−1K is connected for every connected K ⊂ Γ.

Theorem 8.1. Given a piecewise C1-smooth Jordan curve Γ ⊂ R3, there exists a map u : D̄→ R3

such that

(1) u|S : S→ Γ is monotone and onto;

(2) u ∈ C(D̄) ∩W 1,2(D;R3) and u is C∞-smooth in D;

(3) the image u(D) minimizes the area of images v(D) among all maps v ∈ C(D̄) ∩W 1,2(D;R3),
with v|S : S→ Γ monotone and onto.

A natural attempt to solve this problem would be to take a minimizing sequence of admissible
maps and try to extract a converging subsequence. There are two serious problems in this approach.
Since the area of the image is independent of parametrization, the noncompactness of the group of
diffeomerphisms D → D is a major problem. Secondly, since thin tubes can have arbitrarily small
area, the area of the image does not control the mapping enough.
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8.2 Area and energy

To overcome the difficulties above, we try to minimize the energy. We denote by W 1,2(D) the
Sobolev space of functions f ∈ L2(D) whose distributional first order partial derivatives belong to
L2(D) as well. It is a Banach space with the norm

‖f‖1,2 = ‖f‖p + ‖|∇f |‖p.

Furthermore, we denote by W 1,2(D;Rn) the Banach space of mappings f : D→ Rn with coordinate
functions fi ∈ W 1,2(D), i = 1, . . . , n. The closure of C∞0 (D) in W 1,2(D) is denoted by W 1,2

0 (D). It
is a Banach space, too.

Let u : D→ Rn, u = (u1, u2, . . . , un), belong to W 1,2(D;Rn). The energy of u is

E(u) =
1

2

∫
D
|∇u(z)|2 dz,

where ∇u(z) (= Du(z)) is the linear map ∇u(z) : R2 → Rn defined by the distributional partial
derivatives uix(z), uiy(z) as

∇u(z) =


u1
x(z) u1

y(z)

u2
x(z) u2

y(z)
...

...
unx(z) uny (z)


and

|∇u|2 = |ux|2 + |uy|2 =
n∑
i=1

(
(uix)2 + (uiy)

2
)

is the square of the Hilbert-Schmidt norm of ∇u. Notice that ∇u(z) is defined at almost every
point z = (x, y) ∈ D. We define the area of the image u(D) (with multiplicity counted) by

Area(u) =

∫
D

(
|ux|2|uy|2 − 〈ux, uy〉2

)1/2
.

Note that the integrand

|ux ∧ uy| =
(
|ux|2|uy|2 − 〈ux, uy〉2

)1/2
is the area of the parallelogram spanned by vectors ux = (∇u)e1, uy = (∇u)e2 ∈ Rn. Hence
Area(u) is the 2-dimensional (normalized) Hausdoff measure of the image (at least) if u is C1 and
one-to-one. Since

E(u) =
1

2

∫
D

(
|ux|2 + |uy|2

)
we notice that Area(u) ≤ E(u) and the equality occurs if and only if

(8.3) 〈ux, uy〉 = 0 and |ux| = |uy| a.e.

That is 〈ux, uy〉 = 0 and |ux|2 − |uy|2 = 0 as L1-functions. We call a mapping u ∈ W 1,2(D;Rn)
almost conformal if Area(u) = E(u). Thus (8.3) holds a.e., but ∇u(z) may be 0 (constant linear
map) in a set of positive measure. If, furthermore, u is an almost conformal immersion, then u
is conformal, hence an isothermal parametrization. The existence of isothermal coordinates in 2-
dimensions will be crucial for the proof and the reason why this kind of approach does not work
for higher dimensional analogues. Indeed, provided certain properties (see below) hold for a map
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u ∈W 1,2(D;Rn), there exists a homeomorphism ϕ : D̄→ D̄ such that ϕ|D : D→ D is diffeomorphic
and u ◦ ϕ is conformal.

Fix a piecewise C1-smooth Jordan curve Γ ⊂ R3 and denote by XΓ the family of admissible
maps

XΓ = {ψ : D̄→ R3 | ψ ∈ C(D̄) ∩W 1,2(D,R3), ψ|S : S→ Γ monotone}.

Furthermore, let

AΓ = inf{Area(u) : u ∈ XΓ}
EΓ = inf{E(u) : u ∈ XΓ}.

It is easy to see that XΓ 6= ∅, and therefore the definitions of AΓ and EΓ make sense.

Lemma 8.4. AΓ = EΓ.

Proof. Since Area(u) ≤ E(u), we have AΓ ≤ EΓ. The proof of the converse inequality relies on the
existence of isothermal coordinates. Let us fix ε > 0 and choose u ∈ XΓ such that

Area(u) < AΓ + ε/2.

Recall that

Area(u) =

∫
D

(
|ux|2|uy|2 − 〈ux, uy〉2

)1/2
dx dy.

Next we pull-back the standard inner product (Riemannian metric) of R3 by the mapping u to
obtain a measurable, possibly degenerate, ”Riemannian metric” on D. Writing u = (u1, u2, u3) and

g11 = 〈ux, ux〉 = |ux|2,
g22 = 〈uy, uy〉 = |uy|2,
g12 = g21 = 〈ux, uy〉,

and

(8.5) gij =

(
g11 g12

g21 g22

)
=

(
|ux|2 〈ux, uy〉
〈ux, uy〉 |uy|2

)
,

we see that (
|ux|2|uy|2 − 〈ux, uy〉2

)1/2
=
√

det gij

and
|∇u|2 = |ux|2 + |∇uy|2 = tr gij .

Indeed, gij is the pull-back of 〈·, ·〉 under u and it defines, for a.e. z ∈ D, a symmetric bilinear form
〈·, ·〉z : R2 × R2 → R by

〈ei, ej〉z = ∇u(z)ei · ∇u(z)ej = ux(z) · uy(z) = gij(z).

Notice that 〈·, ·〉z fails to be an inner product at points z ∈ D, where ∇u(z) is not injective. Our aim
is to change the ”metric” gij into a conformal one (= fδij , f > 0 a function). In order to use the
existence results for isothermal coordinates gij should be non-degenerate. To solve this we problem
we first approximate u by a sequence of smooth mappings. Indeed, since u ∈ C(D̄;R3) there exists
a sequence u(k) ∈ C∞(D̄;R3) such that u(k) → u uniformly in D̄ and the partial derivatives of
coordinate functions converge in L2(D), i.e. ui(k)x → uix in L2(D) and ui(k)y → uiy in L2(D) as
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k →∞ (i = 1, 2, 3). We denote by g
(k)
ij the pull-back of 〈·, ·〉 under u(k) (see (8.5)). For each k we

then define a family of mappings u(k,s) ∈ C∞(D̄;R5), s ∈ R, by

u(k,s)(x, y) =
(
u(k)(x, y)︸ ︷︷ ︸
∈R3

, sx, sy
)
.

Then

∇u(k,s) =



u1
(k)x u1

(k)y

u2
(k)x u2

(k)y

u3
(k)x u3

(k)y

s 0

0 s


and the pull-back of the standard inner product 〈·, ·〉 of R5 under u(k,s) is g̃ij = g

(k)
ij + s2δij .

Furthermore,

det g̃ij = det g
(k)
ij + s2|∇u(k)|2 + s4,

and therefore g̃ij is non-degenerate and smooth for s 6= 0. We also notice that

√
det g̃ij ≤

√
det g

(k)
ij + |s||∇u(k)|+ s2.

The existence results for isothermal coordinates imply that, for s 6= 0 and k ∈ N, there exists a
homeomorphism ϕk,s : D̄→ D̄ such that ϕk,s|D : D→ D is diffeomorphic and

u(k,s) ◦ ϕk,s : D→ R5

is conformal. Since

∇
(
u(k,s) ◦ ϕk,s

)
=



(
u1

(k) ◦ ϕk,s
)
x

(
u1

(k) ◦ ϕk,s
)
y(

u2
(k) ◦ ϕk,s

)
x

(
u2

(k) ◦ ϕk,s
)
y(

u3
(k) ◦ ϕk,s

)
x

(
u3

(k) ◦ ϕk,s
)
y

s
(
ϕ1
k,s

)
x

0

0 s
(
ϕ2
k,s

)
y


,

we have ∣∣∇ (u(k,s) ◦ ϕk,s
)∣∣2 =

∣∣∇ (u(k) ◦ ϕk,s
)∣∣2 + s2

(
ϕ1
k,s

)2
x

+ s2
(
ϕ2
k,s

)2
y

≥
∣∣∇ (u(k) ◦ ϕk,s

)∣∣2 .



74 Minimal Surfaces

Hence

E
(
u(k) ◦ ϕk,s

)
=

1

2

∫
D

∣∣∇(u(k) ◦ ϕk,s
)∣∣2

≤ 1

2

∫
D

∣∣∇(u(k,s) ◦ ϕk,s
)∣∣2

= E
(
u(k,s) ◦ ϕk,s

)
= Area

(
u(k,s) ◦ ϕk,s

)
= Area

(
u(k,s)

)
,

where the second last equality follows from conformality of u(k,s) ◦ϕk,s and the last equality follows
since the area is independent of parametrization. On the other hand,

Area
(
u(k,s)

)
=

∫
D

√
det g̃ij

≤
∫
D

(√
det g

(k)
ij + |s||∇u(k)|+ s2

)
=

∫
D

√
det g

(k)
ij + |s|

∫
D
|∇u(k)|+ πs2.

Since ∫
D
|∇u(k)| =

∫
D
|∇u(k) −∇u+∇u|

≤
∫
D
|∇u(k) −∇u|+

∫
D
|∇u|

≤
√
π

(∫
D
|∇u(k) −∇u|2

)1/2

︸ ︷︷ ︸
→0

+
√
π

(∫
D
|∇u|2

)1/2

︸ ︷︷ ︸
<∞

,

we may find s and k0 ∈ N such that

|s|
∫
D
|∇u(k)|+ πs2 < ε/4

for all k ≥ k0. On the other hand, since u(k) → u in W 1,2(D,R3) we may choose k0 so large that∫
D

√
det g

(k)
ij ≤

∫
D

√
det gij + ε/4 = Area(u) + ε/4,

and consequently,

E
(
u(k) ◦ ϕk,s

)
≤ Area

(
u(k,s)

)
≤ Area(u) + ε/2 < AΓ + ε

for all k ≥ k0. It follows that

EΓ ≤ E(u) ≤ lim inf
k→∞

E(u(k)) = lim inf
k→∞

E
(
u(k) ◦ ϕk,s

)
≤ AΓ + ε.
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Remark 8.6. In this remark we explain the existence of isothermal coordinates in the setting of
Lemma 8.4. Using classical notation we write the metric g̃ij , i.e. the pull-back of the standard
inner product 〈·, ·〉 of R5 under a smooth map uk,s, as

ds2 = Edx2 + 2Fdxdy +Gdy2,

where

E = |u(k)x|2 + s2,

G = |u(k)y|2 + s2, and

F = 〈u(k)x, u(k)y〉

are smooth in D̄. In complex coordinates z = x+ iy, the metric g̃ij reads as

ds2 = λ|dz + µdz̄|2,

where

λ =
1

4
(E +G+ 2

√
EG− F 2) > 0

and

µ =
1

4λ
(E −G+ 2iF )

are smooth in D̄ and ‖µ‖∞ < 1. In isothermal coordinates (ζ1, ζ2) a metric should take a form

(8.7) ds2 = ρ(dζ2
1 + dζ2

2 )

which using complex notation ω = ζ1 + iζ2 reads as

ds2 = ρ|dω|2 = ρ|ωzdz + ωz̄dz̄|2 = ρ|ωz|2
∣∣dz +

ωx̄
ωz
dz̄
∣∣2,

with ρ > 0 smooth. The idea in the proof of Lemma 8.4 is to compose uk,s with a diffeomorphism
ϕk,s : D̄→ D̄ in such a way that the pull-back of 〈·, ·〉 under the map u(k,s) ◦ϕk,s is of the form (8.7).
Such a map ϕk,s can be found as follows. First we extend µ to (a complex dilatation) µ ∈ C∞0 (C),
with ‖µ‖∞ < 1. Then the principal solution f : C→ C to the Beltrami equation

fz̄ = µfz

is a C∞-smooth quasiconformal diffeomorphism1. Next we apply the Riemann mapping theorem
to find a homeomorphism ψ : f(D)→ D̄ such that ψ|D is conformal. Then f−1 ◦ ψ−1 is a mapping
ϕk,s we are looking for.

Theorem 8.1 will be proven in two steps. First we show that for each parametrization S→ Γ of
the boundary Jordan curve Γ, there exists an energy minimizing continuous map u : D̄→ R3, u(S) =
Γ. Each such minimizer u is a harmonic map which in the case of the Euclidean target R3 means
that coordinate functions u1, u2, u3 are harmonic functions. By Weyl’s lemma ui’s and hence u will
be C∞. This part follows from the classical Dirichlet problem for harmonic functions. Secondly, we
minimize the energies over possible parametrizations of Γ. In this step the difficulty is in extracting
a convergent subsequence. That problem will be solved by using the Courant-Lebesgue lemma.

1See e.g. Section 5.2 in Astala-Iwaniec-Martin: Elliptic Partial Differential Equations and Quasiconformal Map-
pings in the Plane. Princeton University Press, 2009.
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8.8 Dirichlet problem

Next we will solve the following Dirichlet problem.

Theorem 8.9. Given h ∈ C(D̄) ∩W 1,2(D), there exists a unique harmonic function u ∈ C(D̄) ∩
W 1,2(D), with u|∂D = h|∂D.

Although we could rely on the results in Section 6, we will present a more specific approach.
First we give some preliminary results.

Preliminaries

Since W 1,2(D) is a reflexive Banach space, we have the following weak compactness:

Lemma 8.10. If uk ∈W 1,2(D) is a sequence such that

sup
k
‖uk‖1,2 <∞,

then there exists a subsequence ukj and u ∈W 1,2(D) such that ukj → u weakly in L2(D), ∇ukj → ∇u
weakly in L2(D;R2), and ∫

D
|∇u|2 ≤ lim inf

∫
D
|∇ukj |

2.

Moreover, if each uk ∈W 1,2
0 (D), then u ∈W 1,2

0 (D).

Another ingredient will be the following Poincaré inequality.

Lemma 8.11. There exists a constant C such that

(8.12)

∫
D
|u|2 dx ≤ C

∫
D
|∇u|2 dx

for every u ∈W 1,2
0 (D).

Proof. We will sketch a proof in a more general setting. Suppose that D ⊂ Rn, n ≥ 2, is a bounded
open set. Then there exists a constant C = C(D) <∞ such that∫

D
u dm ≤ C

∫
D
|∇u| dm

for every nonnegative u ∈ C∞0 (D). The Poincaré inequality follows from this by Hölder’s inequality
and approximation. Let R = diam(D̄). Without loss of generality we may assume that D ⊂
B̄(0, R+ ε) \B(0, ε). Let r(x) = |x|. Then

∆r(x) =
n− 1

r(x)

in Rn \ {0}. In particular, in D we have

n− 1

R+ ε
≤ ∆r(x) ≤ n− 1

ε
,

and therefore by integration by parts

n− 1

R+ ε

∫
D
u dm ≤

∫
D
u∆r dm = −

∫
G
∇u · ∇r dm ≤

∫
D
|∇| |∇r|︸︷︷︸

=1

dm =

∫
D
|u| dm.
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We say that a function u ∈ L1
loc(D) is weakly harmonic if

(8.13)

∫
D
u∆ϕ = 0

for every ϕ ∈ C∞0 (D). If u ∈W 1,2
loc (D), this is equivalent to∫

D
〈∇u,∇ϕ〉 = 0

for every ϕ ∈ C∞0 (D).

Lemma 8.14 (Weyl’s lemma). If u ∈ L1
loc(D) is weakly harmonic, then u ∈ C∞(D).

Proof. The proof is based on the mean value property of weakly harmonic functions (see Exercises
10/1-10/5). More precisely, if u ∈ L1

loc(D) is weakly harmonic, then there exists ū ∈ C(D) such
that u = ū a.e. in D and that

2πū(y) =

∫ 2π

0
ū
(
y + (r cos θ, r sin θ)

)
dθ

for every y ∈ D and r > 0, with B2(y, r) ∈ D. We will next show that ū is smooth. We identify u
and ū as elements in L1(D) and thus we write u = ū. Fix a C∞, nonnegative and nonincreasing
function ψ : [0,∞)→ [0,∞) such that

ψ|[0, 1/3] = const., suppψ ⊂ [0, 2/3],

and

2π

∫ 1

0
ψ(t) dt = 1.

For t ∈ (0, 1) define a C∞-smooth function ϕt : R2 → [0,∞) by setting

ϕt(x) = t−2ψ(|x|/t).

Then ϕt is radially symmetric, suppϕ ⊂ B2(0, t), and∫
R2

ϕt = 1.

Fix t ∈ (0, 1), and let ut = u ∗ ϕt : B2(0, 1− t)→ R be the convolution of u and ϕt,

ut(y) =

∫
R2

u(y + x)ϕt(x) dx =

∫
R2

u(z)ϕt(z − y) dz, |y| < 1− t.

Then ut is C∞-smooth. We will show that ut = u which proves the claim. Let y ∈ D and suppose
that y ∈ B2(0, 1− t) for some t ∈ (0, 1). Using polar coordinates, we have

ut(y) =

∫ t

0

∫ 2π

0
u
(
y + (r cos θ, r sin θ)︸ ︷︷ ︸

=y+x

)
ϕt(cos θ, r sin θ︸ ︷︷ ︸

=x

)r drdθ

=

∫ t

0
t−2ψ(r/|x|)

∫ 2π

0
u
(
y + (r cos θ, r sin θ)

)
dθ︸ ︷︷ ︸

=2πu(y)t

r dr

= 2πu(y)

∫
0
t−2ψ(r/|x|)r dr

= u(y)

∫ 2π

0

∫
0
t−2ψ(r/|x|)r drdθ

= u(y).
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Boundary regularity

Lemma 8.15. Suppose that h ∈ C(D̄) ∩W 1,2(D). If u is weakly harmonic and u − h ∈ W 1,2
0 (D),

then u has a continuous extension u ∈ C(D̄) such that u|∂D = h|∂D.

Proof. By Weyl’s lemma u ∈ C∞(D), so it remains to prove that

lim
x→y

u(x) = h(y) ∀y ∈ ∂D.

We may assume without loss of generality that y = (1, 0) ∈ ∂D. The function

x = (x1, x2) 7→ 1− x1

is harmonic and continuous in R2, positive in D̄ \ {y}, and vanishes at y. Fix ε > 0. By continuity
of h, there exists δ > 0 such that

|h(z)− h(y)| < ε ∀z ∈ D̄ ∩B2(y, δ).

Since 1− x1 > 0 in D̄ \B2(y, δ), there exists k > 0 such that

k(1− x1) > 2 sup
D
|h| ∀(x1, x2) ∈ D̄ \B2(y, δ).

Define functions h+ and h− by

h+(x1, x2) = h(y) +
(
ε+ k(1− x1)

)
,

h−(x1, x2) = h(y)−
(
ε+ k(1− x1)

)
.

Then h+ and h− are harmonic and

h− ≤ h ≤ h+

in D̄, in particular, on ∂D. Since u− h ∈W 1,2
0 (D), it follows form the maximum principle (Exerc.)

that

h− ≤ u ≤ h+

in D̄. Since (x1, x2) 7→ 1 − x1 is continuous and vanishes at y = (1, 0), we can choose δ0 > 0 so
small that k(1− x1) < ε in D̄ ∩B2(y, δ0). Then

|u− h(y)| < 2ε

in D ∩B2(y, δ0).

Solving the Dirichlet problem

We will use direct methods in calculus of variations. Let h ∈W 1,2(D) and denote

Ah = {v ∈W 1,2(D) : v − h ∈W 1,2
0 (D)}

and

Eh = inf
v∈Ah

∫
D
|∇v|2.
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Since h ∈ Ah we notice that Eh <∞. Choose a minimizing sequence uj ∈ Ah so that

Eh ≤
∫
D
|∇uj |2 < Eh + 1/j.

Recall the parallelogram law in an inner product space:

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Thus we have∣∣∣∣∇(ui + uj
2

)∣∣∣∣2 +

∣∣∣∣∇(ui − uj2

)∣∣∣∣2 = 2

(∣∣∣∣∇ui2

∣∣∣∣2 +

∣∣∣∣∇uj2

∣∣∣∣2
)

=
1

2
|∇ui|2 +

1

2
|∇uj |2.

Integrating over D gives

1

4

∫
D
|∇(ui − uj)|2 +

∫
D

∣∣∣∣∇(ui + uj
2

)∣∣∣∣2 =
1

2

∫
D
|∇ui|2 +

1

2

∫
D
|∇uj |2 < Eh +

1

2
(1/i+ 1/j).

Since (ui + uj)/2 ∈ Ah, we have ∫
D

∣∣∣∣∇(ui + uj
2

)∣∣∣∣2 ≥ Eh,
and therefore

1

4

∫
D
|∇(ui − uj)|2 <

1

2
(1/i+ 1/j).

On the other hand, ui − uj ∈W 1,2
0 (D), and hence∫

D
|ui − uj |2 ≤ C

∫
D
|∇(ui − uj)|2 < 2C(1/i+ 1/j)

by the Poincaré inequality. It follows that (ui) is a Cauchy sequence in W 1,2(D) and since W 1,2(D)
is a Banach space, there exists u ∈W 1,2(D) such that ui → u in W 1,2(D). By lower semicontinuity,∫

D
|∇u|2 ≤ lim inf

∫
D
|∇ui|2 = Eh.

Furthermore, since ui − h ∈ W 1,2
0 (D), also u − h ∈ W 1,2

0 (D), and therefore u ∈ Ah. Thus u is a
minimizer and hence (weakly) harmonic in D.

We have thus proved Theorem 8.9.

8.16 Controlling boundary parametrizations

Lemma 8.17 (Courant-Lebesgue lemma). Suppose that u : D → R3 is a mapping that belongs to
C(D̄) ∩W 1,2(D;R3) with energy E(u) < K/2 for some K > 0. For y ∈ D̄ and r > 0 denote

Cr = {x ∈ D̄ : |x− y| = r},
d(Cr) = diam

(
u(Cr)

)
,

L(Cr) = length of u(Cr) = H1
(
u(Cr)

)
.
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Then for every δ ∈ (0, 1), there exists % ∈ [δ,
√
δ] such that(

d(C%)
)2 ≤ 2πεδ,

where

εδ =
4πK

log(1/δ)
.

Proof. By approximation we may assume that u ∈ C1(D) ∩W 1,2(D) (Exerc.). Define

p(r) = r

∫
Cr

|∇u|2 ds

where the integration is with respect to arc-length. Then∫ √δ
δ

p(r) d(log r) =

∫ √δ
δ

p(r) drr

=

∫ √δ
δ

∫
Cr

|∇u|2 dsdr

=

∫
D
|∇u|2 ≤ K.

The mean value theorem implies that there exists % ∈ [δ,
√
δ] such that∫ √δ

δ
p(r) d(log r) = p(%)

∫ √δ
δ

d(log r)

= p(%) log

√
δ

δ

=
1

2
p(%) log(1/δ).

Hence

p(%) ≤ 2K

log(1/δ)
.

For every r ∈ [δ,
√
δ],

L(Cr) =

∫
u(Cr)

ds ≤
∫
Cr

|∇u| ds ≤
(∫

Cr

|∇u|2 ds
)1/2

(2πr)1/2 ,

and therefore

(L(Cr))
2 ≤ 2πr

∫
Cr

|∇u|2 ds = 2πp(r).

In particular, (
d(C%)

)2 ≤ (L(C%))
2 ≤ 2πp(%) ≤ 4πK/ log(1/δ).

Next we prove that in dimension 2 the (2-)energy is invariant under conformal diffeomorphisms.
We just need the following special case:



Fall 2014 81

Lemma 8.18. Let u ∈W 1,2(D) and let ϕ : D→ D be a conformal diffeomorphism. Then

E(u) = E(u ◦ ϕ).

Proof. Recall that the differential and the gradient of a function are related by

du(V ) = 〈∇u, V 〉

for every vector field V . By the chain rule (which holds also for Sobolev functions),

d(u ◦ ϕ) = du ◦Dϕ,

hence

〈∇(u ◦ ϕ)(z), Vz〉 = d(u ◦ ϕ)z(Vz) = duϕ(z)(DϕzVz)

= 〈∇u
(
ϕ(z)

)
, DϕzVz〉 = 〈Dϕ∗ϕ(z)∇u

(
ϕ(z)

)
, Vz〉

for every V . We obtain
∇(u ◦ ϕ)(z) = Dϕ∗ϕ(z)∇u

(
ϕ(z)

)
.

Since ϕ = (ϕ1, ϕ2) is conformal, it satisfies the Cauchy-Riemann equations{
ϕ1
x = ϕ2

y

ϕ2
x = −ϕ2

x.

Hence the matrices of Dϕ and Dϕ∗ are

Dϕ =

(
ϕ1
x ϕ1

y

ϕ2
x ϕ2

y

)
=

(
ϕ1
x −ϕ2

x

ϕ2
x ϕ1

x

)
and

Dϕ∗ =

(
ϕ1
x ϕ2

x

−ϕ2
x ϕ1

x

)
.

Thus the Jacobian determinant of ϕ is

Jϕ = detDϕ = ϕ1
xϕ

2
y − ϕ1

yϕ
2
x = (ϕ1

x)2 + (ϕ2
x)2.

Since

Dϕ∗∇u =

(
ϕ1
x ϕ2

x

−ϕ2
x ϕ1

x

)(
ux
uy

)
=

(
ϕ1
xux + ϕ2

xuy
−ϕ2

xux + ϕ1
xuy

)
,

we have

|Dϕ∗∇u|2 = (ϕ1
xux + ϕ2

xuy)
2 + (−ϕ2

xux + ϕ1
xuy)

2

= (ϕ1
x)2|∇u|2 + (ϕ2

x)2|∇u|2

= Jϕ|∇u|2.

Hence

E(u ◦ ϕ) =
1

2

∫
D
|∇(u ◦ ϕ)(z)|2 dz

=
1

2

∫
D

∣∣∣Dϕ∗ϕ(z)∇u
(
ϕ(z)

)∣∣∣2 dz
=

1

2

∫
D

∣∣∇u(ϕ(z)
)∣∣2Jϕ(z) dz

=
1

2

∫
D
|∇u|2

= E(u).
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Recall from complex analysis that the group of Möbius transformations ϕ : Ĉ→ Ĉ acts triply-
transitively, that is, given two triples (p1, p2, p3) and (q1, q2, q3) of distinct points in Ĉ, there exists a
unique Möbius transformation ϕ such that ϕ(pi) = qi, i = 1, 2, 3. Moreover, if the triples (p1, p2, p3)
and (q1, q2, q3) have the same orientation with respect to D, then the map ϕ maps D̄ to D̄.

Let then Γ ⊂ R3 be a piecewise C1 Jordan curve and fix a triple (p1, p2, p3) on ∂D and a triple
(q1, q2, q3) on Γ. We have proved:

Lemma 8.19. Let u : D̄ → R3 be a mapping belonging to C(D̄) ∩W 1,2(D) such u|∂D : ∂D → Γ is
monotone and onto. Then there exists a Möbius transformation ϕ : D̄→ D̄ such that

(1) E(u ◦ ϕ) = E(u);

(2) u ◦ ϕ ∈ C(D̄) ∩W 1,2(D);

(3) u ◦ ϕ|∂D : ∂D→ Γ is monotone and onto;

(4)
{
u
(
ϕ(p1)

)
, u
(
ϕ(p2)

)
, u
(
ϕ(p3)

)}
= {q1, q2, q3}.

We will use the Courant-Lebesgue lemma 8.17 to prove that fixing the images of three points
and bounding the energy implies equicontinuity on ∂D.

Lemma 8.20. For K > 0, let FK be the family of all maps ψ : D̄→ R3 satisfying

(1) ψ ∈ C(D̄) ∩W 1,2(D) and E(ψ) ≤ K/2;

(2) ψ|∂D : ∂D→ Γ is monotone and onto;

(3) ψ
(
{p1, p2, p3}

)
= {q1, q2, q3}.

Then FK is equicontinuous on ∂D.

Proof. Fix ε > 0 smaller than min{|qi − qj | : i 6= j}. Since Γ is a piecewise C1 Jordan curve, there
exists d > 0 such that Γ \ {p, q} has exactly one component of diameter ≤ ε whenever p, q ∈ Γ are
points with 0 < |p− q| < d. Fix δ ∈ (0, 1) such that

√
2πεδ < d and that at most one of the points

pi belong to B2(z,
√
δ) for every z ∈ ∂D. By the Courant-Lebesgue lemma 8.17, given any z ∈ ∂D,

there exists %ψ ∈ [δ,
√
δ] such that

d(C%ψ) ≤
√

2πεδ < d,

where d(C%ψ) is the diameter of the image ψ(C%ψ) of the circular arc C%ψ = {y ∈ D̄ : |y − z| = %ψ}
and

εδ =
4πK

log(1/δ)
.

The circular arc C%ψ divides the unit circle ∂D into two components A1,ψ and A2,ψ such that the
longer one, say A2,ψ, contains at least two of the points pi. Denote by Ai,ψ = ψAi,ψ ⊂ Γ the
corresponding images. If {ζ1, ζ2} ⊂ ∂D ∩ C%ψ are the endpoints of C%ψ , then

|ψ(ζ1)− ψ(ζ2)| ≤ d(C%ψ) < d.

Hence (by the choice of d) either A1,ψ or A2,ψ has diameter ≤ ε. Since ε < min{|qi − qj | : i 6= j},
that component cannot contain two of the points qi. Hence this component must be A1,ψ = ψA1,ψ.
We have proved that for every ε > 0 there exists δ > 0 such that

diamψ(A) ≤ ε

whenever A ⊂ ∂D has diameter diamA ≤ 2δ and ψ ∈ FK . That is, the family FK is equicontinuous
on ∂D.
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8.21 Solving the Plateau problem

Proof of Theorem 8.1. Let Γ ⊂ R3 be a piecewise C1 Jordan curve and fix a triple (p1, p2, p3) on
∂D and a triple (q1, q2, q3) on Γ. First we observe that EΓ <∞. Indeed, since Γ ⊂ R3 is a piecewise
C1 Jordan curve, its has a piecewise C1 monotone and onto parametrization γ : ∂D → Γ. Define,
by using polar coordinates r ≥ 0 and ϑ ∈ ∂D, a mapping ω : D̄ → R3, ω(r, ϑ) = η(r)γ(ϑ), where
η : [0, 1]→ [0, 1] is smooth such that η(1) = 1 and η(r) = 0 for all 0 ≤ r ≤ 1/2. Then ω is Lipschitz,
and therefore E(ω) < ∞. Furthermore, ω ∈ XΓ, and so EΓ ≤ E(ω) < ∞. Let then ψj ∈ XΓ be a
minimizing sequence for EΓ, i.e.

lim
j→∞

E(ψj) = EΓ.

For each j, there exists a harmonic map uj : D̄ → R3 such that uj ∈ C(D̄) ∩ C∞(D) and uj |∂D =
ψj |∂D. In particular, uj ∈ XΓ and E(uj) ≤ E(ψj). Hence also (uj) is a minimizing sequence.
Then we notice that uj ◦ϕ is harmonic and belongs to XΓ if ϕ : D̄→ D̄ is a Möbius transformation.
Hence by Lemma 8.19, we may assume that each uj ∈ FK for some fixed K > 2EΓ. By the weak
compactness Lemma 8.10, there exists a subsequence, still denoted by (uj), and ũ ∈W 1,2(D) such
that uj → ũ weakly in W 1,2(D) and that

E(ũ) ≤ lim inf
j→∞

E(uj) = EΓ.

By Lemma 8.20, (uj) is equicontinuous on ∂D. Hence, by the Ascoli-Arzelá theorem, there is a
subsequence, still denoted by (uj), that converges uniformly on ∂D. Since each uj is harmonic, so
does ui − uj , and therefore

sup
D̄
|ui − uj | = sup

∂D
|ui − uj |

by the maximum principle. Hence uj → u uniformly on D̄. Now u is a harmonic map as a limit of
harmonic mappings in uniform convergence, hence it is smooth in D. Furthermore, u = ũ (a.e. in
D), u|∂D is monotone and onto since each uj |∂D does. It follows that u ∈ XΓ, and therefore

E(u) = EΓ = AΓ,

where the last equation follows from Lemma 8.4. On the other hand, AΓ ≤ Area(u) ≤ E(u), and
therefore we must have

Area(u) = AΓ.
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